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Abstract. By introducing new geometric factors which lend themselves to the Payne interpretation in Weinstein fractional

space, we prove new isoperimetric inequalities which complement those of Payne–Weinberger and Saint-Venant giving a

new upper bound for the fundamental mode of vibration of a wedge-like membrane and a new lower bound for its “relative

torsional rigidity”. We also prove a new weighted version of a result of Crooke–Sperb for the associated fundamental

eigenfunction of the Dirichlet Laplacian for such domains. A new weighted Rellich-type identity for wedge-like domains is

also proved to achieve this latter task.
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1. Introduction

Throughout this article, D will denote a planar domain given in polar coordinates by

D =
{

(r, θ) | 0 < r < ρ(θ), 0 < θ <
π

α

}
. (1.1)

Then D is a bounded domain completely contained in the wedge W of angle π
α , α ≥ 1. We will denote

by Γ the curved part of its boundary defined by r = ρ(θ), 0 ≤ θ < π
α . Let u be the fundamental

eigenfunction of the Dirichlet problem in D, and λ its associated fundamental eigenvalue:

Δu + λu = 0 in D, u = 0 on Γ. (1.2)

When Γ is convex, we know that (x, n) > 0, [1,12,17,24,27,33] where n is the unit outward normal vector
to Γ at x a radius vector on Γ , where (·, ·) denotes the usual dot product. For such domains, we define

Bα =
∫

Γ

1
(x, n)

h2dσ, Aα =
∫

D

h2dA (1.3)

Here, we let ‖x‖ = r = ρ(θ) and h = rα sinαθ. We note that h is a harmonic nonnegative function in W.
By a perfect sector [30], we mean the circular sector

S0 =
{

(r, θ)
∣∣ 0 < r < R0, 0 < θ <

π

α

}

with R0 the radius such that |S0| =
∫

S0
h2dA = Aα.

The introduction of these geometric quantities stems from the desire to prove counterparts to the
weighted Faber–Krahn (or Payne and Weinberger [30]) and weighted Saint-Venant inequalities [20] when
the domain D is restricted to a wedge.

The purpose of this paper is to prove the following theorem.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-015-0530-1&domain=pdf
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Theorem 1.1 (Main Theorem). The fundamental eigenvalue λ of the wedge-like membrane D defined by
(1.1) satisfies the inequality

λ ≤ Bα

(2α + 2)Aα
j2
α,1. (1.4)

Equality holds if and only if D is a perfect sector S0.

We provide two examples. In the first, we treat a right triangle, with angles π
2 , π

α , (α−2)π
2α and unit

hypotenuse (when α > 2), and discuss our bounds in comparison with all existing ones. In the second,
we provide explicit upper and lower bounds for the fundamental eigenvalue of a regular α-polygon with
n sides, for 2 ≤ n ≤ 15, α = 1, 1.5, 2, 3, 4, 5, and 6. This is a polygon with (n + 2) sides sitting on a slice
of the unit circular sector of opening π/α, with n equal sides joining points on the circular sector, and
the first and last edges closing at the origin (when α = 1, and this is a regular semipolygon with n sides
inscribed in the unit semicircle).

A bit of background is necessary before we state our contribution. The domain D ⊂ R
2 is said to be

strictly star shaped (with respect to a point inside D) when (ξ, n) > 0 for all ξ ∈ ∂D. For such domains,
Pólya and Szegő [33] introduced the geometric factor B

B =
∫

∂D

1
(ξ, n)

dξ.

Here ξ denotes a point on the boundary ∂D, n is the outward normal at ξ, and (ξ, n) is the “support
function” of ∂D. This geometric factor has been extensively studied in the literature; see [1] and the more
recent works of Freitas and Krejčǐrik [17] and Laugesen and Siudeja [27]. For such domains, Pólya and
Szegő [33] proved

λ ≤ j2
0,1

B

2|D| , (1.5)

(|D| denotes the area of D.) Equality holds if and only if D is a disk centered at the origin. For torsional
rigidity, P , they also proved

P ≥ B

|D|2 (1.6)

with equality holding for all ellipses. Here we use the standard notation for the Bessel function and its
zeros [2]. Inequality (1.5) has been recently extended, for a star-shaped domain D ⊂ R

d in Freitas and
Krejčǐrik [17], to

λ ≤ j2
d/2−1,1

B

d |D| . (1.7)

They also generalized (1.6) to the d-dimensional setting in [17]. In the same vein, Crooke and Sperb [12]
(see also [24]) proved for a star-shaped D ⊂ R

2

‖u‖2
2

‖u‖2
1

≥ λ

2B
(1.8)

using the Rellich identity [36] (see also [23]),
∫

∂D

(ξ, n)
(

∂u

∂n

)2

dξ = 2λ

∫

D

u2dx. (1.9)

Herein, we set ‖u‖p =
(∫

D
updx

)1/p, for p > 0. Ineq. (1.8) is a counterpart to the p = 1, q = 2 case of the
Chiti reverse Hölder inequality [10,11] first proved by Payne and Rayner [29]

‖u‖q

‖u‖p
≤ K(p, q, d)λ

d
2 ( 1

p − 1
q ) for q ≥ p > 0. (1.10)
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Here

K(p, q, d) = (dCd)
1
q − 1

p j
d ( 1

q − 1
p )

d
2 −1,1

( ∫ 1

0
rd−1+q(1− d

2 )Jq
d
2 −1

(j d
2 −1,1 r)dr

) 1
q

( ∫ 1

0
rd−1+p(1− d

2 )Jp
d
2 −1

(j d
2 −1,1 r)dr

) 1
p

.

The geometric factor B is central to a collection of new isoperimetric inequalities recently proved, for
star-shaped domains in R

d, by Laugesen and Siudeja [27] in the spirit of the Freitas and Krejčǐrik [17]
inequality above. Laugesen and Siudeja [27] proved, for instance, that (

∑n
i=1 λi)|D|2/d/B, which is scale

invariant, is maximized by the ball in R
d, for n ≥ 1, when D is star-shaped. In fact, this is also the case

of root-sums of the eigenvalues of the Dirichlet problem, geometric means of the first eigenvalues, and
convex trace sums of the eigenvalues, when scaled by |D|2/d/B are also maximized by the ball in this
case as well.
Ineq. (1.7) is clearly the counterpart to the Faber–Krahn inequality [14,26]

λ ≥
C

2/d
d j2

d/2−1,1

|D|2/d
(1.11)

where jd/2−1,1 denotes the first positive zero of the Bessel function Jd/2−1(x) and Cd = πd/2/Γ(1 + d/2)
is the volume of the unit ball. For a wedge-like domain D, Payne and Weinberger [30] proved

λ ≥
(

4α(α + 1)
π

Aα

)−1/(α+1)

j2
α,1. (1.12)

Most of these results are reviewed in the paper of Ashbaugh and Benguria [4]. As proved by Payne in
[28], (1.12) has the interpretation of being a version of the Faber–Krahn inequality (1.11) for domains
with axial or biaxial symmetry in Weinstein fractional space of dimension d = 2α + 2 [40]. We succeeded
in [20] to prove a weighted version of the Saint-Venant inequality for relative torsional rigidity, Pα, which
has the same interpretation as the Saint-Venant inequality for regular torsional rigidity for these domains
with axial or biaxial symmetry in Weinstein fractional space of dimension d = 2α + 2. It states that

