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In this article we prove the existence, uniqueness, and simplicity of a negative 
eigenvalue for a class of integral operators whose kernel is of the form |x − y|ρ, 
0 < ρ ≤ 1, x, y ∈ [−a, a]. We also provide two different ways of producing recursive 
formulas for the Rayleigh functions (i.e., recursion formulas for power sums) of the 
eigenvalues of this integral operator when ρ = 1, providing means of approximating 
this negative eigenvalue. These methods offer recursive procedures for dealing with 
the eigenvalues of a one-dimensional Laplacian with non-local boundary conditions 
which commutes with an integral operator having a harmonic kernel. The problem 
emerged in recent work by one of the authors [48]. We also discuss extensions in 
higher dimensions and links with distance matrices.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There has been renewed interest, motivated by applications in statistics, machine learning, and mathe-
matical physics, in the spectral properties of integral operators [5,7–9,12,13,16,25,48]. These operators are 
usually defined in terms of symmetric distance-like kernels where the focus has recently shifted to questions 
about spectral embedding, and on establishing connections between empirical operators and their continuous 
counterparts [47], specifically in the context of manifold learning, with recent activities [6,8,9,13] reviving 
the theories developed by Schoenberg in the 1930s [49–51], or borrowing techniques from the discrete setting 
to approximate eigenvalues and eigenfunctions for the continuous counterpart [7,13,46]. As a prototype of 
such integral operators, we consider

Kρ,af(x) := Cρ

a∫
−a

|x− y|ρ f(y) dy (1)
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where a > 0 and

Cρ := Γ(−ρ)
Γ
( 1−ρ

2
)

Γ
( 1+ρ

2
) = −1

2Γ(1 + ρ) sin πρ
2

< 0 (2)

for 0 < ρ ≤ 1, C1 = limρ→1 Cρ = −1/2.
The constant Cρ is motivated by the decomposition of |x −y|ρ, due to Pólya–Szegő [42], who proved that 

for −1 ≤ x, y ≤ 1, −1 < ρ < 1, with x �= y, ρ �= 0,

|x− y|ρ =
Γ
(1+ρ

2
)

Γ
(
1 − ρ

2
)

Γ
( 1

2
) ∞∑

n=0

(
1 − 2n

ρ

)
P

(
− ρ

2
)

n (x)P
(
− ρ

2
)

n (y) (3)

(see Eq. (14) of [42], and the comments on p. 29 just before Eq. (18), beginning “Die Entwicklung (14) 
. . . ”). They also established the identity

1∫
−1

(
1 − x2)− 1+ρ

2 |x− y|ρP
(
− ρ

2
)

n (x) dx =
Γ
( 1−ρ

2
)

Γ
( 1+ρ

2
)

Γ(−ρ)
Γ(n− ρ)
Γ(n + 1) P

(
− ρ

2
)

n (y). (4)

Here P (ν)
n (x) denotes the ultraspherical (or Gegenbauer) polynomials. In this article we use the classical 

notation for Gegenbauer polynomials rather than the more modern C(ν)
n (x) found in e.g., [1, Chap. 22] and 

[40, Chap. 18]. We also note that the basic properties of the Euler Γ function were used to convert the 
leading constant in (3) into that in (2). Our choice of Cρ is tightly connected with (4). For later purposes, 
we let

Bρ := Cρ

Γ
( 1+ρ

2
)

Γ
(
1 − ρ

2
)

Γ
( 1

2
) < 0 (5)

for 0 < ρ ≤ 1.
In this article we give a direct proof of the existence of a negative eigenvalue for the operator (1), then 

prove recursion formulas for power sums for its eigenvalues when ρ = 1. These power sums provide a means 
of approximating this unique negative eigenvalue. This problem has arisen in recent work by one of us [48]
who developed the theory and applications of an integral operator commuting with the Laplacian defined on 
a general domain Ω ⊂ R

d, d ≥ 1, satisfying rather interesting non-local boundary condition. In particular, 
for d = 1, as Section 4 reviews this case in detail, the integral operator K1,1/2 defined in (1) was shown 

to commute with the second order differential operator − d2

d x2 with non-local boundary condition. In this 
article, we focus on the analysis of the spectra of Kρ,a for 0 < ρ ≤ 1 despite the fact that Kρ,a with ρ �= 1
does not commute with such a simple 2nd order differential operator and that (3) is also valid for −1 < ρ < 0
(see Remark 2.5). The problem is certainly classical, but the results are new. We also show that techniques 
for the continuous case can be borrowed to provide new proofs for the discrete setting of distance matrices 
described in [8,9].

