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Isoperimetric Inequalities
for a Wedge-Like Membrane

Abdelhalim Hasnaoui and Lotfi Hermi

Abstract. For a wedge-like membrane, Payne and Weinberger proved in
1960 an isoperimetric inequality for the fundamental eigenvalue which
in some cases improves the classical isoperimetric inequality of Faber–
Krahn. In this work, we introduce “relative torsional rigidity” for this
type of membrane and prove new isoperimetric inequalities in the spirit
of Saint-Venant, Pólya–Szegő, Payne, Payne–Rayner, Chiti, and Talenti,
which link the eigenvalue problem with the boundary value problem in a
fundamental way.

1. Introduction and Main Results

In this paper, we extend some classical results [39,41–44,48] focusing on fun-
damental modes of vibration of wedge-like membranes. These are two-dimen-
sional domains contained in a sector. We concentrate on isoperimetric results,
rather than asymptotics.

We announce new results focusing on the interplay between the fun-
damental mode of vibration of a fixed wedge-like membrane and “relative
torsional rigidity”, which we introduce for such domains. Along the way, a
Saint-Venant-type principle for “relative torsional rigidity” is proved, as well
as several other isoperimetric inequalities for the spectral problem, and for the
Dirichlet boundary value problem in the spirit of Talenti, which are of inde-
pendent interest. Further isoperimetric inequalities of the type of Pólya–Szegő,
Kohler-Jobin, and Payne for relative torsional rigidity appear in [19]. Much of
these results are extended to convex cones in higher dimensions in [20] (see
also [44]).

For the purposes of the problem we are treating, we let α ≥ 1 and W be
the wedge defined in polar coordinates (r, θ) by

W =
{

(r, θ)
∣∣ r > 0, 0 < θ <

π

α

}
. (1.1)
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Whenever pertinent, the arclength will be denoted by

dσ =
√

dr2 + r2dθ2,

while the element of area is denoted by dA = rdrdθ, and we let

h(r, θ) = rα sinαθ. (1.2)

Then, h is a positive harmonic function in W which is zero on the boundary
∂W.

We are interested in the first eigenfunction u and the corresponding eigen-
value λ of the problem

P1 :
{

Δu+ λu = 0 in D
u = 0 on ∂D,

where D is a bounded domain completely contained in W.
We are also interested in a quantity we call “relative torsional rigidity”,

Pα, the existence and properties of which are detailed in Sect. 5.
Our work hovers around four classical inequalities which serve both as

motivation, and means of discovery, via an interpretation in Weinstein frac-
tional space: the Faber–Krahn inequality for the fundamental eigenvalue of a
fixed membrane, λ, the Saint-Venant principle for “torsional rigidity”, P , first
investigated in 1856 [15], and proved by Pólya in 1948 [37,38] for two-dimen-
sional domains, and two inequalities investigated by Pólya and Szegő in 1951
[38] for P λ2 and P λ (P λ(d+2)/2 and P λ for d-dimensional domains). For a
wedge-like membrane D ⊂ W, Payne and Weinberger [39] proved in 1960 (see
also [34])

λ ≥ λ∗ =

⎛
⎝4α(α+ 1)

π

∫

D

h2(r, θ)r dr dθ

⎞
⎠

−1
α+1

j2α,1 (1.3)

where h is defined via (1.2) and jα,1 denotes the first positive zero of the Bessel
function of the first kind Jα(x) in the notation of [1]. Equality in (1.3) holds
if and only if D is a circular sector.

We complete the program in [39] by proving similar results for Pα, Pαλ
α+2,

and Pα λ.
In Sect. 2, we motivate our results via an interpretation of the four clas-

sical inequalities discussed in Weinstein (2α+ 2) fractional space in the spirit
of Payne [34] (see also [39]).

In Sect. 3, we prove new versions of Chiti’s isoperimetric inequality for
weighted Lp-norms of the fundamental eigenfunction u of a fixed membrane
problem for D ⊂ W, and exploit its consequences.

In Sect. 4, we focus on the Dirichlet boundary value problem for this
type of domain. We extend earlier work of Maderna and Salsa [31] and prove
weighted versions of Talenti [51].

In Sect. 5, we focus on “relative torsional rigidity,” state its various for-
mulations, prove the Saint-Venant principle for this quantity [37], and extend
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earlier work by Pólya–Szegő [38], and Payne–Rayner [35,36]. Our results com-
plete earlier work of Philippin [41]. All new inequalities lend themselves to the
(2α+ 2) interpretation in fractional Weinstein space which we discuss next.

2. Payne Interpretation in Weinstein Fractional Space

We first recall key properties of λ and P which will be used in this section
when the finite volume domain D ⊂ R

d. The fundamental eigenvalue of the
Dirichlet Laplacian is characterized by the Rayleigh–Ritz principle

λ = inf
φ∈W 1,2

0 (D)

∫
D

|∇φ|2 dx∫
D
φ2 dx

(2.1)

where W 1,2
0 (D) denotes the usual Sobolev space on D. In the case of torsional

rigidity the Rayleigh–Ritz principle takes the form

1
P

= inf
φ∈W 1,2

0 (D)

∫
D

|∇φ|2 dx(∫
D
φdx

)2 . (2.2)

The optimizer v of (2.2), usually called the stress (or “warping”) function, [46]
satisfies

Δ v = −1 in D, v = 0 on ∂D, (2.3)

and thus P (sometimes denoted P (D) for emphasis) also admits the following
forms:

P =
∫

D

v dx =
∫

D

|∇v|2 dx. (2.4)

We next list the four inequalities discussed earlier when D ⊂ R
d. We will need

them for the purposes of this section. The Faber–Krahn inequality [22,28]
states that

λ (D) ≥ λ (D∗) =
C

2/d
d j2d/2−1,1

|D|2/d
(2.5)

where Cd = πd/2/Γ(1 + d/2) is the volume of the unit ball, and D∗ is the
symmetrization of D, i.e., the ball with the same volume as D, viz.,

|D| = |D∗|.
The Saint-Venant isoperimetric inequality takes the form

P (D) ≤ P (D∗) =
|D|1+2/d

d (d+ 2)C2/d
d

. (2.6)

For d = 2, P ≤ P ∗ = |D|2
8π . In addition to Pólya’s work [37], we point out other

independent proofs by Makai [32] and Luttinger [30]. For higher dimension,
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see [4,6,23], and for inequalities involving higher eigenvalues see [53]. From
(2.4), and the Rayleigh–Ritz principle for λ, it is clear that

P (D) =
∫

D

v dx =
∫

D

|∇v|2 dx =

(∫
D
v dx

)2
∫

D
|∇v|2 dx

≤ |D|
∫

D
v2 dx∫

D
|∇v|2 dx

<
|D|
λ(D)

,

where we used the Cauchy–Schwarz inequality to complete the argument.
Therefore,

P (D)λ(D) < |D|. (2.7)

This is Payne’s proof of an earlier result of Pólya–Szegő [38]. The latter also
conjectured the following isoperimetric inequality, which was eventually proved
by Kohler-Jobin [25–27]:

P (D)λ(D)
d+2
2 ≥ P (D∗)λ(D∗)

d+2
2 = Cd

jd+2
d
2 −1,1

d (d+ 2)

For d = 2, the original conjecture takes the form [40]

P (D)λ2 ≥ π
j40,1

8
=

16.7π
4

.

The closest anyone prior to Kohler-Jobin had gotten to the Pólya–Szegő con-
jecture were Payne and Rayner [35] who proved

P (D)λ2 ≥ 16π
4
.

In d-dimensions, this Payne–Rayner inequality takes the form

P λ
d+2
2 ≥ 2dCd j

d−2
d
2 −1,1

. (2.8)

Key to this improvement is an isoperimetric L2 − L1 result for norms of the
eigenfunction u, first proved by Payne–Rayner [35], later generalized by Chiti
[13]

‖u‖q

‖u‖p
≤ K(p, q, d)λ

d
2 ( 1

p − 1
q ) for q ≥ p > 0 (2.9)

and [14]

‖u‖∞
‖u‖p

≤ K(p, d)λ
d
2p for p > 0. (2.10)

Here

K(p, q, d) = (dCd)
1
q − 1

p j
d ( 1

q − 1
p )

d
2 −1,1

(∫ 1

0
rd−1+q(1− d

2 )Jq
d
2 −1

(
j d

2 −1,1 r
)

dr
) 1

q

(∫ 1

0
rd−1+p(1− d

2 )Jp
d
2 −1

(
j d

2 −1,1 r
)

dr
) 1

p

and

K(p, d) = lim
q→∞K(p, q, d).
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To see (2.8), start with (2.2) and use the eigenfunction u as a test function

1
P

≤
∫

D
|∇u|2 dx(∫
D
u dx

)2 =

∫
D

|∇u|2 dx∫
D
u2 dx

∫
D
u2 dx(∫

D
u dx

)2 .

Applying Chiti’s inequality (2.9) for p = 1, q = 2 and rearranging the terms
leads to (2.8).