Pα ≤ 1
α + 2

(
α

(4α + 4)απ

) 1
α+1

A
α+2
α+1
α , (1.13)

with equality attained for the perfect sector.
We also mention the related work of Sperb [39]. By tweaking the definitions of the geometric factors

Bα and Aα defined in [39], we obtain new results which have the right interpretation of being versions
of the Freitas and Krejčǐrik [17] inequality (1.7) and Crooke and Sperb [12] inequality (1.8) in Weinstein
fractional space of dimension d = 2α + 2. While relative torsional rigidity lends itself to interpretation
in Weinstein fractional space, torsional rigidity does not. This is due to the fact that the definition of
former involves the harmonic function h, while the latter does not. We introduced the concept of relative
torsional rigidity in [20] for a problem first discussed by Philippin [31]. The introduction of relative
torsional rigidity helps improve the Payne–Weinberger inequality, a problem we plan to come back to
in a future work [21]. In fact for wedge-like domains, relative torsional rigidity has the interpretation of
being regular torsional rigidity for axi-symmetric domains, as in the discussion in Sect. 2 below, a matter
which we expounded on in [20].

We note that Ratzkin has proved a version of the Payne–Weinberger inequality in higher dimensions
in [35] in the context of convex cones. Raghoub proved in his Ph.D. Thesis [34] a version of this Payne–
Weinberger inequality for subdomains of the upper half-space of R3 and orthants (also in R

3). Brock,
Chiacchio, and Mercaldo pushed this result in higher dimensions as well, and their offer offers a less
general alternative to [35]. We have also succeeded in generalizing the inequalities presented in this paper
in higher dimensions in our upcoming article [22].
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Now we focus on the interpretation in the cases α = 1, 2. We follow the tradition of Weinstein
and Payne by invoking transformations rather than interpret the degenerate operators in cylindrical
coordinates. This is a standard trick detailed in the classical book of Gilbert [19]. Throughout this paper,
we assume to be a smooth positive function.

Our new inequalities, stated and proved in the following, are counterparts to the Payne–Weinberger
inequality (1.12), weighted Saint-Venant inequality (1.13), and the Chiti reverse Hölder inequalities for
a wedge-like membrane described by (1.1). In the case of the Chiti reverse Hölder inequalities, we focus
on the interpretation of Payne in Weinstein fractional space rather than the full proof in all cases of
α > 1. The proof without reference to the interpretation is readily available in our article [20] (see also
the discussion below).

The counterpart of (1.12) follows the spirit of Freitas and Krejčǐrik (1.7), while the new relative rigidity
inequality follows the spirit of (1.6).

After motivating these new results via the Payne interpretation in Weinstein space in Sect. 2, we derive
basic isoperimetric inequalities satisfied by Bα in Sect. 3. We next prove the upper bound estimate for the
fundamental mode of vibration λ of the wedge-like domain D satisfying (1.1) in Sect. 4. We then prove
the lower bound estimate for relative torsional rigidity Pα in Sect. 5. A new weighted Rellich-type identity
is proved in Sect. 6 and is used to produce a new weighted Crooke–Sperb inequality, independently of
the interpretation in Weinstein fractional space considerations.

2. Payne interpretation in Weinstein fractional space

Following Payne, who first introduced the Weinstein method [28,40] of interpretation, we will motivate
a lot of our work by showing concretely how to obtain, via appropriate interpretation of the various
inequalities in the correct higher-dimensional space, various isoperimetric inequalities when our wedge
consists of half-space and quarter-space. We will specifically focus on the following inequalities: Chiti
[10,11], Freitas and Krejčǐrik [17], and Crooke and Sperb [12]. These are, respectively, inequalities (1.10),
(1.7), and (1.8). This interpretation in higher Weinstein fractional space was pioneered by Payne [28]
who used it in the case of the Faber–Krahn [14,26] inequality to motivate and discover via the right
interpretation in a higher-dimensional setting results that later became the Payne–Weinberger inequality
for a wedge-like membrane [30]. We exploited it in [20] to discover and motivate similar results for torsional
rigidity fine tuning the Saint-Venant inequality [13,32].

We note that the actual full proof does not depend on this interpretation and is independently carried
out using a weighted symmetrization procedure in combination with the co-area formula exploiting a
weighted isoperimetric inequality in [30] for the case of weighted Faber–Krahn inequality (also called the
Payne–Weinberger inequality (see also [28]). This very program, independently of the Payne interpreta-
tion, has been carried out by the authors in [20] in the case of the weighted Chiti inequality where we
proved, also for D a bounded domain contained in the wedge W, and for p, q be real numbers such that
q ≥ p > 0, that

⎛
⎝
∫

D

uqh2−qdA

⎞
⎠

1
q

≤ K(p, q, λ, α)

⎛
⎝
∫

D

up h2−pdA

⎞
⎠

1
p

(2.1)

with

K(p, q, λ, α) =
( π

2α

) p−q
pq

λ(α+1) q−p
pq

(∫ jα,1

0
r(2−q)α+1Jq

α(r)dr
) 1

q

(∫ jα,1

0
r(2−p)α+1Jp

α(r)dr
) 1

p

.

The case q = 2, p = 1, particularly pertinent for this paper, and providing an explicit form for the
constant K(1, 2, λ, α), reads



Vol. 66 (2015) Sharp complementary isoperimetric inequalities for wedge-like domains 2423

∫

D

u2dA ≤ α

πj2α
α,1

λα+2

⎛
⎝
∫

D

uhdA

⎞
⎠

2

. (2.2)

For domains in higher dimensions, this Payne interpretation has been exploited by Raghoub in his
1996 Ph.D. Thesis [34] to prove Faber–Krahn-type inequalities for D a subdomain of the upper half-space
of R3 and orthants (also in R

3); see also [25] where some of Ragoub’s results were announced. We also
note recent activity by Brock et al. [6–8], and the work of Ratzkin [35] which unifies many of these ideas in
the context of convex cones in higher dimensions, independently of the Payne interpretation. The authors
push this circle of ideas, also for convex cones in higher dimensions, in their upcoming article [22]. We
also point out the paper [5] for similar consideration in higher dimensions.

We now focus on the interpretation in the cases α = 1, 2. We follow the tradition of Weinstein
and Payne by invoking transformations rather than interpret the degenerate operators in cylindrical
coordinates. This is a standard trick detailed in the classical book of Gilbert [19]. We also assume ρ to
be a smooth positive function.
Let W1 =

{
(x, y) ∈ R

2, y > 0
}

denote the upper half-space, and let W2 =
{
(x, y) ∈ R

2, x > 0, y > 0
}

denote the quarter-space. We will treat the cases when D is a subset of either. We recall that the
Dirichlet eigenvalue problem is given by

− Δu = λu in D, u = 0 on ∂D. (2.3)

(a) Case of the half-space.
When D ⊂ W1, the first eigenfunction can be represented as

u = y w, (2.4)

where w is a positive smooth function vanishing on ∂D ∩ W1. Substituting into (2.3) and simplifying
gives

Δw +
2
y

∂w

∂y
= λw in D,w = 0 on ∂D ∩ W1. (2.5)

Let Φ(x1, x2, x3, x4) be the function defined in R
4 by

Φ(x1, x2, x3, x4) = w(x, y) where x = x1; y =
√

x2
2 + x2

3 + x2
4;

This function has axial symmetry with respect to the x1-axis. It is defined on

D4 =
{
(x1, x2, x3, x4) ∈ R

4
∣∣x = x1, y =

√
x2

2 + x2
3 + x2

4, (x, y) ∈ D
} ∪ {O}.