We let L2[−a, a] be the space of square integrable functions on the interval [−a, a]. We are interested in 
the following eigenvalue problem

Kρ,af(x) = μ f(x). (6)
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That Kρ,a has a discrete spectrum {μk}∞k=0 is clear from the symmetry of the kernel and a simple compact-
ness argument; viz. by the Cauchy–Schwarz inequality

|Kρ,af(x)| ≤ |Cρ| sup
x∈[−a,a]

⎛
⎝ a∫
−a

|x− y|2ρ dy

⎞
⎠

1/2

‖f‖2 (7)

where ‖f‖2 =
(∫ a

−a
f2(x) dx

)1/2
. We are specifically interested in closed form formulas for 

∑∞
n=0 μ

p
n, p ∈ N. 

These are sometimes called Rayleigh functions corresponding to the eigenvalue problem (6). It is well-known 
that

∞∑
n=0

μp
n =

a∫
−a

Kp(x, x) dx (8)

where Kp(x, y) denotes the p-th iterated integral of K(x, y) := Cρ|x − y|ρ defined recursively by K1(x, y) =
K(x, y), and

Kp+1(x, y) =
a∫

−a

Kp(x, z)K(z, y) dz, p = 1, 2, . . . .

The first couple of terms of (8) can be directly inferred from the iteration process. For instance

∞∑
n=0

μn = 0 (9)

and,

∞∑
n=0

μ2
n =

a∫
−a

K2(x, x) dx = (Cρ)2
(2a)2(1+ρ)

(1 + 2ρ) (1 + ρ) . (10)

We will show the existence of a unique negative eigenvalue μ0 < 0 (the rest of the spectrum is positive and 
accumulating at zero). In fact, combining (10), (19), and (24) below, with λ0 := 1/μ0, this article shows 
that

(1 + ρ) (2 + ρ)
2 (2a)1+ρ Cρ

< λ0 <

√
(1 + ρ) (1 + 2ρ)
(2a)1+ρ Cρ

. (11)

When ρ = 1 and a = 1/2, this gives the explicit two-sided bound

−6 < λ0 < −
√

24 ≈ −4.898979.

In fact, one can use ideas that date back to Waring (1776), Dandelin (1826), Lobatschevsky (1834), in 
addition to Euler, Rayleigh, Graeffe, and Watson (see [60, Sec. 15.5]) to improve these bounds to

−5.75691539 < λ0 < −5.75691534
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by exploiting explicit recursion formulas for Ap :=
∑∞

n=0 μ
p
n. By virtue of (9), it is clear that A1 = 0. This 

paper develops the explicit recursive formula

4Ap+1 +
p−1∑
k=1

(−1)k
(

2
(2k)! −

1
(2k − 1)!

)
Ap−k+1 = (−1)p+1p

(2p + 1)! , p = 1, 2, . . . .

Such power sums can be used to derive the claimed improvable upper and lower bounds for the fundamental
eigenvalue μ0 (or λ0); see Theorem 7.1 and Remark 7.3.

Our recursion formulas emulate those developed by various authors for Rayleigh functions, or power 
sums, involving roots of various transcendental equations. It was Euler who first found the first few closed 
expressions for what later came to be known as the Rayleigh function [18] (see also [60, Sec. 15.5], [15]):

σ2�(ν) :=
∞∑

n=1

1
j2�
ν,n

, � = 1, 2, . . . , (12)

where jν,n denotes the n-th positive root of z−νJν(z), and Jν(z) is the Bessel function of the first kind 
of order ν [1, Chap. 9], [40, Chap. 10]. Euler’s method was further developed by Lord Rayleigh [44] and 
Carlitz [11]. Both Euler and Rayleigh analyzed eigenvalues of oscillations of physical systems (a hanging 
chain for Euler and a circular membrane for Rayleigh), which aroused their interest in computing zeros of 
the Bessel functions. By exploiting a differential equation of Riccati-type satisfied by the function z−νJν(z), 
Kishore [30–32] developed recursion formulas for σ2�(ν), starting with the known expression, due to Euler 
and Rayleigh

σ2(ν) =
∞∑

n=1

1
j2
ν,n

= 1
4(ν + 1)

σ4(ν) =
∞∑

n=1

1
j4
ν,n

= 1
16(ν + 1)2(ν + 2) . (13)

In his famous book [45], Lord Rayleigh was further led, in the context of treating the transverse vibrations 
of a clamped beam, to finding summation formulas for the reciprocal 4th and 8th powers of the positive 
roots of the equation

cosx cosh x± 1 = 0. (14)

If these roots are denoted {mk}∞k=1, Lord Rayleigh found (see p. 279 of [45]):

∞∑
k=1

m−4
k = 1

12
∞∑
k=1

m−8
k = 33

5040 .