We are now ready to focus on a wedge-like membrane in light of the Payne
interpretation in (2α+ 2) Weinstein fractional space. This space is simply R

d

with d = 2α+ 2, when the wedge-like membrane is transformed (or unfolded;
see details below or in [39,54]) and is then interpreted as a solid of rotation in
this Euclidean space. The technique is amply used in [42]; see also [21,39,41].
We first note that ineq. (1.3) is a case of the Faber–Krahn ineq. (2.5) in exactly
this higher dimensional setting, a fact which was proved in [34]. We illustrate
the procedure discussed there for the case of “relative torsional rigidity”, Pα,
when α = 1, 2. We will define it, as we discuss it more fully later in Sect. 5,
by:

Pα =
∫

D

vhdA, (2.11)

where v is a solution of the Dirichlet boundary value problem

− Δv = h in D, v = 0 on ∂D. (2.12)

(a) Case α = 1.
In this case, D is such that y > 0, and (2.12) reduces to

Δv + y = 0 in D, v = 0 on ∂D.

With v = y w, the problem is then

Δw +
2
y

∂w

∂y
= −1 in D, w = 0 on ∂D ∩ {y > 0}.

Let the function Φ(x1, x2, x3, x4) be defined by

Φ(x1, x2, x3, x4) = w(x, y) where x = x4; y =
√
x2

1 + x2
2 + x2

3;

This function has axial symmetry with respect to the x4-axis. It is defined on

D4 =
{

(x1, x2, x3, x4) ∈ R
4

∣∣∣∣x = x4, y =
√
x2

1 + x2
2 + x2

3, (x, y) ∈ D

}
.

D4 is obtained from D via rotation around the x-axis in R
4. The function Φ

satisfies

Δ4 Φ = −1 in D4, Φ = 0 on ∂D4.

Note that d = 2α+2 = 4. Let dV = dx1dx2dx3dx4. Torsional rigidity is given
by

P =
∫

D4

ΦdV,
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while relative torsional rigidity takes the form

P1 =
∫

D

v y dxdy =
∫

D

w y2 dxdy =
1
4π

∫

D4

ΦdV =
P

4π
.

We also note that |D4| = (4π)
∫

D
y2dxdy (see [34,47]). Therefore, applying the

previous inequalities for P , we obtain
• Pólya–Szegő:

P < |D4|λ−1

So

P1 <
1
4π

|D4|λ−1 =
1
4π

(4π)

⎛
⎝
∫

D

y2dxdy

⎞
⎠ λ−1 = A1 λ

−1

where A1 =
∫

D
y2dxdy.

• Payne–Rayner: Pλ3 ≥ 8π2

2 j21,1, and therefore, P1λ
3 ≥ πj21,1.

• Saint-Venant:

P ≤
√

2|D4|3/2

24π
which implies

P1 ≤ 1
3

(
1
8π

) 1
2

A
3/2
1 .

This constitutes an isoperimetric inequality for P1 optimized by the half-
disk with the same A1 as D. The original interpretation in the case of λ,
observed by Payne [34], takes the form

λ ≥ 1
2

(
π

2A1

)1/2

j21,1

and is also optimized for the half-disk.
(b) Case α = 2.

In this case, D is such that x > 0, y > 0, and (2.12) reduces to

Δv + 2xy = 0 in D, v = 0 on ∂D,

With v = 2x y w, the problem then reduces to

Δw +
2
x

∂w

∂x
+

2
y

∂w

∂y
= −1 in D, w = 0 on ∂D ∩ {x > 0, y > 0}.

Let the function Φ(x1, x2, x3, y1, y2, y3) be defined by

Φ(x1, x2, x3, y1, y2, y3) = w(x, y)

with x =
√
x2

1 + x2
2 + x2

3; y =
√
y2
1 + y2

2 + y2
3 . This function is defined on

D6 =
{

(x1, x2, x3, y1, y2, y3) ∈ R
6
∣∣x

=
√
x2

1 + x2
2 + x2

3, y =
√
y2
1 + y2

2 + y2
3 , (x, y) ∈ D

}
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which is a domain of revolution generated by D rotating around two 3-dimen-
sional orthogonal subspaces in R

6. The function Φ satisfies

Δ6 Φ = −1 in D6, Φ = 0 on ∂D6.

Note that d = 2α+ 2 = 6. Let dV = dx1dx2dx3dy1dy2dy3, and

P =
∫

D6

ΦdV.

Then

P2 = 2
∫

D

v x y dxdy = 4
∫

D

wx2 y2dxdy =
4

(4π)2

∫

D6

ΦdV =
P

4π2
.

Also ([34,47])

|D6| =
∫

D6

dV = (4π)2
∫

D

x2y2 dxdy = 4π2A2

where A2 = 4
∫

D
x2 y2 dxdy. Therefore, applying the previous inequalities for

P , we obtain

• Pólya–Szegő:

P < |D6|λ−1

which leads to

P2 < A2 λ
−1.

• Payne–Rayner: Pλ4 ≥ 12π3

6 j42,1, and the corresponding inequality for
relative torsional rigidity P2λ

4 ≥ π
2 j

4
2,1.

• Saint-Venant:

P ≤ 61/3|D6|4/3

48π

which simplifies as

P2 ≤ 1
4

(
1

72π

) 1
3

A
4/3
2 .

Again the original interpretation in the case of λ was observed by Payne

λ ≥ 1
2

(
π

12A2

)1/3

j22,1,

and isoperimetry holds for the last two inequalities for the quarter disk
with the same A2 as D. For a general α ≥ 1, the Payne interpretation
holds as well (see [34]), and the results are proved in Sect. 5, indepen-
dently of this trick.
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3. Chiti’s Theorem for a Wedge-Like Membrane

In this section we focus on the properties of the fundamental eigenfunction
u > 0 of problem P1. We extend Chiti’s comparison theorem [13,14] (see also
[2,3,17]), given originally for domains in R

d, and prove a weighted isoperi-
metric version of Chiti’s key inequality for the case of a wedge-like domain
D completely contained in the sector W. We offer isoperimetric inequalities
which complete and compare favorably with earlier results of Philippin [41],
in the view of earlier work by Payne and Rayner [35,36]; see also [26,27]. We
also explore consequences of our new inequalities. It turns out that the Payne–
Weinberger inequality for wedge-like domains is a particular instance of the
Chiti inequality for these domains in the limit when q → ∞ and p → 0+, as
discussed in [13]. We first announce the key theorems, then discuss them, and
finally offer the detailed proofs.

Theorem 3.1. Let D be a bounded domain in the wedge W. Let p, q be real
numbers such that q ≥ p > 0; then u satisfies the inequality

⎛
⎝
∫

D

uqh2−qdA

⎞
⎠

1
q

≤ K(p, q, λ, α)

⎛
⎝
∫

D

up h2−pdA

⎞
⎠

1
p

(3.1)

with

K(p, q, λ, α) =
( π

2α

) p−q
pq

λ(α+1) q−p
pq

(∫ jα,1

0
r(2−q)α+1Jq

α(r)dr
) 1

q

(∫ jα,1

0
r(2−p)α+1Jp

α(r)dr
) 1

p

.

The result is isoperimetric in the sense that equality holds if and only if D is
a circular sector of angle π

α .

Remark 3.2. When q = 2, p = 1, we obtain the explicit form of the constant
K(2, 1, λ, α), viz.

∫

D

u2dA ≤ α

πj2α
α,1

λα+2

⎛
⎝
∫

D

uhdA

⎞
⎠

2

. (3.2)

To obtain it, simply use the following integral properties of Bessel functions
[1]

jα,1∫

0

rJ2
α(r)dr =

j2α,1

2
J2

α+1(jα,1),

jα,1∫

0

rα+1Jα(r)dr = jα+1
α,1 Jα+1(jα,1). (3.3)

One also notes that the L∞ − Lp version of Theorem 3.1, which has the
Weinstein (2α+2) fractional space interpretation of Kohler-Jobin’s work [26],
can be inferred as well. To state corollaries, we introduce the substitution

u(r, θ) = v(r, θ)h(r, θ) for (r, θ) ∈ D, (3.4)

with v ∈ C2(D) and vanishing on ∂D ∩ W.



Vol. 15 (2014) Isoperimetric Inequalities for a Wedge-Like Membrane 377

Corollary 3.3. With the same conditions given in Theorem 3.1, we have

ess sup v ≤ αλα+1

2α−1πΓ(1 + α)jα+1
α,1 Jα+1(jα,1)

∫

D

uhdA, (3.5)

and

(ess sup v)2 ≤ αλα+1

22(α−1)π (Γ(α+ 1))2 j2α,1J
2
α+1(jα,1)

∫

D

u2dA. (3.6)

Proof. Sending q → ∞ in ineq. (3.1) and using the fact that

t−νJν(t) ≤ 1
2ν Γ(1 + ν)

for 0 ≤ t ≤ jν,1 (see the details of (5.13) in [3]), we get

(ess sup v)p ≤ 2αλα+1

(2α Γ(α+ 1))p
π
∫ jα,1

0
r(2−p)α+1Jp

α(r)dr

∫

D

vp h2dA (3.7)

The results of the corollary for p = 1, 2 follow in light of (3.3). �

Remark 3.4. As pointed out in [13], the Faber–Krahn inequality, needed to
prove Chiti’s isoperimetric inequality, can also be seen as a limiting case of
the latter when q → ∞ and p → 0+. This is also the case of ineq. (3.1) and
the Payne–Weinberger ineq. (1.3). To see this, start with ineq. (3.7). Letting
p → 0+, we get

∫

D

h2dA ≥ πj2α+2
α,1

4α(α+ 1)λα+1
.