D4 is obtained from D via rotation around the x1-axis in R
4 (and O is the origin in R

4). The function Φ
satisfies

−Δ4 Φ = λΦ in D4, Φ = 0 on ∂D4.

Indeed

Δ4 Φ =
4∑

i=1

∂2Φ

∂x2
i

=
∂2w

∂x2
+

4∑
i=2

xi

y

∂

∂xi

(
∂w

∂y

)
+

4∑
i=2

y2 − x2
i

y3

∂w

∂y

= Δw +
2
y

∂w

∂y

= −λw

= −λΦ.

In fact, we can say more.
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Lemma 2.1. λ is the fundamental eigenvalue of the Dirichlet problem in D4.

Proof. Since u is positive, so is the case of w and Φ. Since the fundamental eigenvalue is characterized as
being the only eigenvalue with eigenfunction of constant sign (Corollary 2 in Chavel [9], p. 20), it transpires
that Φ is the fundamental eigenfunction of the Dirichlet problem in D4, and λ is its corresponding
eigenvalue. �

Rather than invoke cylindrical or spherical coordinates to explain the forms of the Laplacian and the
transformations, we are performing below, we follow closely the work of Payne [28], Ragoub [34], and
Weinstein [40] who cast these in a much more general setting of axially symmetric systems. Let Ψ be the
map from D × (0, 2π) × (0, π) → D4 defined by

Ψ(x, y, θ, ϕ) = (x1, x2, x3, x4),

where ⎧
⎪⎪⎨
⎪⎪⎩

x1 = x
x2 = y cos θ sin ϕ
x3 = y sin θ sin ϕ
x4 = y cos ϕ.

Ψ is a diffeomorphism, and its Jacobian is given by

JΨ (x, y, θ, ϕ) = −y2 sinϕ < 0.

Using standard theorems, we change variables to obtain∫

D4

dV4 = 4π

∫

D

y2dV.

For the case of the Chiti inequality for half-space, we first write the statement in the 4-dimensional
domain D4 ⎡

⎣
∫

D4

ΦqdV4

⎤
⎦

1
q

≤ K(p, q, 4)

⎡
⎣
∫

D4

ΦpdV4

⎤
⎦

1
p

for q ≥ p ≥ 0. As before, changing variables, for p > 0, yields
⎡
⎣
∫

D4

ΦpdV4

⎤
⎦

1
p

= (4π)
1
p

⎡
⎣
∫

D

wpy2dV

⎤
⎦

1
p

.

Using (1.10), we get ⎡
⎣
∫

D

wqy2dV

⎤
⎦

1
q

≤ (4π)
1
p − 1

q K(p, q, 4)

⎡
⎣
∫

D

wpy2dV

⎤
⎦

1
p

,

with equality if and only if D is a half-disk.
We next treat the counterpart to the Faber–Krahn inequality, namely the Freitas and Krejčǐrik in-

equality (1.7) for half-space. It is a bit more delicate. Let D be the domain which lies in the half-space
W1 such that its curved boundary Γ is some smooth polar curve: r = ρ(ω), ω ∈ (0, π) i.e.,

D =

{
(x, y) ∈ W1 | 0 <

√
x2 + y2 < ρ

(
arccos

x√
x2 + y2

)}
.

Lemma 2.2. D4 is a strictly star-shaped domain with respect to the origin.
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Remark 2.3. We note that limω→0+ ρ(ω) > 0 and limω→π− ρ(ω) > 0 are implied in the statement of the
lemma, and the “singular boundary spikes” {(x, 0, 0, 0):0 < x < ρ(0+)} and {(x, 0, 0, 0):−ρ(π−) < x < 0}
have been removed from the domain D4. These spikes have capacity zero and hence are removable from
D4 without affecting the eigenvalues. In any case, the proofs we offered in our earlier paper [20] for the
weighted Chiti inequality (2.1), and in the main theorems of this paper, are independent and are quite
general. They do not require the interpretation in fractional Weinstein space used to motivate them.

Proof. Let ξ = (x1, x2, x3, x4) ∈ D4 and t ∈ [0, 1). Then, by the definition of D4, (x1,
√

x2
2 + x2

3 + x2
4) ∈

D, and in light of the definition of D, we obtain that (tx1,
√

(tx2)2 + (tx3)2 + (tx4)2) ∈ D. This implies
that tξ ∈ D4, for 0 ≤ t < 1, and so D4 is a star-shaped domain, as well.

We next prove that (ξ, n) > 0, where ξ is position vector on ∂D4 and n is a unit outward normal to
∂D4. The boundary of D4 is of course given by

∂D4 =
{

(x1, x2, x3, x4) ∈ R
4 |

(
x1,
√

x2
2 + x2

3 + x2
4

)
∈ Γ
}

.

To begin, consider the map Ψ1 defined from (0, π) × (0, 2π) × (0, π) into ∂D4 by

Ψ1(ω, θ, ϕ) = (ρ(ω) cos ω, ρ(ω) sin ω cos θ sinϕ, ρ(ω) sin ω sin θ sin ϕ, ρ(ω) sin ω cos ϕ).

Then Ψ1 is a parametrization of the hypersurface ∂D4. The tangent space of ∂D4 at ξ ∈ ∂D4 is

Tξ∂D4 = vect(∂ωΨ1, ∂θΨ1, ∂ϕΨ1).

The unit outward normal vector to ∂D4 at ξ, denoted by n, is the normalized vector of the cross-product
[∂ωΨ1, ∂θΨ1, ∂ϕΨ1]. An explicit calculation gives

(ξ, n) =
ρ2

√
ρ̇2 + ρ2

> 0,

as desired. �

Now, we introduce the two mathematical quantities

B(D4) =
∫

∂D4

1
(ξ, n)

dA, B1 =
∫

Γ

y2

(z, ñ)
dσ,

where ξ is the position vector on ∂D4, n is the unit outward normal to ∂D4 at ξ, and dA is the measure
on ∂D4. The corresponding notation for Γ is as follows: z (position vector), ñ (unit outward normal to
Γ at z), and dσ being the measure. Using the above parametrization for ∂D4, we get

B(D4) =
∫

∂D4

1
(ξ, n)

dA =

π∫

0

2π∫

0

π∫

0

√
ρ̇2 + ρ2

ρ2
| [∂ωΨ1, ∂θΨ1, ∂ϕΨ1] | dωdθdϕ

= 4π

π∫

0

(
1 +

ρ̇2(ω)
ρ2(ω)

)
ρ2(ω) sin2 ω dω

= 4πB1.