The early history of the techniques of proving these power sum formulas can be found in Watson’s book 
[60, Sec. 15.5] as well as [4,14,59]. The more recent articles [23,24,29] offer modern views, survey recent 
results, and apply the techniques to various transcendental functions.

Properly speaking, the technique of resolution of many of these problems goes back to Euler and his 
famous resolution of the “Basel” problem, named after the native Swiss city of Euler and the Bernoulli 
brothers. Euler successfully solved the problem first posed by Pietro Mengoli in 1644 [14,59] and found a 
closed form for the expression 

∑∞ 1
2 . It is now folklore that the sum is π

2
. Heuristically, Euler’s argument 
n=1 n 6
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of 1740 [17] (see also [14,59]) amounted to writing sin x
x in two different ways: as a Maclaurin series and as 

the infinite product
∞∏

n=1

(
1 − x2

n2π2

)
,

since the roots of the transcendental equation sinx/x = 0 are given by x = ±nπ, for n = 1, 2, . . . Expanding 
the product, and equating the coefficients of x2 gives the above formula. For rigorous justifications of these 
formulas one should consult [33, Chap. 1]. Euler’s technique is exactly what Rayleigh employed in the case 
of equation (14). Many nice examples illustrating this technique appear in the excellent paper of Speigel 
[52] where generalizations of Newton’s known formulas for the symmetric sums of the roots of a polynomial 
can be found (see also the comments in [24]).

Radoux [43], Liron [36–38], and more recently Gupta–Muldoon [23] and Ismail–Muldoon [24] employed 
similar techniques to generate various recursion formulas in the same spirit. In the case of Radoux and 
Liron, one finds explicit and recursive formulas for sums of even powers of reciprocals for the roots of the 
equation tanx = x, and cotx = x. To illustrate the case of the equation, tanx = x, with x1, x2, . . . denoting 
the strictly positive roots of the equation, they derived the sums of even powers of xk’s, i.e., 

∑∞
k=1 x

−2�
k , 

� = 1, 2, . . .. For example, the cases � = 1, 2 lead to

∞∑
k=1

1
x2
k

= 1
10 ,

∞∑
k=1

1
x4
k

= 1
350 .

All of these are manifestations of convolution formulas relating the trace of the compact operator defined 
by the Green’s function, and power sums of the eigenvalues as detailed in [21] and the classical book of 
Mikhlin [39]. The recent survey paper of Grieser [22] offers a view that relates these formulas to what is 
known for matrices. As in [22], our work here also illustrates parallels between the continuous and discrete 
settings.

Radoux [43] attributes the method of finding sums of reciprocals of powers of eigenvalues of certain 
operators to Sèrge Nicaisse, but as detailed in [21,22,39] this is truly classical.

The paper provides fine links between Spectral Analysis, the algebra of distance matrices, and Probability 
Theory. It is organized as follows. In Section 2 we prove the existence, uniqueness, and simplicity of a 
negative eigenvalue for Kρ,a directly. In Section 3 we provide the means of proving the existence of this 
eigenvalue when dealing with distance matrices. In Sections 4–7 we focus on the ρ = 1 case, provide a series 
of standard reductions to simpler eigenvalue problems, and offer two different proofs of a recursive scheme to 
obtain explicit values of Rayleigh functions for (6) with ρ = 1. Our main contribution in these sections are 
Theorems 5.1, 6.1, and 7.1. For these sections, the proofs of the first two theorems are demonstrated directly 
using the properties of the eigenvalues of the non-local BVP without using the trace formulas unlike the 
way Goodwin proved for the regular BVPs [21]. The proof of Theorem 7.1 uses the generating functions as 
Radoux [43] and Liron [36] did for different BVPs (see also Ismail and Muldoon [24]). Finally in Section 8, 
we discuss higher dimensional considerations focusing on the centrality of the Pólya–Szegő expansion (3).

2. Unique simple negative eigenvalue

We will offer direct analytical proofs of both the existence and uniqueness of a negative eigenvalue for 
problem (6). A probabilistic proof is offered in [57]. We also note similar considerations in [27,28,53,54]. 
Analytical proofs for the case of the logarithmic potential in 2-dimensions are offered in [10,58].
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The fundamental eigenvalue of (6) is characterized by the Rayleigh–Ritz principle

μ0 = inf
f∈L2[−a,a]

Cρ

∫ a

−a

∫ a

−a
|x− y|ρf(x)f(y) dx dy∫ a

−a
f2(x) dx

. (15)

Proposition 2.1. (Existence) The eigenvalue problem (6) admits at least one negative eigenvalue.