Rearranging the statement leads to the Payne–Weinberger ineq. (1.3).

We are now ready to prove our key Theorem 3.1. We perform a series of
reductions before we prove this result. One should also note that Theorem 3.1
has the correct interpretation in (2α+ 2) Weinstein fractional space as well.

Recall the function v defined by (3.4). For 0 ≤ t ≤ v = ess sup v, let
Dt = v−1((t, v]) = {(r, θ) ∈ D|v(r, θ) > t}. Define the function

ξ(t) =
∫

Dt

h2dA (3.8)

The co-area formula gives

ξ(t) =
∫

Dt

h2dA =

v∫

t

∫

∂Dτ

h2

|∇v|dσ dτ (3.9)

Since D has bounded measure, the above equation shows that the function

t �→
∫

∂Dt

h2

|∇v|dσ (3.10)
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is integrable, and, therefore, ξ is absolutely continuous. Hence ξ is differentia-
ble almost everywhere and

dξ
dt

= −
∫

∂Dt

h2

|∇v|dσ < 0 (3.11)

for almost all t ∈ [0, v]. The function ξ is then a nonincreasing function and has
an inverse which we denote by t(ξ). In fact according to a standard result from
M. A. Zareckii [50] t(ξ) is absolutely continuous. Roughly speaking, our (t, ξ)
correspond to (t, ζ) in Ratzkin’s work [44]. What we perform here is a form
of a weighted symmetrization initiated by [39]; see also [7,8,10,11,31,52]. For
basic references on the general subject of symmetrization, we refer the reader
to [24,51].

Note that

h2 =
(√

|∇v|h
) ( h√|∇v|

)
.

Therefore, applying the Cauchy–Schwartz inequality we get

⎛
⎝

∫

∂Dt

h2dσ

⎞
⎠

2

≤
⎛
⎝

∫

∂Dt

h2

|∇v|dσ
⎞
⎠
⎛
⎝

∫

∂Dt

h2|∇v|dσ
⎞
⎠ , (3.12)

and so

− t′(ξ) = − 1
ξ′(t)

≤
∫

∂Dt
h2|∇v|dσ

(∫
∂Dt

h2dσ
)2 . (3.13)

We now use a geometrical inequality introduced by Payne and Weinber-
ger in the following lemma:

Lemma 3.5. (Payne–Weinberger [39]). Let D ⊂ W be a bounded domain with
piecewise smooth boundary. Then

⎛
⎝2απ−1

∫

∂D

h2dσ

⎞
⎠

2α+2
2α+1

≥ 4π−1α(α+ 1)
∫

D

h2dA. (3.14)

Equality is attained when D is a circular sector of angle π
α .

Using this lemma we have

− t′(ξ) ≤ 4− α
α+1

(π
α

)− 1
α+1

(α+ 1)− 2α+1
α+1

∫
∂Dt

h2|∇v|dσ
ξ

2α+1
α+1

. (3.15)
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Now, from the divergence theorem and Δh = 0, we have
∫

∂Dt

h2|∇v|dσ = −
∫

Dt

div
(
h2∇v) dA

= −
∫

Dt

h (hv + 2〈∇v,∇h〉) dA

= λ

∫

Dt

v h2dA. (3.16)

Remark 3.6. ∀p ≥ 0, we have

∫

Dt

vp h2dA =

v∫

t

τp

∫

∂Dτ

h2

|∇v| dσ dτ = −
v∫

t

τpξ′(τ)dτ. (3.17)

The change of variable η = ξ(τ) gives

∫

Dt

vph2dA =

ξ(t)∫

0

(t(η))p dη. (3.18)

Using this remark for p = 1 in inequality (3.15), we find

− t′(ξ) ≤ λ 4− α
α+1

(π
α

)− 1
α+1

(α+ 1)− 2α+1
α+1

∫ ξ

0
t(η)dη

ξ
2α+1
α+1

, (3.19)

for almost all ξ ∈ [0, ξ0], with ξ0 = ξ(0) =
∫

D
h2dA.

With λ still denoting the first eigenvalue of P1, we consider the sector

Sλ =
{

(r, θ) | 0 < r <
jα,1√
λ
, 0 < θ <

π

α

}
.

The eigenvalue problem in Sλ is given by

P2 :
{

Δu+ μu = 0 in Sλ

u = 0 on ∂Sλ.

Sλ is so defined to guarantee that its first eigenvalue is equal to λ. The corre-
sponding eigenfunction is given explicitly by

z(r, θ) = h(r, θ)R(r), (3.20)

where R denotes the radial function given by

R(r) = cr−αJα(
√
λr) (3.21)

and c is a normalizing constant. For all 0 ≤ s ≤ R = ess supR, let

Sλ,s =
{

(r, θ)
∣∣∣ R(r) > s, 0 < θ <

π

α

}
and ζ(s) =

∫

Sλ,s

h2dA.
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We can now proceed exactly as in the proof of the inequality (3.19) to prove
that ζ is a decreasing function and has an inverse function, which we denote
by s(ζ), satisfying the integro-differential inequality

− s′(ζ) ≤ λ 4− α
α+1

(π
α

)− 1
α+1

(α+ 1)− 2α+1
α+1

∫ ζ

0
s(η)dη

ζ
2α+1
α+1

, (3.22)

for almost all ζ ∈ [0, ζ0], with ζ0 = ζ(0) =
∫

Sλ
h2dA.

Let S0 = {(r, θ) | 0 < r < r0, 0 < θ < π
α} such that

∫

S0

h2dA =
∫

D

h2dA = ξ0. (3.23)

An explicit computation gives that ξ0 = π
4α(α+1)r

2α+2
0 . Now, we introduce the

function u
 defined on S0 by

u
(r, θ) = v
(r)h(r, θ), (3.24)

where v
 is the radial and decreasing function given by

v
(r) = t

(
π

4α(α+ 1)
r2α+2

)
, ∀r ∈ [0, r0]. (3.25)

Then, the set

S0,τ =
{

(r, θ) ∈ S0 | v
(r) > τ, 0 < θ <
π

α

}

is a sector, and for all p ≥ 0 we have∫

S0,τ

v
ph2dA =
π

2α

∫

{r>0, t( π
4α(α+1) r2α+2)>τ}

r2α+1

×
(
t

(
π

4α(α+ 1)
r2α+2

))p

dr

=
∫

{η>0, t(η)>τ}

tp(η)dη

=

ξ(τ)∫

0

tp(η)dη

=
∫

Dτ

vph2dA (3.26)

for all τ ∈ [0, v].

Lemma 3.7. Choose c in (3.21) such that R(0) = v
(0). Then

z(r, θ) ≤ u
(r, θ), ∀ (r, θ) ∈ Sλ. (3.27)

Proof. To prove this lemma we must introduce the following remark:
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Remark 3.8. we have

ξ0 ≥ ζ0. (3.28)

Indeed, let λ0 be the lowest eigenvalue of the eigenvalue problem for S0.
By the Payne–Weinberger inequality, we have

λ0 ≤ λ. (3.29)

Let r1 be the radius of Sλ; then

r1 =
jα,1√
λ
, and r0 =

jα,1√
λ0

.

From (3.29), we have r1 ≤ r0, and, Sλ ⊂ S0, then ξ0 ≥ ζ0.
We distinguish two cases:
If ξ0 = ζ0. From the fact that D and Sλ have the same Dirichlet first

eigenvalue and the Payne–Weinberger Theorem, we have D = Sλ = S0. Now,
using the fact that Δh = 0 and the divergence theorem, we have∫

S0

|∇u
|2dA =
∫

S0

|∇v
|2h2dA, (3.30)

and ∫

S0

|∇v
|2h2dA =
∫

S0

∣∣∣∇t
(

π

4α(α+ 1)
r2α+2

) ∣∣∣
2

h2(r, θ)rdrdθ

=
( π

2α

)3
r0∫

0

r6α+3

(
t′
(

π

4α(α+ 1)
r2α+2

))2

dr

=
( π

2α

) 1
α+1

(2α+ 2)
2α+1
α+1

ξ0∫

0

ξ
2α+1
α+1 (t′(ξ))2 dξ

≤ λ

ξ0∫

0

(−t′(ξ))
ξ∫

0

t(η)dηdξ

= λ

ξ0∫

0

(t(ξ))2 dξ

= λ

∫

S0

u
2dA. (3.31)

Here we used (3.19), t(ξ0) = 0, and integration by parts in going from the first
equalities to the last ones. Thus∫

S0
|∇u
|2dA∫

S0
u
2dA

≤ λ. (3.32)

As λ is also the minimum of the Rayleigh quotient on S0, it follows that this
minimum is achieved for u
, and so u
 is indeed the eigenfunction associated
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with λ on S0. From equality (3.26), we have u
 = u and z = z
. Now, the fact
that u
 and z are first Dirichlet eigenfunctions in S0 implies the existence of
c′ > 0 such that R(r) = c′v
(r), ∀r ∈ (0, r0). Finally, the hypothesis of the
lemma gives c′ = 1 and z = u = u
.