Remark 2.4. We note that one could have equally defined B(D4) in terms of ρ(ω) is in the second line
of the above. As the calculation above suggests the two definitions are equivalent. See the discussion in
[27] [formula (6) and Lemma 10.2]. Our work provides a weighted version of the B-functionals of [27].
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Now applying the Freitas and Krejčǐrik inequality (1.7) in our 4-dimensional domain D4, we get

λ ≤ B(D4)
4 vol(D4)

j2
1

=
B1

4 A1
j2
1 ,

where A1 =
∫

D
y2 dV.

We next do the Weinstein interpretation for the Crooke–Sperb inequality (1.8) to obtain its corre-
sponding sharp form in half-space. We begin by writing this inequality for the 4-dimensional domain
D4 ⎛

⎝
∫

D4

w dV4

⎞
⎠

2

≤ 2B(D4)
λ

∫

D4

w2 dV4.

From the above considerations, this simplifies to
⎛
⎝
∫

D

uy dV

⎞
⎠

2

≤ 2B1

λ

∫

D

u2 dV.

(b) Case of the quarter-space.
In this case, D is such that x > 0 and y > 0. The first eigenfunction can be represented as

u(x, y) = 2xy w(x, y), (2.6)

where w is a positive smooth function vanishing on ∂D ∩ W2. Substituting into (2.3), and simplifying,
leads to

Δw +
2
x

∂w

∂x
+

2
y

∂w

∂y
= λw in D,w = 0 on ∂D ∩ W2. (2.7)

Now, we introduce the function Ψ defined in R
6 by

Ψ(x1, x2, x3, y1, y2, y3) = w(x, y) where x =
√

x2
1 + x2

2 + x2
3; y =

√
y2
1 + y2

2 + y2
3 .

This function Ψ is smooth, positive, and is defined on

D6 =
{
(x1, x2, x3, y1, y2, y3) ∈ R

6
∣∣
(√

x2
1 + x2

2 + x2
3,
√

y2
1 + y2

2 + y2
3

)
∈ D

} ∪ {O},

with O being the origin in R
6. It satisfies

−Δ6 Ψ = λΨ in D6, Ψ = 0 on ∂D6.

Indeed

Δ6 Ψ =
3∑

i=1

∂2Ψ

∂x2
i

+
3∑

i=1

∂2Ψ

∂y2
i

=
3∑

i=1

xi

x

∂

∂xi

(
∂w

∂x

)
+

3∑
i=1

x2 − x2
i

x3

∂w

∂y
+

3∑
i=1

yi

y

∂

∂yi

(
∂w

∂y

)
+

3∑
i=1

y2 − y2
i

y3

∂w

∂y

= Δw +
2
x

∂w

∂x
+

2
y

∂w

∂y

= −λw

= −λΨ.

We also have the following result.
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Lemma 2.5. λ is the fundamental eigenvalue of the Dirichlet problem in D6.

Proof. The proof follows the same arguments as in Lemma 2.1. �

Let Ψ be the map from D × (0, 2π) × (0, π) × (0, 2π) × (0, π) → D6 defined by

Ψ(x, y, θ1, ϕ1, θ2, ϕ2) = (x1, x2, x3, y1, y2, y3),

where

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x cos θ1 sin ϕ1

x2 = x sin θ1 sin ϕ1

x3 = x cos ϕ1

y1 = y cos θ2 sin ϕ2

y2 = y sin θ2 sin ϕ2

y3 = y cos ϕ2.

Ψ is a diffeomorphism. Its Jacobian is explicitly given by

JΨ (x, y, θ1, ϕ1, θ2, ϕ2) = x2y2 sin ϕ1 sinϕ2 > 0.

As before, we introduce the geometric factors in their corresponding spaces

B(D6) =
∫

∂D6

1
(ξ, n)

dV6, B2 = 4
∫

Γ

1
(z, ñ)

x2y2dσ, A2 = 4
∫

D

x2y2dV,

where ξ is the position vector on ∂D6, n is the unit outward normal to ∂D6 at ξ, and dA is the measure
on ∂D6. As before, the corresponding notation for Γ is: z (position vector), ñ (unit outward normal to
Γ at z), and dσ being the measure. The boundary of D6 is given by

∂D6 =
{

(x1, x2, x3, y1, y2, y3) ∈ R
6
∣∣
(√

x2
1 + x2

2 + x2
3,
√

y2
1 + y2

2 + y2
3

)
∈ Γ
}

.

Changing variables, we obtain

vol(D6) =
∫

D6

dV6 = (4π)2
∫

D

x2y2dV = 4π2A2.

We are now ready for the Weinstein interpretation. For the Chiti inequality on quarter-space, we write
(1.10) for the 6-dimensional domain D6

⎡
⎣
∫

D6

ΦqdV6

⎤
⎦

1
q

≤ K(p, q, 6)

⎡
⎣
∫

D6

ΦpdV6

⎤
⎦

1
p

(2.8)

for q ≥ p ≥ 0, then simplify, for p > 0, by simple change of variables,
⎡
⎣
∫

D6

ΦpdV6

⎤
⎦

1
p

= (4π)
2
p

⎡
⎣
∫

D

wpx2y2dV

⎤
⎦

1
p

.

Using this identity, (2.8) reduces to
⎡
⎣
∫

D

wqx2y2dV

⎤
⎦

1
q

≤ (4π)
2
p − 2

q K(p, q, 6)

⎡
⎣
∫

D

wpx2y2dV

⎤
⎦

1
p

,
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with equality if and only if D is a quarter-disk. Now, we do the same for the Freitas and Krejčǐrik
inequality (1.7) in quarter-space W1. In this case, D is assumed to be given by

D =

{
(x, y) ∈ W1 | 0 <

√
x2 + y2 < ρ

(
arccos

x√
x2 + y2

)}
.

The arguments of Lemma 2.2 show that D6 is strictly star-shaped domain with respect to the origin. Let
Ψ2 be the map defined from (0, π) × (0, 2π) × (0, π) × (0, 2π) × (0, π) into ∂D6 by

Ψ2(ω, θ1, ϕ2, θ3, ϕ4) = (x1, x2, x3, y1, y2, y3),

where
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = ρ(ω) cos ω cos θ1 sin ϕ1

x2 = ρ(ω) cos ω sin θ1 sin ϕ1

x3 = ρ(ω) cos ω cos ϕ1

y1 = ρ(ω) sin ω cos θ2 sin ϕ2

y2 = ρ(ω) sin ω sin θ2 sin ϕ2

y3 = ρ(ω) sin ω cos ϕ2.

This function Ψ2 is a parametrization of the hypersurface ∂D6, and using the fact that the unit outward
normal vector to D6 at ξ is the normalized vector of the cross-product [∂ω, ∂θ1 , ∂ϕ1 , ∂θ2 , ∂ϕ2 ], we get from
the parametrization of ∂D6

B(D6) =
∫

∂D6

1
(ξ, n)

dA

= (4π)2
π∫

0

(
1 +

ρ̇2(ω)
ρ2(ω)

)
ρ4(ω) sin2 ω cos2 ω dω

= 4π2B2.

Remark 2.6. As in Remark 2.4, one could have equally defined B(D6) in terms of ρ(ω); see [27].

Applying (1.7) to our 6-dimensional domain D6, we get

λ ≤ B(D6)
6 vol(D6)

j2
2

=
B2

6 A2
j2
2 ,

We finalize our discussion by producing a version of the Crooke–Sperb inequality which is optimized for
quarter-space. From (1.8) for the 6-dimensional domain D6, we get

⎛
⎝
∫

D6

Φ dV6

⎞
⎠

2

≤ 2B(D6)
λ

∫

D6

Φ2 dV6,

which simplifies immediately to
⎛
⎝
∫

D

uyx dV

⎞
⎠

2

≤ 2B2

λ

∫

D

u2 dV.
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3. A geometric inequality for a wedge-like membrane complementary to Payne–Weinberger

We prove in this section some basic isoperimetric results satisfied by Bα.

Theorem 3.1. For the wedge-like membrane D defined by (1.1), we have

Bα ≥ π

2α

[
4α(α + 1)

π
Aα

] α
α+1

. (3.1)

Equality holds if and only if D is a perfect sector of angle π
α .

Remark 3.2. Our result is new and has the interpretation of being a version of an earlier result of Freitas
and Krejčǐrik [17] in Weinstein space of dimension d = 2α + 2 (see Remark 2, p. 2999 of [17]). Our proof
is in fact inspired by this remark. We also note an alternative proof in [27] (see Lemma 2.2 therein).

Proof. Using the Cauchy–Schwarz inequality, we get
⎛
⎝
∫

Γ

h2dσ

⎞
⎠

2

≤ Bα

∫

Γ

(x, n)h2dσ. (3.2)

The divergence theorem gives ∫

Γ

(x, n)h2dσ =
∫

D

div(h2x)dA

=
∫

D

(
2h(∇h, x) + 2h2

)
dA

= (2α + 2)Aα. (3.3)

Combining (3.2), (3.3), and the geometric Payne–Weinberger inequality (this is ineq. (2.2) in [30]), we
obtain at once

( π

2α

)2
[
4α(α + 1)

π
Aα

] 2α+1
α+1

≤
⎛
⎝
∫

Γ

h2dσ

⎞
⎠

2

≤ (2α + 2)AαBα. (3.4)

It is not difficult to see that we have equality for the perfect sector. Now, assume that we have equality
in (3.1), then we must have equality in (3.4). Then, by the geometric Payne–Weinberger result [30], D
must be a sector of angle π

α . �

4. An isoperimetric inequality complementary to Payne–Weinberger: Proof of Theorem 1.1
and discussion

In this section, we prove Theorem 1.1, then discuss its consequence for a right triangle with angles
π
2 , π

α , (α−2)π
2α and unit hypotenuse (in the case α > 2).

Proof of the Main Theorem. The proof is inspired by similar considerations in [33]. According to the
Rayleigh–Ritz principle, we have

λ ≤
∫

D
|∇f |2dA∫
D

f2dA
, (4.1)

where f is any function in the Sobolev space H1
0 . Now, introduce the function v defined in D by

v(r, θ) = g

(
r

ρ(θ)

)
, (4.2)
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where g is any function of class C1 such that g(1) = 0. Let the function f given by f = v h be a test
function for the Rayleigh quotient. Then

∫

D

f2dA =
∫

D

v2h2dA

=

π
α∫

0

ρ(θ)∫

0

g2

(
r

ρ(θ)

)
r2α+1 sin2 αθ drdθ

=

π
α∫

0

⎛
⎜⎝

ρ(θ)∫

0

g2

(
r

ρ(θ)

)
r2α+1dr

⎞
⎟⎠ sin2 αθ dθ.

By the change of variable s = r
ρ(θ) , we have

∫

D

f2dA =

π
α∫

0

ρ2α+2(θ) sin2 αθ dθ

1∫

0

g2(s)s2α+1 ds (4.3)

A quick computation gives

Aα =

π
α∫

0

ρ(θ)∫

0

r2α+1 sin2 αθ drdθ

=
1

2α + 2

π
α∫

0

ρ2α+2(θ) sin2 αθ dθ (4.4)

Substituting into (4.3), we get

∫

D

f2dA = (2α + 2)Aα

1∫

0

g2(s)s2α+1 ds. (4.5)

For the Dirichlet integral of f , we find
∫

D

|∇f |2dA =
∫

D

|∇v|2h2dA

=

π
α∫

0

ρ(θ)∫

0

((
dv

dr

)2

+
1
r2

(
dv

dθ

)2
)

r2α+1 sinα2θ drdθ

=

π
α∫

0

ρ(θ)∫

0

(
1

ρ2(θ)
+

ρ̇2(θ)
ρ4(θ)

)
g′2
(

r

ρ(θ)

)
r2α+1 sin2 αθ drdθ

=

π
α∫

0

(
1

ρ2(θ)
+

ρ̇2(θ)
ρ4(θ)

)
⎛
⎜⎝

ρ(θ)∫

0

g′2
(

r

ρ(θ)

)
r2α+1dr

⎞
⎟⎠ sin2 αθ dθ
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By putting s = r
ρ(θ) , we obtain

∫

D

|∇f |2dA =

π
α∫

0

(
1 +

ρ̇2(θ)
ρ2(θ)

)
ρ2α(θ) sin2 αθ dθ

1∫

0

g′2(s)s2α+1 ds (4.6)

By the fact that

(x, n) =
ρ2

√
ρ̇2 + ρ2

, and dσ =
√

ρ̇2 + ρ2 dθ, (4.7)

we find

Bα =

π
α∫

0

(
1 +

ρ̇2(θ)
ρ2(θ)

)
ρ2α(θ) sin2 αθ dθ, (4.8)

and therefore
∫

D

|∇f |2dA = Bα

1∫

0

g′2(s)s2α+1 ds. (4.9)

Combining (4.1), (4.3), and (4.9), we obtain

λ ≤ Bα

(2α + 2)Aα

∫ 1

0
g′2(s)s2α+1 ds∫ 1

0
g2(s)s2α+1 ds

. (4.10)

Now, we choose the function

g(s) = s−αJα(jα,1s), (4.11)

where Jα is the Bessel function of the first kind of order α and jα,1 is its first positive zero. Clearly,
g(1) = 0. With this choice, the inequality (4.10) yields

λ ≤ Bα

(2α + 2)Aα
j2
α,1. (4.12)

Indeed, let u1 be the first eigenfunction of the Laplace operator with Dirichlet boundary condition in the
sector S1 of angle π

α and radius 1; then

u1(r, θ) = Jα(jα,1r) sin αθ = g(r)rα sinαθ. (4.13)

Using this, we obtain

j2
α,1 = λ1(S1) =

∫
S1 |∇u1|2dA∫

S1 u2
1dA

=

∫ π
α

0

∫ 1

0
g′2(r)r2α+1 sin2 αθ drdθ∫ π

α

0

∫ 1

0
g2(r)r2α+1 sin2 αθ drdθ

=

∫ 1

0
g′2(s)s2α+1 ds∫ 1

0
g2(s)s2α+1 ds

Plugging this into (4.10), we obtain our desired inequality. In the case of the perfect sector of radius R,
it is not difficult to see that

Bα

(2α + 2)Aα
=

1
R2

, (4.14)

which ensures equality in this case. �



2432 A. Hasnaoui and L. Hermi ZAMP

Remark 4.1. This theorem and the Payne–Weinberger inequality give the two-sided bounds for the
fundamental tone of vibration of a drum trapped in a wedge.