If ξ0 > ζ0. We have t(ζ0) > 0 while s(ζ0) = 0. Now, by this and the fact
that

s(0) = R(0) = v
(0) = ess sup v = t(0), (3.33)

we can find a constant κ ≥ 1 such that

κ t(ζ) ≥ s(ζ) ∀ζ ∈ [0, ζ0]. (3.34)

Let c′′ be the constant defined by

c′′ = inf{κ ≥ 1 ; κ t(ζ) ≥ s(ζ), ∀ζ ∈ [0, ζ0]} (3.35)

Then by the definition of c′′, we can find ζ1 ∈ [0, ζ0) such that c′′ t(ζ1) = s(ζ1).
We define now the function g by

g(ζ) =
{
c” t(ζ); if ζ ∈ [0, ζ1]
s(ζ); if ζ ∈ [ζ1, ζ0].

The properties of t and s imply that g is monotonically decreasing and g(ζ0) =
0. Further, by virtue of (3.19) and (3.22), we easily see that

− g′(ζ) ≤ λ 4− α
α+1

(π
α

)− 1
α+1

(α+ 1)− 2α+1
α+1

∫ ξ

0
g(η)dη

ξ
2α+1
α+1

, (3.36)

for almost all ζ ∈ [0, ζ0]. Now, let g defined in Sλ by

g(r, θ) = g

(
π

4α(α+ 1)
r2α+2

)
h(r, θ), (3.37)

then, g is an admissible function for the Rayleigh quotient on Sλ. From this
we proceed exactly as in the proof of the inequality (3.31) and we get

∫
Sλ

|∇g|2dA∫
Sλ

g2dA
≤ λ, (3.38)

and by the definition of Sλ it follows that g is an eigenfunction associated with
λ on Sλ. Then g is a multiple of z and so, from the definition of g (or g),
it follows c′′ t(ζ) = s(ζ) for 0 ≤ ζ ≤ ζ1. Since t(0) = s(0), then c′′ = 1 and
t(ζ) ≥ s(ζ) for all 0 ≤ ζ ≤ ζ0. which proves the lemma. �

Theorem 3.9 (Chiti Comparison Lemma, [13]). For p > 0, let c be chosen in
(3.21) such that

∫

D

vph2dA =
∫

Sλ

Rph2dA, (3.39)
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and as before r1 = jα,1√
λ

. Then, there exists r2 ∈ (0, r1) such that

u
(r, θ) ≤ z(r, θ), ∀(r, θ) ∈ (0, r2] ×
(
0,
π

α

)
; (3.40)

u
(r, θ) ≥ z(r, θ), ∀(r, θ) ∈ [r2, r1] ×
(
0,
π

α

)
. (3.41)

Remark 3.10. By virtue of (3.26), and a similar statement for z and s, the
normalization condition (3.39) is equivalent to

ξ0∫

0

tp(ξ)dξ =

ζ0∫

0

sp(ζ)dζ. (3.42)

Since the functions t and s are nonnegative, and ζ0 ≤ ξ0 (see Remark 3.8), it
is then clear that

ζ0∫

0

tp(ζ)dζ ≤
ζ0∫

0

sp(ζ)dζ. (3.43)

Proof. We will first prove that s(0) ≥ t(0).
Assume that s(0) < t(0).
In this case, ∃κ > 1, such that κ s(0) = t(0). By Lemma 3.7, it then

follows that

κ s(ζ) ≤ t(ζ) ∀ζ ∈ [0, ζ0]. (3.44)

Therefore,

κp

ζ0∫

0

sp(ζ)dζ ≤
ζ0∫

0

tp(ζ)dζ.

Combining this inequality with (3.43) leads to κp ≤ 1, which is a contradiction.
Suppose now that s(0) = t(0).
From (3.42) and Lemma 3.7 we obtain

ξ0∫

0

tp(ζ)dζ =

ζ0∫

0

sp(ζ)dζ ≤
ζ0∫

0

tp(ζ)dζ. (3.45)

This means
∫ ξ0

ζ0
tp(ζ)dζ = 0, and since t > 0 in (0, ξ0), we have ξ0 = ζ0. Then

z = u
, and the statements of the theorem are evident.
Now, we treat the case s(0) > t(0).
In this case ζ0 < ξ0 (this is evident from the proof of Lemma 3.7). There-

fore, s(ζ0) = 0 and t(ζ0) > 0. Now, by the continuity of t and s, we see that
s(ζ) > t(ζ) in a neighborhood of 0, and there exists ζ1 ∈ (0, ζ0) such that
s(ζ1) = t(ζ1). Choose ζ1 to be the largest such number with the additional
property that t(ζ) ≤ s(ζ) for all ζ ∈ [0, ζ1]. By the definition of ζ1, there is an
interval immediately to the right of ζ1 on which t(ζ) > s(ζ). We will now show
that t(ζ) > s(ζ) for all ζ ∈ (ζ1, ζ0]. If not, there exists ζ2 ∈ (ζ1, ζ0) such that
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t(ζ2) = s(ζ2) and t(ζ) > s(ζ) for all ζ ∈ (ζ1, ζ2). In this case, we can define the
function

ϕ(ζ) =
{
s(ζ), for ζ ∈ [0, ζ1] ∪ [ζ2, ζ0],
t(ζ), for ζ ∈ [ζ1, ζ2].

It follows from (3.19) and (3.22) that ϕ satisfies

− ϕ′(ζ) ≤ λ 4− α
α+1

(π
α

)− 1
α+1

(α+ 1)− 2α+1
α+1

∫ ζ

0
ϕ(η)dη

ζ
2α+1
α+1

. (3.46)

From ϕ define the function in Sλ by

Φ(r, θ) = ϕ

(
π

4α(α+ 1)
r2α+2

)
h(r, θ). (3.47)

Then Φ is an admissible function for the Rayleigh quotient on Sλ. From this
and proceeding exactly as in the proof of the inequality (3.38), we have

∫
Sλ

|∇Φ|2dA∫
Sλ

Φ2dA
≤ λ. (3.48)

It will follow that the Rayleigh quotient of Φ is equal to λ and hence that
Φ is an eigenfunction for λ, Consequently, t = s and so t(ζ) = s(ζ) in [ζ1, ζ2]
contradicting the maximality of ζ1. The statements of our theorem follow. �

3.1. Proof of Theorem 3.1

For p > 0, we choose c in (3.21) so that (3.39) is satisfied. This means

ξ0∫

0

tp(ξ)dξ =

ζ0∫

0

sp(ξ)dξ (3.49)

as we pointed out in Remark 3.10.
Now, if we extend the function s by zero in [ζ0, ξ0], we obtain

ξ∫

0

tp(η)dη ≤
ξ∫

0

sp(η)dη, ∀ξ ∈ [0, ξ0]. (3.50)

To see (3.50), we let ζ1 = π
4α(α+1) r

2α+2
2 . We then note that Theorem 3.9

implies the following:
If ξ ∈ [0, ζ1], then

t(η) ≤ s(η) ∀η ∈ [0, ξ],

and so
ξ∫

0

tp(η)dη ≤
ξ∫

0

sp(η)dη.
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If ξ ∈ [ζ1, ξ0], then
ξ∫

0

tp(η)dη =

ξ0∫

0

tp(η)dη −
ξ0∫

ξ

tp(η)dη

≤
ξ0∫

0

sp(η)dη −
ξ0∫

ξ

sp(η)dη

=

ξ∫

0

sp(η)dη.

We complete the argument using the following result:

Lemma 3.11. Let M,p, q be real numbers such that 0 < p ≤ q, M > 0; let
f, g be real functions in Lq([0,M ]),. If the decreasing rearrangements f and g
satisfy the inequality

s∫

0

(f∗)p dt ≤
s∫

0

(g∗)p dt, ∀ s ∈ [0,M ],

then
M∫

0

fqdt ≤
M∫

0

gqdt.