(4α(α + 1)
π

Aα

) −1
α+1

j2
α,1 ≤ λ ≤ Bα

(2α + 2)Aα
j2
α,1. (4.15)

It is worth noting a few remarks with respect to the two-sided bound (4.15). These bounds are much en
vogue in recent considerations by various authors [3,15,18,37,38]. The lower bound in (4.15) is Payne–
Weinberger’s bound (1.12) above, and certainly not the best to date, and the upper bound is the main
result of this paper.

To make the notation uniform, we will denote the lower and upper bounds of Siudeja’s [38] Theo. 1.1
[formula (1.1)] Slow and Shigh. The upper bound stemming from Pólya and Szegő’s work [33] [see formula
(3), p. 20] or (1.5) above (PS). The lower and upper bounds coming from Theo. 2 of Freitas’ paper
[15] are denoted Flow and Fhigh. Flow is essentially the bound of Payne and Weinberger [30] labeled
(1.12) above, appropriately interpreted. FSlow and FShigh denote the lower and upper bounds proved
by Freitas and Siudeja in [18]. We know by comparison arguments, from [18], that FSlow improve Flow.
Finally, HHhigh is our new bound (5.2), while HHlow is the bound (6.8) derived by combining weighted
Chiti and Crooke–Sperb inequalities; see Remark 6.3 below.

We are now ready to illustrate the various bounds by invoking the examples of two triangles, one of
historical interest, and the other one is to prove and discuss what follows from this work and related
earlier breakthroughs.

Remark 4.2. Consider a right isosceles triangle with equal sides of unit length. If the origin is taken at
the midpoint of the hypotenuse, α = 1. The Bessel zero j1,1 ≈ 3.83171, and A1 is explicitly given by

A1 = A11 + A12

where

A11 =

π/2∫

0

ρ1(θ)∫

0

r3 sin2 θdrdθ

and

A12 =

π∫

π/2

ρ2(θ)∫

0

r3 sin2 θdrdθ,

ρ1(θ) =
1√

2(cos θ + sin θ)
, ρ2(θ) =

1√
2(− cos θ + sin θ)

.

Moreover,
B1 = B11 + B12

where

B11 =

π/2∫

0

(
1 +

ρ′2
1 (θ)

ρ2
1(θ)

)
ρ2
1(θ) sin2 θdθ

and

B12 =

π∫

π/2

(
1 +

ρ′2
2 (θ)

ρ2
2(θ)

)
ρ2
2(θ) sin2 θdθ.
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This leads to A1 = 1
24 and B1 = 2

3 , and the bounds

45.0734 < λ < 58.7279.

If the right-angled corner is taken as the origin, α = 2, and a similar calculation leads to

A2 =

ρ(θ)∫

0

π/2∫

0

r5 sin2(2θ)drdθ =
1
45

B2 =

π∫

π/2

(
1 +

ρ′2(θ)
ρ2(θ)

)
ρ4(θ) sin2(2θ)dθ =

4
15

where ρ(θ) = 1
cos θ+sin θ . With j2,1 = 5.1356, we obtain the two-sided bound

47.6325 < λ < 52.7492.

If one of the acute angled corners is chosen as the origin, α = 4. With ρ(θ) = 1
cos θ , j4,1 = 7.5883, we

obtain

A4 =
64
525

B4 =
128
105

and the bounds

45.9094 < λ < 57.5829.

Computations with this triangle for the various bounds found in the literature yield Table 1.
We note that the Faber–Krahn inequality yields a lower bound of 36.3368, and the Faber–Krahn for

triangles leads to a lower bounds of 45.5858. For this triangle, B = 6 + 4
√

2 (see the table p. 257 in [33]).
Thus, the upper bound provided by (1.5), with j0,1 = 2.4048 is 67.4136. Compare these numbers with
the exact value of λ = 5π2 = 49.3506 [33]. We note that Freitas [16] (see also [3]) proved the upper bound
estimate for triangles

λ ≤ π2

3A2

(
�21 + �22 + �23

)
(4.16)

which in our case results in an upper bound of 16π2/3 ≈ 52.6379. Thus, the best quadrature for the
fundamental eigenvalue of this triangle is provided by Payne–Weinberger’s α = 2 case and Siudeja’s
upper bound, i.e.,

47.6325 < λ < 51.1327.

Remark 4.3. We now systematically study the variation of these bounds as a function of α. We tabulate
upper and lower bounds coming from the literature and our results for a right angle triangle with sides
a = sin π/α, b = cos π/α and c = 1. We place the origin of the coordinate system at the point with opening
π/α. The comparison is summarized in Table 2 (see also Table 1). For all triangles, FSlow provides the
best lower bound. As already noted, FSlow is a slight improvement on Freitas’ earlier bound Flow. For
bulky triangles, Siudeja’s Shigh gives the best bound, but as α increases, the best bound, denoted F ′

high,
is buried in the work of Freitas [15]. This bound was given up by Freitas for an esthetically appealing

Table 1. Comparison of upper and lower bounds for a right isoceles triangle with unit sides

α Slow Flow FSlow Shigh Fhigh F ′
high FShigh PS HHhigh HHlow

4 28.7621 45.9094 46.6702 51.1327 54.8128 51.3066 169.241 67.4138 57.5829 20.41

The sharpest lower and upper bounds, to date, are in bold
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Table 2. Comparison of upper and lower bounds for a right triangle as a function of α: Siudeja (Slow, Shigh) [38],
Freitas (Flow, Fhigh, F ′

high) [15], Freitas–Siudeja (FSlow, FShigh) [18], Payn–Weinberger (Flow) [15,30], Pólya–Szego

(PS) [33], and Hasnaoui–Hermi (HHhigh and HHlow, this article)

α Slow Flow FSlow Shigh Fhigh F ′
high FShigh PS HHhigh HHlow

4 57.524 91.819 93.340 102.265 109.626 102.613 111.238 134.828 115.166 35.536
6 73.668 120.369 121.04 130.965 127.928 124.533 150.040 172.665 131.635 59.944
8 105.017 166.873 167.292 186.697 171.833 169.444 219.060 246.143 175.095 94.002
10 145.918 224.803 225.104 259.409 228.582 226.679 308.148 342.007 231.662 137.030
12 195.398 292.766 293.000 347.374 295.863 294.254 415.421 457.981 298.844 188.844
14 253.157 370.237 370.427 450.058 372.886 371.477 540.223 593.36 375.819 249.353
16 319.072 456.946 457.105 567.239 459.275 458.014 682.237 747.853 462.174 318.502
18 393.082 552.731 552.867 698.812 554.819 553.671 841.282 921.319 557.694 396.247
20 475.154 657.479 657.598 844.718 659.378 658.322 1017.24 1113.68 662.237 482.556
22 565.25 771.108 771.215 1004.92 772.855 771.874 1210.01 1324.9 775.702 577.400
24 663.416 893.555 893.651 1179.41 895.176 894.257 1419.54 1554.94 898.014 680.754
26 769.586 1024.77 1024.85 1368.15 1026.28 1025.42 1645.78 1803.79 1029.11 792.597
28 883.774 1164.7 1164.78 1571.15 1166.13 1165.31 1888.68 2071.42 1168.95 912.911
30 1005.98 1313.32 1313.39 1788.40 1314.66 1313.89 2148.20 2357.84 1317.49 1041.68
32 1136.19 1470.59 1470.66 2019.89 1471.87 1471.12 2424.32 2663.04 1474.68 1178.88