Proof. The result is a corollary of a theorem of Hardy, Littlewood and Pólya
proved in [18] (Theorem 10, p. 152). �

From this, it is clear, for q ≥ p, that
ξ0∫

0

tq(η)dη ≤
ξ0∫

0

sq(η)dη =

ζ0∫

0

sq(η)dη. (3.51)

Using this and equality (3.49), we see
⎛
⎝
∫

D

uq h2−qdA

⎞
⎠

1
q

≤ K(p, q, λ, α)

⎛
⎝
∫

D

up h2−pdA

⎞
⎠

1
p

, (3.52)

with

K(p, q, λ, α) =

(∫
Sλ
cq Rqh2−qdA

) 1
q

(∫
Sλ
cpRp h2−pdA

) 1
p

=

(∫ π
α

0

∫ r0

0
r(2−q)α+1Jq

α(
√
λr) sin2(αθ)drdθ

) 1
q

(∫ π
α

0

∫ r0

0
r(2−p)α+1Jp

α(
√
λr) sin2(αθ)drdθ

) 1
p
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=
( π

2α

) p−q
pq

λ(α+1) q−p
pq

(∫ jα,1

0
r(2−q)α+1Jq

α(r)dr
) 1

q

(∫ jα,1

0
r(2−p)α+1Jp

α(r)dr
) 1

p

.

The Proof of Theorem 3.1 is now complete.

4. Sharp Estimates for the Dirichlet Problem of a Wedge-Like
Membrane

In this part we consider the following class of degenerate elliptic equations:

P3 :
{−div(hk∇u) = hkf in D
u = 0 on ∂D ∩ W,

where k > 0, and h(r, θ) = rα sinαθ, as defined earlier. As in the previous sec-
tion, D ⊂ W is a bounded domain with piecewise smooth boundary. Finally,
we let f be a smooth function defined in D, and f
 denote its weighted sym-
metrization (as defined below in Sect. 4.2).

We also introduce the measure dμ defined by

dμ = hk dA = rαk+1 (sinαθ)k drdθ. (4.1)

We let μ(D) =
∫

D
dμ, and S0 be the sector such that μ(D) = μ(S0), with

r0 denoting the radius of S0. We point out similar treatments for different
measures dμ in other works [7,8,10,11,31,52].

Theorem 4.1. Let u be the solution to problem P3 and let v be the function
defined by

v(r, θ) = v
(r) =

r0∫

r

⎛
⎝

δ∫

0

f
(ρ)ραk+1 dρ

⎞
⎠ δ−(αk+1) dδ, (4.2)

which is the weak solution to the symmetrized problem

P4 :
{−div(hk∇v) = hkf
 in S0

v = 0 on ∂S0 ∩ W.

Then u
, the weighted symmetrization of u satisfies

u
 ≤ v a.e in S0. (4.3)

Moreover,
∫

D

|∇u|qdμ ≤
∫

S0

|∇v|qdμ, 0 < q ≤ 2. (4.4)

We note that the function v, the solution to the symmetrized problem
P4, which is also symmetric, is radial, and thus is independent of θ.
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Theorem 4.2. Let u be the solution of problem P3. Then
(1) For p > 1 + αk

2 ,

ess sup |u| ≤ μ(D)
2

αk+2 − 1
p

p(αk + 2)
C(α, k)2 (2(p− 1) − αk)

⎛
⎝
∫

D

|f |pdμ
⎞
⎠

1
p

(2) For 1 < p < 2(αk+2)
αk+4 , and q = p(αk+2)

αk+2−p , one has

∫

D

|∇u|qdμ ≤ AC−q(α, k)

⎛
⎝
∫

D

|f |pdμ
⎞
⎠

q
p

,

where

A =
p

q(p− 1)

⎛
⎝ Γ

(
pq

q−p

)

Γ
(

q
q−p

)
Γ
(

p(q−1)
q−p

)
⎞
⎠

q
p −1

,

C(α, k) =
(

(αk + 2)α k+1

α
B

(
1
2
,
k + 1

2

))1/(αk+2)

(4.5)

and B denoting the Euler Beta function.

Remark 4.3. Maderna and Salsa proved versions of Theorem 4.1 and Theo-
rem 4.2 corresponding to the k > 0, α = 1 case (compare with i) and ii) in
Theorem 3 of [31]). We also note that our theorems have the same Weinstein
space interpretation in (kα+ 2) dimension of (i) and (ii) in Theorem 2 of [51].
In fact, these observations were the main motivation for our theorems.

After some geometric preparation in Sect. 4.1, we define weighted rear-
rangement and prove necessary propositions in Sect. 4.2 and then finally prove
these two theorems in Sect. 4.3.

4.1. A Geometric Inequality

The following result generalizes earlier work by Bandle and Payne–Weinberger:

Proposition 4.4. let D ⊂ W be a bounded domain with a piecewise smooth
boundary. Then, for any nonnegative number k, we have

∫

∂D

hk(r, θ)
√

dr2 + r2dθ2 ≥ C(α, k)

⎛
⎝
∫

D

hk(r, θ)rdrdθ

⎞
⎠

(αk+1)/(αk+2)

(4.6)

with C(α, k) as defined in (4.5). Equality holds if and only if D is a circular
sector of angle π

α .

Remark 4.5. The special case k = 0, α ≥ 1 appears in the first few pages of
Bandle’s book in the context of α-symmetrization (see Theo. 1.1. of [5]). Lions
and Pacella [29] extended this k = 0 case to solid angles in higher dimensions
and proved it using the Brunn-Minkowski method. Using a particular form
of the Szegő Lemma [49], Payne and Weinberger offer a complete proof for
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k = 2 and α ≥ 1 in [39] (this is Lemma 3.5 above). An independent, entirely
different proof is offered in [16]; see also Remark 2 in [44] where the k = 2 case
for convex cones in higher dimensions appears, and the discussion in [45]. The
proposition follows from the α = 1, k ≥ 0 case proved by Maderna-Salsa (see
Lemma 4.6).

Proof. To prove the isoperimetric result of the proposition, we will need to use
the following lemma:

Lemma 4.6 (Maderna-Salsa [31]). Let D̃ be a bounded domain in the upper
half-plane R

2
+ with piecewise smooth boundary, and k ≥ 0. Then

∫

∂D̃

ykdσ̃ ≥ C(1, k)

⎛
⎜⎝
∫

D̃

ykdxdy

⎞
⎟⎠

k+1
k+2

where σ̃ is the parameter of arclength on ∂D̃ and C(1, k) is the expression in
(4.5) when α = 1. The case of equality holds if and only if D is a semicircle
centered on the x-axis.

Next, we proceed as in Payne–Weinberger [39] (see also [44]). Let Υ be
the map from W into R

2
+ defined by

Υ(r, θ) = r
αk+1
k+1 (cos(αθ), sin(αθ)).

From the fact that

detDΥ = α
αk + 1
k + 1

r
k(2α−1)+1

k+1 > 0,

we know that the map Υ is a diffeomorphism. Now we estimate the effect of Υ
on the arclength and surface elements. With dσ =

√
dr2 + r2dθ2 denoting the

arclength element in D as before, we let dσ̃ =
√

dx2 + dy2 be the arclength
element in the image domain D̃. Since α ≥ 1, a direct computation shows that

dσ̃2 = dx2 + dy2 =
(
αk + 1
k + 1

)2

r
2(αk−k)

k+1 dr2 + α2r
2(αk+1)

k+1 dθ2

≤ α2 r
2(αk−k)

k+1
(
dr2 + r2dθ2

)
.

Therefore,

ykdσ̃ ≤ αr
k(αk+1)

k+1 r
αk−k
k+1 sink(αθ)dσ

= αhk(r, θ)dσ. (4.7)

Now, applying the Maderna-Salsa Lemma 4.6, we get∫

∂D

hk(r, θ)dσ ≥ α−1

∫

∂D̃

ykdσ̃

≥ α−1C(1, k)

⎛
⎜⎝
∫

D̃

ykdxdy

⎞
⎟⎠

k+1
k+2
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= α−1C(1, k)

⎛
⎝
∫

D

r
k(αk+1)

k+1 sink(αθ)
∣∣∣ det(DΥ)

∣∣∣drdθ
⎞
⎠

k+1
k+2

= C(1, k)α− 1
k+2

(
αk+1
k+1

) k+1
k+2

⎛
⎝
∫

D

r
αk2+2αk+1

k+1 sink(αθ)drdθ

⎞
⎠

k+1
k+2

. (4.8)

For θ given in (0, π
α ), we introduce the radial slice

D(θ) = {r ≥ 0; (r, θ) ∈ D},
and let

f(r) = (�+ 1)r�, g(r) = rm, (4.9)

where

� = αk + 1, m =
αk − k

(k + 1)(αk + 2)
. (4.10)

Using this notation, we rewrite the inner integral of inequality (4.8) to get

∫

D

r
αk2+2αk+1

k+1 sink(αθ)drdθ =

π
α∫

0

∫

D(θ)

r�(r�+1)mdr sink(αθ)dθ. (4.11)

The next necessary step is a result of Szegő which has a long history [39,43,
44,49]. The form that is most useful for us is its version in [44].