The sharpest lower and upper bounds, to date, are in bold

form in Theorem 2 of [15] and is obtained by combining the formulas on pages 383 and 384 of his paper
in the Rayleigh–Ritz characterization. It is explicitly given by the formula (our α corresponds to π/α in
[15]):

F ′
high =

π
α

∫ 1

0

(
g′(πt/α)
g(πt/α)

)2

sin2(πt) dt
∫ jα,1

0
z (J ′

α(z))2 dz + π
2α

∫ jα,1

0
zJ2

α(z)dz

π
α j2

α,1

∫ 1

0
sin2(πt)
g2(πt/α) dt

∫ jα,1

0
zJ2

α(z)dz

where g(θ) = sin( π
α −θ)

c sin π/α + sin θ
b sin π/α . The function r = 1/g(θ) describes the shorter length of the triangle in

polar form. The test function choice v(r, θ) was optimized in [15] for the triangle and was given in terms
of the Bessel function Jα(z)

v(r, θ) = Jα(jα,1 g(θ)r) sin αθ.

Our bound HHhigh follows the Freitas form. However, our choice is optimized for a circular sector and is
inspired by the Payne interpretation in Weinstein fractional space. Our new bound does not beat Fhigh

or F ′
high, but follows them, and is the next best bound, to date.

Remark 4.4. We next use the bounds in (4.15) to provide new lower and upper bound estimates for the
fundamental eigenvalue of a regular α-polygon with n sides inscribed in a circular sector of radius 1 and
opening π/α, for α = 1, 1.5, 2, 4, 3, 5, 6 and n = 2, 3, . . . , 15. Our example is inspired by the table p. 255 of
[33]. The results for the α-polygons are summarized in Table 3. We note the clear monotonicity principle
at play as we double the value of n. As n → ∞, we expect the lower and upper bounds to converge to
the fundamental eigenvalue of the circular sector of opening π/α, i.e., j2

α,1.

5. Lower bound for the relative torsional rigidity of a wedge-like domain

For wedge-like domains, relative torsional rigidity Pα was introduced in [20] where we proved its existence
and fundamental properties. We also proved in [20] an isoperimetric Saint-Venant-type theorem which
states that relative torsional rigidity is maximized for perfect sector with the same “weighted area” Aα
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Table 3. Lower and upper bounds for the fundamental eigenvalue of a regular α-polygon with n sides inscribed in a
circular sector of radius 1 and opening π/α, for α = 1, 1.5, 2, 3, 4, 5, 6 and n = 2, 3, . . . , 15

n α = 1 α = 1.5 α = 2 α = 3 α = 4 α = 5 α = 6

2 18.401 29.364 20.640 26.921 25.533 30.900 38.493 43.629 54.473 59.861 73.098 78.869 94.236 100.437
3 16.145 19.576 20.380 22.866 26.001 28.268 39.718 41.972 56.194 58.584 75.224 77.779 96.724 99.482
4 15.585 17.201 20.408 21.640 26.284 27.418 40.285 41.412 56.952 58.142 77.416 76.142 97.784 99.150
5 15.315 16.232 20.397 21.103 26.389 27.036 40.520 41.156 57.273 57.940 77.244 76.533 98.237 98.997
6 15.153 15.736 20.371 20.819 26.425 26.832 40.623 41.018 57.420 57.830 77.150 76.715 98.451 98.914
7 15.046 15.447 20.345 20.649 26.435 26.709 40.672 40.935 57.493 57.764 77.094 76.808 98.561 98.864
8 14.972 15.293 20.322 20.541 26.435 26.630 40.696 40.881 57.533 57.722 77.058 76.859 98.622 98.832
9 14.918 15.138 20.302 20.467 26.431 26.577 40.709 40.845 57.555 57.693 77.033 76.889 98.658 98.810
10 14.879 15.050 20.287 20.414 26.427 26.538 40.715 40.818 57.568 57.672 76.907 77.015 98.681 98.794
11 14.847 14.986 20.274 20.375 26.422 26.509 40.718 40.799 57.576 57.656 76.919 77.002 98.695 98.782
12 14.823 14.936 20.263 20.345 26.417 26.488 40.720 40.784 57.581 57.645 76.926 76.992 98.705 98.773
13 14.804 14.898 20.254 20.322 26.413 26.471 40.720 40.773 57.584 57.636 76.931 76.984 98.711 98.766
14 14.788 14.868 20.247 20.304 26.409 26.458 40.720 40.763 57.586 57.628 76.934 76.978 98.718 98.761
15 14.776 14.844 20.241 20.289 26.406 26.447 40.720 40.756 57.587 57.622 76.937 76.973 98.719 98.756
j2

α,1
(n → ∞)

14.6820 20.1907 26.3746 40.7065 57.5829 76.9389 98.7263

[Ineq. (1.13) above]. Relative torsional rigidity lends itself also to the Payne interpretation in the proper
Weinstein fractional space. This physical parameter Pα is defined via

1
Pα

= inf

{∫
D

|∇f |2 dA(∫
D

fhdA
)2 : f ∈ H1

0 (D), f �≡ 0

}
(5.1)

where as above h = rα sin αθ. In fact, this Rayleigh–Ritz characterization is all we need to prove the
following. Our new theorem provides a counterpart lower bound to the Saint-Venant inequality in the
case of wedge-like domains defined by (1.1).

Theorem 5.1. The relative torsional rigidity Pα of the wedge-like membrane D defined by (1.1) satisfies
the inequality

Pα ≥ A2
α

(2α + 4)Bα
. (5.2)

Equality holds if D is a sector of angle π
α .

Remark 5.2. One can motivate this inequality in light of the higher-dimensional version of (1.6) found
in [17] and the Payne interpretation in Weinstein fractional space, as done above.

Proof. The proof is again inspired by similar considerations in [33]. In the Rayleigh–Ritz principle (5.1),
let f = vh where

v(r, θ) = g

(
r

ρ(θ)

)
, (5.3)

and g is any C1 function such that g(1) = 0. We calculate∫

D

fhdA =
∫

D

vh2dA

=

π
α∫

0

ρ(θ)∫

0

g

(
r

ρ(θ)

)
r2α+1 sin2 αθ drdθ

=

π
α∫

0

⎛
⎜⎝

ρ(θ)∫

0

g

(
r

ρ(θ)

)
r2α+1dr

⎞
⎟⎠ sin2 αθ dθ.
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Let s = r
ρ(θ) , then

∫

D

fhdA =

π
α∫

0

ρ2α+2(θ) sin2 αθ dθ

1∫

0

g(s)s2α+1 ds. (5.4)

With Aα given in terms of ρ(θ) in (4.4), we finally have

∫

D

fhdA = (2α + 2)Aα

1∫

0

g(s)s2α+1 ds. (5.5)

For the Dirichlet integral of f , we have (4.9). Therefore, plugging (5.5) and (4.9) into the Rayleigh–Ritz
principle (5.1), we obtain

1
Pα

≤ Bα

(2α + 2)2 A2
α

∫ 1

0
g′2(s)s2α+1 ds(∫ 1

0
g(s)s2α+1 ds

)2 . (5.6)

Choose

g0(s) =
1 − s2

4α + 4
(5.7)

in (5.6) to match the radial part of the stress function corresponding to relative torsional rigidity for the
perfect sector [see (5.25) in [20]], then

∫ 1

0
g′2
0 (s)s2α+1 ds(∫ 1

0
g0(s)s2α+1 ds

)2 = 8(α + 1)2(α + 2) (5.8)

and
1

Pα
≤ (2α + 4)Bα

A2
α

(5.9)

which is the stated result. To prove that the function in (5.7) is the minimizer of (5.6), and rather than
appeal to the Euler-Lagrange equation, we proceed as in Pólya and Szegő’s book [33] (see the argument
pp. 91–93), via the Cauchy–Schwarz inequality. Since g(1) = 0 and g is C1, we have

⎛
⎝

1∫

0

g(s)s2α+1ds

⎞
⎠

2

=

⎛
⎝−

1∫

0

g′(s)s
2α+1

2
s

2α+3
2

2α + 2
ds

⎞
⎠

2

≤
⎛
⎝

1∫

0

g′2(s)s2α+1ds

⎞
⎠
⎛
⎝

1∫

0

s2α+3

(2α + 2)2
ds

⎞
⎠

=

⎛
⎝

1∫

0

g′2(s)s2α+1ds

⎞
⎠ 1

(2α + 2)2(2α + 4)

Therefore,

8(α + 1)2(α + 2) ≤
∫ 1

0
g′2
0 (s)s2α+1 ds(∫ 1

0
g0(s)s2α+1 ds

)2 (5.10)

By (5.8) and (5.10), g0(s) is indeed the minimizer. �
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6. Rellich-type identity for a wedge-like domain and application

In this section, we show a version of the Rellich identity (1.9) for a wedge-like membrane. As an appli-
cation, we obtain a counterpart of the Payne–Rayner inequality which is sharper than what Cauchy–
Schwarz’s inequality would naturally give. With the substitution u = vh in (1.9), we are led to the
following form of the Rellich identity which we will prove. We offer a proof from first principle though
one can see in light of ∂u/∂n = h ∂v/∂n and the fact that v = 0 on Γ that the result should hold directly
from (1.9).

Lemma 6.1. Let u be first eigenfunction of the Dirichlet problem in D. Then,
∫

Γ

(x, n)
(

∂v

∂n

)2

h2dσ = 2λ

∫

D

u2dA. (6.1)

Proof. Plugging the substitution u = v h, h = rα sin αθ into the equation Δu + λu = 0, we get

hΔv + 2(∇h,∇v) = −λhv. (6.2)

Multiplying that by h(∇v, x) and integrating, we get∫

D

h2Δv(∇v, x) + 2h(∇h,∇v)(∇v, x) dA = −λ

∫

D

h2v(∇v, x) dA (6.3)

Now, an elementary calculation gives that∫

D

2h(∇h,∇v)(∇v, x) dA =
∫

D

(∇h2,∇v)(∇v, x) dA (6.4)

=
∫

D

(∇h2, (∇v, x)∇v) dA. (6.5)

Using the divergence theorem, we have∫

D

(∇h2, (∇v, x)∇v) dA =
∫

Γ

(∇v, x)
∂v

∂n
h2dσ

−
∫

D

(∇(∇v, x),∇v) h2 dA

−
∫

D

(∇v, x)Δv h2 dA. (6.6)

On the other hand, we have∫

D

(∇(∇v, x),∇v) h2 dA =
∫

D

(
(D(∇v).∇v, x) + |∇v|2)h2 dA

=
1
2

∫

D

(∇(|∇v|2), x) h2 dA +
∫

D

|∇v|2h2 dA

Using again the divergence theorem, we obtain∫

D

(∇(∇v, x),∇v) h2 dA =
1
2

∫

Γ

|∇v|2(x, n)h2 dσ

−
∫

D

|∇v|2h(∇h, x)dA.
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Now, on Γ = ∂D, we have

(∇v, x) = ((∇v, n)n, x) = (x, n)
∂v

∂n

Then
∫

D

h2Δv(∇v, x) + 2h(∇h,∇v)(∇v, x) dA =
1
2

∫

Γ

(
∂v

∂n

)2

(x, n)h2dσ

−
∫

D

|∇v|2h(∇h, x)dA.

A similar calculation for the integral on the RHS of (6.3) gives
∫

D

v(∇v, x)h2 dA =
1
2

∫

D

(∇v2, h2x) dA

=
∫

Γ

(x, n)v2h2 dσ −
∫

D

u2 dA −
∫

D

v2h(∇h, x) dA

Now, using the fact that (∇h, x) = αh, we get
∫

D

|∇v|2(∇h, x)h dA = α

∫

D

|∇v|2h2 dA

= αλ

∫

D

v2h2 dA

= λ

∫

D

v2h(∇h, x) dA.

Finally, combining all these elements leads to the Rellich identity and completes the proof of the Lemma.
�

As application, we show how to obtain at once the extension of the Crooke and Sperb [12] inequality
(1.8) to the case of the wedge-like domain D.

Theorem 6.2. Let u be the eigenfunction associated with the first eigenvalue λ of the fixed membrane
problem on D defined by (1.1). Then

⎛
⎝
∫

D

uh dA

⎞
⎠

2

≤ 2Bα

λ

∫

D

u2 dA. (6.7)

Proof. Applying the divergence theorem to the vector h2∇v in D and the Cauchy–Schwarz inequality,
we get

⎛
⎝λ

∫

D

vh2 dA

⎞
⎠

2

=

⎛
⎝
∫

Γ

∂v

∂n
h2dσ

⎞
⎠

2

≤
∫

Γ

(
∂v

∂n

)2

(x, n)h2dσ .

∫

Γ

1
(x, n)

h2dσ
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Rellich identity’s for the wedge-like domain D gives
⎛
⎝λ

∫

D

vh2 dA

⎞
⎠

2

≤ 2Bαλ

∫

D

u2dA.

Substituting u = v h leads to the statement of the Theorem 6.2. �

Remark 6.3. Combining (2.2) and (6.7), we obtain the new lower bound estimate for λ in terms of Bα

which compete with existing results in the case D is a subset of the wedge W.

λ ≥
( π

2α

)1/(α+1) j
2α/(α+1)
α,1

B
1/(α+1)
α

(6.8)

This is the wedge-like version of the isoperimetric inequality B ≥ 2π proved in [1]; see also the discussion
in Crooke and Sperb’s paper [12].
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