Lemma 4.7 (Szegő, [49]). If f is nonnegative function, g is nondecreasing func-
tion and

F (t) =

t∫

0

f(x)dx, G(t) =

t∫

0

g(x)dx, (4.12)

then for any bounded measurable set E ⊂ R,

G

⎛
⎝
∫

E

f(x)dx

⎞
⎠ ≤

∫

E

g (F (x)) f(x)dx, (4.13)

with equality if and only if E is almost everywhere an interval of the form
[0, R].

Let

I =
∫

D

r
αk2+2αk+1

k+1 sink(αθ)drdθ.
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Using Lemma 4.7, with f(r) and g(r) as defined by (4.9), we have

I =
1

�+ 1

π
α∫

0

∫

D(θ)

f(r) g (F (r)) dr sink(αθ)dθ

≥ 1
�+ 1

π
α∫

0

G

⎛
⎜⎝
∫

D(θ)

f(r)dr

⎞
⎟⎠ sink(αθ)dθ

=
1

(�+ 1)(m+ 1)

π
α∫

0

⎛
⎜⎝
∫

D(θ)

r�dr

⎞
⎟⎠

m+1

sink(αθ)dθ. (4.14)

Moreover, equality holds if and only if D(θ) is an interval of the form (0, R(θ))
for almost every θ.

Using Hölder’s inequality for the functions f(θ) =
∫

D(θ)
r�dr

(
sink(αθ)

) 1
m+1 and

(
sink(αθ)

) m
m+1 , with respective exponents (m+1) and m+1

m ,
we obtain

⎛
⎜⎝

π
α∫

0

⎛
⎜⎝
∫

D(θ)

r�dr

⎞
⎟⎠

m+1

sink(αθ)dθ

⎞
⎟⎠

1
m+1 ⎛

⎜⎝
π
α∫

0

sink(αθ)dθ

⎞
⎟⎠

m
m+1

≥
π
α∫

0

∫

D(θ)

r�dr sink(αθ)dθ.

We also note that

π
α∫

0

sink(αθ)dθ =
1
α
B

(
1
2
,
k + 1

2

)
.

Using these last two statements and inequality (4.14), we get

∫

D

r
αk2+2αk+1

k+1 sink(αθ)drdθ ≥ δ

⎛
⎜⎝

π
α∫

0

∫

D(θ)

r�dr sink(αθ)dθ

⎞
⎟⎠

m+1

(4.15)

with

δ =
1

(�+ 1)(m+ 1)

(
1
α
B

(
1
2
,
k + 1

2

))−m

.
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In this case, equality holds in (4.15) if and only if
∫

D(θ)
r�dr is indepen-

dent of θ. Now, plug (4.15) into inequality (4.8) to obtain

∫

∂D

hk(r, θ)dσ ≥ C(α, k)

⎛
⎜⎝

π
α∫

0

∫

D(θ)

r�dr sink(αθ)dθ

⎞
⎟⎠

(k+1)(m+1)
k+2

. (4.16)

Here C(α, k) is given by (4.5). By virtue of (4.10) and the definition of h(r, θ)

∫

D

hk(r, θ)rdrdθ =

π
α∫

0

∫

D(θ)

r�dr sink(αθ)dθ. (4.17)

Combining (4.16) and (4.17), and simplifying the exponent, we obtain the
isoperimetric result.

In the case of the perfect sector it is not difficult to check that equality
is attained. As in Ratzkin’s [44], the case of equality in (4.6) means equality
in all the intermediate steps, in particular (4.14). Using Szegő Lemma 4.7, the
radial slice D(θ) must be an interval (0, R(θ)), and

∫

D(θ)

r�dr =
1

�+ 1
R�+1(θ). (4.18)

Moreover, equality in Hölder’s inequality forces
∫

D(θ)
r�dr to be a constant

function of θ. By virtue of (4.18), R(θ) must be a constant function of θ,
which means the domain D must be a sector. �

4.2. Weighted Rearrangement and the Pólya–Szegő Principle
for a Wedge-Like Membrane

In this part we will introduce some definitions and results about weighted rear-
rangement with respect to the measure dμ defined by (4.1) (see, e.g., [52]). Let
u be a real-valued measurable function defined in D ⊂ W, and S0 the sector
defined above with μ(S0) = μ(D) =

∫
D

dμ. Then the distribution function of
u with respect to dμ is mu defined by

mu(t) = μ ({(r, θ) ∈ D; |u(r, θ)| > t}) , ∀t ∈ [0, ess sup |u|]. (4.19)

The decreasing rearrangement with respect to dμ of u is the function

u∗ : [0, μ(D)] → [0,+∞)

defined by

u∗(0) = ess sup |u|,
u∗(s) = inf {t ≥ 0; mu(t) < s} , ∀s ∈ (0, μ(D)].

The weighted rearrangement of u is the function u
 from the sector S0 into
[0,+∞) defined by

u
(r, θ) = u∗ (β(α, k) rαk+2
)
, (4.20)
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where

β(α, k) =
1

α(αk + 2)
B

(
1
2
,
k + 1

2

)
. (4.21)

The function u
 is a radial and nonincreasing and its level sets are sectors cen-
tered at the origin whose weighted measure is mu(t). We will abuse notation
by letting u
(r, θ) be u
(r). Using now the Cavalieri principle, we have

∫

D

|u|pdμ =
∫

S0

u
pdμ, ∀p ∈ [1,+∞). (4.22)

By a solution to problem P3 we mean a measurable function u whose
weak gradient is square integrable in D with respect to the measure dμ and
which satisfies the boundary condition in the following sense: there exists a
sequence of functions un ∈ C1(D) such that un(r, θ) = 0 on ∂D ∩ W and

lim
n→+∞

∫

D

|∇(u− un)|2dμ+
∫

D

|u− un|2dμ = 0. (4.23)

Moreover, u satisfies the equality∫

D

〈∇u,∇ψ〉dμ =
∫

D

fψdμ, (4.24)

for every ψ ∈ C1(D) such that ψ(r, θ) = 0 on ∂D ∩ W. One can relax the
conditions of f by requiring it to be in L2(D,dμ).

We now introduce the space Wk(D,dμ) which is the set of measurable
functions u which satisfy the following conditions:
(i)

∫
D

|∇u|2dμ+
∫

D
|u|2dμ < +∞

(ii) There exists a sequence of functions un ∈ C1(D) such that un(r, θ) = 0
on ∂D ∩ W and

lim
n→+∞

∫

D

|∇(u− un)|2dμ+
∫

D

|u− un|2dμ = 0. (4.25)

The definition of Wk(D,dμ) is motivated by similar consideration in [10,11,
31,52] (see also [7,8,51]). Wk(D,dμ) is a Hilbert space with inner product

〈f, g〉 =
∫

D

(∇f · ∇g + fg) dμ.

We will now prove the following weighted version of the Pólya–Szegő inequality
for the Dirichlet integral, for wedge-like domains:.

Proposition 4.8 (Weighted Pólya–Szegő). Let u be a nonnegative function in
Wk(D,dμ). Then u
 ∈ Wk(S0,dμ), and

∫

D

|∇u|2dμ ≥
∫

S0

|∇u
|2dμ (4.26)
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Proof. We proceed as in [10,11]. For brevity’s sake, we will list the key ingre-
dients. For u ∈ C1(D) with u = 0 on the ∂D ∩ W, we can proceed as in [52]
and obtain the weighted Pólya–Szegő isoperimetric inequality of this lemma.

Now let u ∈ Wk(D,dμ) and (un) be a sequence of functions verifying (ii);
then from a nonexpansivity of the rearrangement [24], i.e.,

∫

S0

|u

n − u
|2 dμ ≤

∫

D

|un − u|2 dμ

we can deduce that

u

n −→ u
 in L2(S0,dμ). (4.27)

Since ∫

D

|∇un|2dμ ≥
∫

S0

|∇u

n|2dμ,

the sequence (u

n) is bounded in Wk(S0,dμ). Thus the sequence (u


n) has a
weakly convergent subsequence in this space. Using (4.27), this subsequence
u


n′ converges weakly to u
 inWk(S0,dμ). Now, the weak lower semi-continuity
of the norm and equality (4.22) completes the proof. �

Corollary 4.9 (Weighted Poincaré Inequality). For any function u belonging
to Wk(D,dμ), we have

∫

D

|u|2dμ ≤ C

∫

D

|∇u|2dμ, (4.28)

where C is a positive constant depending only on μ(D).

Proof. From (4.22), the Pólya–Szegő inequality and Theorem 3 in Mazya’s
book [33] (page 47), we have

∫
D

|∇u|2dμ∫
D

|u|2dμ ≥
∫

S0
|∇u
|2dμ∫

S0
|u
|2dμ = C2(α, k)

∫ μ(D)

0

(
∂u∗
∂s

)2

s
2(αk+1)

αk+2 ds
∫ μ(D)

0
u∗2ds

≥ C (4.29)

where C is a positive constant depending on μ(D), k and α. �

By Corollary 4.9 and the Lax–Milgram theorem, we easily deduce the
existence and uniqueness of the solutions to problems P3 and P4. We can
also deduce from the Poincaré-type inequality (4.28) that the functional space
Wk(D,dμ) can be equivalently equipped with the norm

‖ u ‖Wk(D,dμ)=
∫

D

|∇u|2dμ. (4.30)

Results in similar settings, chiefly influenced by [52], appear in [7,8,10,11,31].

4.3. Sharp Estimates for Solution of Problem P3

In this part we will prove the main theorems of this section.
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4.3.1. Proof of Theorem 4.1. This proof is inspired by [51]. In the weak for-
mulation (4.24) of the problem P3, choose the test function ψ defined by

ψ(r, θ) =
{

(|u(r, θ)| − t) sign(u), if |u(r, θ)| > t
0, otherwise, (4.31)

where 0 ≤ t < ess sup |u|. Plugging (4.31) into (4.24) we get
∫

|u|>t

|∇u|2dμ =
∫

|u|>t

(|u| − t) sign(u) f dμ. (4.32)

Now, let Φ be the decreasing function of t defined by

Φ(t) =
∫

|u|>t

|∇u|2dμ. (4.33)

Then, for ε > 0, we have

Φ(t) − Φ(t+ ε)
ε

=
∫

|u|>t+ε

sign(u) f dμ+
∫

t<|u|≤t+ε

( |u| − t

ε

)
sign(u) f dμ.

Letting ε go to zero, we obtain, for the right derivative of Φ(t),

− Φ′
+(t) =

∫

|u|>t

sign(u) f dμ a.e. t > 0. (4.34)

The same computation gives the same equality for the left derivative of Φ(t).
Therefore,

0 ≤ −Φ′(t) ≤
∫

|u|>t

|f |dμ. (4.35)

We next use the Cauchy–Schwarz inequality
⎛
⎜⎝1
ε

∫

t<|u|≤t+ε

|∇u|dμ

⎞
⎟⎠

2

≤

⎛
⎜⎝1
ε

∫

t<|u|≤t+ε

|∇u|2dμ

⎞
⎟⎠

⎛
⎜⎝1
ε

∫

t<|u|≤t+ε

dμ

⎞
⎟⎠ . (4.36)

Thus, letting ε → 0 and using (4.35), we obtain
⎛
⎜⎝− d

dt

∫

|u|>t

|∇u|dμ

⎞
⎟⎠

2

≤

⎛
⎜⎝
∫

|u|>t

|f |dμ

⎞
⎟⎠ (−m′

u(t)) . (4.37)

Now, using the Hardy–Littlewood theorem, we get
⎛
⎜⎝− d

dt

∫

|u|>t

|∇u|dμ

⎞
⎟⎠

2

≤

⎛
⎜⎝

mu(t)∫

0

f∗(s)ds

⎞
⎟⎠ (−m′

u(t)) . (4.38)
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From the co-area formula, we have

− d

dt

∫

|u|>t

|∇u|dμ =
∫

∂{|u|>t}

hkdσ, a.e. t > 0. (4.39)

But by our isoperimetric inequality (4.6), we have∫

∂{|u|>t}

hkdσ ≥
∫

∂{u�>t}

hkdσ = C(α, k) (mu(t))(αk+1)/(αk+2)
. (4.40)

Combining (4.39) and (4.40), we get

1 ≤ C(α, k)−2 (−m′
u(t)) (mu(t))

−2(αk+1)
αk+2

mu(t)∫

0

f∗(s)ds, (4.41)

for almost every t in (0, ess sup |u|). Integrating this inequality from 0 to t, we
get

t ≤ C(α, k)−2

μ(D)∫

mu(t)

ξ
−2(αk+1)

αk+2

ξ∫

0

f∗(s)dsdξ. (4.42)

Now, for s ∈ (0, μ(D)), let t = u∗(s) − γ > 0 where γ > 0. By the definition
of the rearrangement u∗, we have mu(t) ≥ s. Using this in (4.42) and letting
γ → 0, we get

u∗(s) ≤ C(α, k)−2

μ(D)∫

s

ξ
−2(αk+1)

αk+2

ξ∫

0

f∗(s′)ds′dξ. (4.43)

Recalling that u
(r) = u∗ (β(α, k)rαk+2
)

and using the change of variable

δ =
(

1
β(α,k)ξ

) 1
αk+2

, we get

u
(r) ≤ (αk + 2)C(α, k)−2β(α, k)
−αk
αk+2

r0∫

r

δ−(αk+1)

β(α,k)δαk+2∫

0

f∗(s′)ds′dδ.

Finally, the change of variable s′ = β(α, k)ραk+2 gives

u
(r) ≤
r0∫

r

δ−(αk+1)

δ∫

0

f
(ρ)ραk+1dρdδ = v(r). (4.44)

This is statement (4.3) of Theorem 4.1.
Now, we prove (4.4). Let ε > 0. Then, by Hölder’s inequality, we get

1
ε

∫

t<|u|≤t+ε

|∇u|qdμ ≤

⎛
⎜⎝1
ε

∫

t<|u|≤t+ε

|∇u|2dμ

⎞
⎟⎠

q
2
⎛
⎜⎝1
ε

∫

t<|u|≤t+ε

dμ

⎞
⎟⎠

2−q
2

.
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Letting ε → 0 and using (4.35), we obtain

− d
dt

∫

|u|>t

|∇u|qdμ ≤

⎛
⎜⎝

∫

|u|>t

|f |dμ

⎞
⎟⎠

q
2

(−m′
u(t))

2−q
2 . (4.45)

By Hardy–Littlewood and (4.41), we have

− d
dt

∫

|u|>t

|∇u|qdμ ≤

⎛
⎜⎝

mu(t)∫

0

f∗(s)ds

⎞
⎟⎠

q
2

(−m′
u(t))

2−q
2

≤ C(α, k)−q (−m′
u(t)) (mu(t))

−q(αk+1)
αk+2

⎛
⎜⎝

mu(t)∫

0

f∗(s)ds

⎞
⎟⎠

q

.

Integrating the last inequality between 0 and ∞, we have

∫

D

|∇u|qdμ =

∞∫

0

⎛
⎜⎝− d

dt

∫

|u|>t

|∇u|qdμ

⎞
⎟⎠dt

≤ C(α, k)−q

∞∫

0

(−m′
u(t)) (mu(t))

−q(αk+1)
αk+2

×

⎛
⎜⎝

mu(t)∫

0

f∗(s)ds

⎞
⎟⎠

q

dt

= C(α, k)−q

μ(D)∫

0

ξ
−q(αk+1)

αk+2

⎛
⎝

ξ∫

0

f∗(s)ds

⎞
⎠

q

dξ

= (αk + 2)β(α, k)

r0∫

0

r(1−q)(αk+1)

⎛
⎝

r∫

0

f
(ρ)ραk+1dρ

⎞
⎠

q

dr

=
∫

S0

|∇v|qdμ

which is the desired result (4.4).

4.3.2. Proof of Theorem 4.2. By Theorem 4.1 we have

ess sup |u| = u
(0) ≤ v(0) = C(α, k)−2

μ(D)∫

0

ξ
−2(αk+1)

αk+2

ξ∫

0

f∗(s′)ds′dξ.
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Using Hölder’s inequality, we get

ess sup |u| ≤ C(α, k)−2

μ(D)∫

0

ξ
−αk
αk+2 − 1

p dξ

⎛
⎜⎝

μ(D)∫

0

(f∗(s))p ds

⎞
⎟⎠

1
p

(4.46)

which is ineq. (1) of our theorem.
From ineq. (4.4) of Theorem 4.1, we have

∫

D

|∇u|qdμ ≤ C(α, k)−q

μ(D)∫

0

⎛
⎝1
ξ

ξ∫

0

f∗(s)ds

⎞
⎠

q

ξ
q

αk+2 dξ. (4.47)

Finally, using the Bliss inequality (see ineq. (3) in [9] or (23a) in [51]) we get
(2) of our theorem.

5. The Saint-Venant Principle for Relative Torsional Rigidity
and other Inequalities

In this part we are interested in the mathematical quantity given by

Pα =
∫

D

vhdA,

where v is a solution of the Dirichlet boundary value problem

P5 :
{−Δv = h in D
v = 0 on ∂D.

Now if we let v = hw, with w being a function in C2(D) satisfying the bound-
ary condition w = 0 on ∂D ∩ W, then a short computation leads to w being a
solution of the problem

P6 :
{−div(h2∇w) = h2 in D
w = 0 on ∂D ∩ W.

This is exactly the problem P3 of Sect. 4, with k = 2 and f ≡ 1. With this
substitution, it is clear that

Pα =
∫

D

w dμ,

where the measure dμ = h2dA is as defined in Sect. 4. In this form Pα can be
interpreted as torsional rigidity in dimension (2α + 2), as already expounded
on in Sect. 2 for the particular cases α = 1 and α = 2. We call Pα the relative
torsional rigidity of D.
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For φ ∈ W 1,2
0 (D), we have

∫

D

φhdA =
∫

D

φ (−Δv) dA

=
∫

D

∇φ · ∇v dA. (5.1)

Applying the Cauchy–Schwarz inequality we get
⎛
⎝
∫

D

φhdA

⎞
⎠

2

≤
⎛
⎝
∫

D

|∇φ| |∇v|dA
⎞
⎠

2

≤
∫

D

|∇φ|2 dA
∫

D

|∇v|2 dA. (5.2)

Since

Pα =
∫

D

v hdA =
∫

D

|∇v|2dA, (5.3)

we obtain,
(∫

D
φhdA

)2
∫

D
|∇φ|2 dA

≤ Pα. (5.4)

In fact, by the following theorem, one can define Pα via the variational formu-
lation

1
Pα

= inf

{
Fα(φ) =

∫
D

|∇φ|2 dA(∫
D
φhdA

)2 : φ ∈ W 1,2
0 (D), φ �≡ 0

}
. (5.5)

Theorem 5.1. Let D be a bounded domain, completely contained in the sector
W, and φ ∈ W 1,2

0 (D). Then φ is a critical point of the functional

Fα(φ) =

∫
D

|∇φ|2 dA(∫
D
φhdA

)2 , (5.6)

if and only if there exist a constant c such that φ = c v, where v solves P5.

Proof. We first note that

Fα (γφ) = Fα (φ) ,

for all γ �= 0. Suppose φ is a critical point of Fα. One can then reduce the
problem of minimizing the functional Fα to the problem of finding functions
which realize the infimum of

∫
D

|∇φ|2dA under the constraint
∫

D
φhdA = 1

(cf. [12]). Critical points then satisfy

d
dε

∣∣∣
ε=0

∫

D

|∇ (φ+ εψ) |2dA = c
d
dε

∣∣∣
ε=0

∫

D

(φ+ εψ)hdA, (5.7)
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where c is a Lagrange multiplier, for all ψ ∈ W 1,2
0 (D). Since C∞

0 (D) is dense
in W 1,2

0 (D) one needs only to treat the case φ, ψ ∈ C∞
0 (D). Simplifying (5.7)

one obtains ∫

D

〈∇φ,∇ψ〉dA =
c

2

∫

D

ψhdA. (5.8)

Using Green’s formula gives
∫

D

〈∇φ,∇ψ〉dA =
∫

D

(−φ)ψ dA. (5.9)

Combining (5.8) and (5.9) leads to
∫

D

(
φ+

c

2
h
)
ψdA = 0,

for all ψ ∈ C∞
0 (D). Therefore,

φ+
c

2
h = 0 (5.10)

Then, 2
cφ is a solution of P5. Since the solution of problem P5 is unique (see

Sect. 4), it obtains that

φ =
c

2
v.

The weak solution of the variational problem is indeed a strong solution, as
defined by P6 (or equivalently via P5). �

Remark 5.2. Using the notation of Sect. 4, this variational formulation is equiv-
alent to

1
Pα

= inf
φ∈W2(D,dμ)

∫
D

|∇φ|2 dμ(∫
D
φdμ

)2 , (5.11)

where dμ = h2 dA.

To see this, we let v = hw as before. Then w solves P6. We note as before
that (compare with (3.30))

∫

D

|∇v|2 dA =
∫

D

|∇w|2dμ

=
∫

D

〈h2∇w,∇w〉dA

= −
∫

D

div
(
h2∇w) wdA

=
∫

D

h2 wdA
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=
∫

D

wdμ

=
∫

D

v hdA. (5.12)

Whence,

1
Pα

=

∫
D

|∇w|2 dμ(∫
D
w dμ

)2 . (5.13)

Finally, the same computation used to prove (5.4) gives, for all φ ∈ W2(D,dμ),
(∫

D
φdμ

)2
∫

D
|∇φ|2 dμ

≤ Pα. (5.14)

We now prove new results for relative torsional rigidity without recourse to
the dimensional interpretation in Weinstein fractional space of Sect. 2.

Theorem 5.3. Let D be a bounded domain, with a piecewise smooth boundary,
completely contained in W; then

Pα λ < Aα, (5.15)

where

Aα =
∫

D

h2dA.

Proof. The result follows immediately using the Cauchy–Schwarz inequality
in the statement

Pα =

(∫
D
v hdA

)2
∫

D
|∇v|2 dA

≤
∫

D
v2dA

∫
D
h2dA∫

D
|∇v|2 dA

≤ λ−1Aα.

The last inequality was obtained applying the Rayleigh–Ritz principle for λ
with v being a test function. �

Remark 5.4. One can emulate the work of Pólya–Szegő (cf. [38], p. 82) to
prove this theorem by first expressing Pα and Aα in terms of eigenfunction
expansions emanating from the membrane problem. Since the eigenfunctions
{un}∞

n=1 form an orthonormal basis of L2(D), corresponding to the eigenvalues

0 < λ ≡ λ1 < λ2 ≤ · · · ≤ λn → ∞,

one can write

Aα =
∫

D

h2 dA =
∞∑

n=1

⎛
⎝
∫

D

hun dA

⎞
⎠

2

, (5.16)
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and

Pα =
∞∑

n=1

1
λn

⎛
⎝
∫

D

hun dA

⎞
⎠

2

. (5.17)

The result (5.15) is then immediate from the ordering of the eigenvalues, viz.

Pα <
1
λ1

∞∑
n=1

⎛
⎝
∫

D

hun dA

⎞
⎠

2

=
1
λ1

Aα.

To obtain (5.16), first expand h =
∑∞

n=1 αn un with αn =
∫

D
hun dA

and then use Plancherel–Parseval. To obtain (5.17), we expand the function
v =

∑∞
n=1 βn un. Inserting into P5 leads to βn = 1

λn

∫
D
hun dA. The statement

(5.17) is immediate by virtue of (5.3).

Theorem 5.5. Let D ⊂ W be a bounded domain, with a piecewise smooth
boundary; then

Pαλ
α+2 ≥ π

α
j2α
α,1. (5.18)

Remark 5.6. The proof of this theorem is reminiscent of the work of Payne
and Rayner [35].

Proof. As before, let u be the first eigenfunction of the Dirichlet problem. By
the variational formulation one can see that

1
Pα

≤
∫

D
|∇u|2 dA(∫

D
uh dA

)2 (5.19)

Using (3.2) we obtain

1
Pα

≤ 2α
π
λα+1

∫ jα,1

0
rJ2

α(r)dr(∫ jα,1

0
rα+1Jα(r)dr

)2

∫
D

|∇u|2 dA∫
D
u2 dA

(5.20)

=
2α
π
λα+2

j2α,1J
2
α+1(jα,1)

2j2α+2
α,1 J2

α+1(jα,1)
(5.21)

=
α

πj2α
α,1

λα+2. (5.22)

�
The next result is the Saint-Venant principle for wedge-like membranes.

Theorem 5.7. Let D be bounded domain completely contained in W, with a
piecewise smooth boundary; then

Pα ≤ 1
α+ 2

⎛
⎜⎝ α

(4α+ 4)απ

⎛
⎝
∫

D

h2dA

⎞
⎠

α+2
⎞
⎟⎠

1
α+1

. (5.23)

Equality is attained for the perfect sector.
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Proof. Let v be the solution of problem P5. As before, using the substitution
v = hw, w is then the unique solution of problem P6. We let w
 be the solu-
tion of the symmetrized problem for P6 for k = 2 on the symmetrized domain
S0 (as detailed in Sect. 4). Then, by Theorem 4.1, one obtains

∫

D

|∇w|2dμ ≤
∫

S0

|∇w
|2dμ. (5.24)

A little computation gives v
 = w
h, the unique solution of the problem
{−Δv = h in S0

v = 0 on ∂S0.

Let r0 be the radius of the sector S0 as before. It is not difficult to check that

v
(r, θ) =
1

4α+ 4
(r20 − r2)h(r, θ) ∀(r, θ) ∈ S0. (5.25)

Using the definition of Pα and the fact that
∫

S0

|∇w
|2dμ =
∫

S0

|∇v
|2dA =
∫

S0

v
hdA (5.26)

we obtain

Pα ≤
∫

S0

v
hdA (5.27)

=
πr2α+4

0

16α(α+ 1)2(α+ 2)
. (5.28)

Finally, combining this with

r0 =

⎡
⎣4α(α+ 1)

π

∫

D

h2dA

⎤
⎦

1
2α+2

, (5.29)

we obtain our result (5.23). Equality for the case of the sector follows from
considerations in Sect. 4. �
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[45] Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in
Euclidean space with density. Calc. Var. Partial Differ. Equ. 31, 27–46 (2008)

[46] Salakhudinov, R. G.: An estimate for the Lp-norms of a stress function for
finitely connected plane domains. (Russian) Mat. Zametki 80 601–612 (2006);
translation in Math. Notes 80, 567–577 (2006)

[47] Schoute, P. H.: The formulae of Guldin in polydimensional space. In: KNAW,
Proceedings 7, 1904–1905, Amsterdam, pp. 487–493 (1905)

[48] Sperb, R.: Extension of an inequality of Pólya–Szegő to wedge-like domain. Z.
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