Proof. The proof of this proposition is inspired by [12]. By choosing a test function f(x) appropriately, 
we will show that μ0 < 0. Let f(x) = χ[0,b] − χ[b,a] where χ denotes the characteristic function of the 
appropriate interval and 0 < b < a. We will show that b can be chosen to make the Dirichlet integral satisfy

ψ(a, b, ρ) := Cρ

a∫
−a

a∫
−a

|x− y|ρf(x)f(y) dx dy < 0. (16)

This expression reduces to

ψ(a, b, ρ) = Cρ

a∫
−a

φ(y)f(y) dy = Cρ

b∫
0

φ(y)f(y) dy − Cρ

a∫
b

φ(y)f(y) dy (17)

where

φ(y) :=
y∫

−a

(y − x)ρ
(
χ[0,b](x) − χ[b,a](x)

)
dx +

a∫
y

(x− y)ρ
(
χ[0,b](x) − χ[b,a](x)

)
dx.

Simplifying further gives the expression

φ(y) =
{

− (a−y)ρ+1

ρ+1 + 2 (b−y)ρ+1

ρ+1 + (a+y)ρ+1

ρ+1 for y ∈ [0, b]
− (a−y)ρ+1

ρ+1 − 2 (−b+y)ρ+1

ρ+1 + (a+y)ρ+1

ρ+1 for y ∈ [b, a].

Performing the integrals in (17), the expression in (16) reduces to

ψ(a, b, ρ) = Cρ
−(2a)ρ+2 + 4(a− b)ρ+2 + 2(a + b)ρ+2 + 2bρ+2 − 2aρ+2

(ρ + 1)(ρ + 2) . (18)

This is a continuous expression in a and b. We note that since Cρ < 0 for 0 < ρ ≤ 1,

ψ(a, 0, ρ) = Cρ
4aρ+2(1 − 2ρ)
(ρ + 1)(ρ + 2) > 0 and ψ(a, a, ρ) = Cρ

(2a)ρ+2

(ρ + 1)(ρ + 2) < 0.

Furthermore,

ψ(a, ca, ρ) = Cρ
aρ+2

(ρ + 1)(ρ + 2) ξ(c)

where ξ(c) := −2ρ+2 + 4(1 − c)ρ+2 + 2(1 + c)ρ+2 + 2cρ+2 − 2. This function ξ(c) is monotonically increasing 
for 1 ≤ c ≤ 1 whereas ψ(a, ca, ρ) is monotonically decreasing on the same interval, since
2
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ξ′(c) = (ρ + 2)
(
2(1 + c)ρ+1 + 2cρ+1 − 4(1 − c)ρ+1) > 0,

viz. 1 + c > c ≥ 1 − c. Since ξ(1/2) < 0, and ξ(1) > 0, the equation ξ(c) = 0 has a unique solution 
c0 ∈ (1/2, 1). Choose then b such that

c0a < b < a

to complete the proof. �
Remark 2.2. The test function f ≡ 1 would also prove the statement of Proposition 2.1. Our choice above 
is motivated by higher dimensional considerations in the works for which the kernel is not of one sign (as is 
the case here).

Remark 2.3. We note a couple of basic facts which will be useful for what follows.

(i) The eigenvalue problem (6) can be reduced to the interval [−1, 1] by simple rescaling. If μ(ρ, a) and 
f(x; ρ, a) denote an eigenvalue and the corresponding eigenfunction for 0 < ρ ≤ 1 and a > 0, then

μ(ρ, a) = aρ+1μ(ρ, 1) and f(x; ρ, a) = f(x/a; ρ, 1), x ∈ [−a, a]. (19)

(ii) The eigenvalue problem at the origin of the investigation [48] was motivated by the kernel defined in 
(1) with ρ = 1 on the interval [0, 1] as we shall discuss it in more detail in Section 4. Let τθ be the 
translation operator in R1 where θ ∈ R defined as τθf(x) := f(x − θ). Then, the integral operator, the 
eigenvalues, and the eigenfunctions of this problem, denoted by K̃ , μ̃ and f̃ , can be expressed by those 
of Kρ,a, μ(ρ, a), and f(x; ρ, a) as

K̃ = τ− 1
2
K

1, 12
τ1

2
; μ̃ = μ

(
1, 1

2
)

= 1
4μ(1, 1); and f̃(x) = τ1

2
f
(
x; 1, 1

2
)
.

Proposition 2.4. (Uniqueness) The eigenvalue problem (6) admits at most one negative eigenvalue.

Proof. The proof is inspired by Kac [27]. By virtue of Remark 2.3 we will reduce the problem to the a = 1
case. We will denote the inner product of two L2[−1, 1] functions, f, g by 〈f, g〉 :=

∫ 1
−1 f(x)g(x) dx.

We will prove the result by contradiction. Suppose μ and μ′ are negative eigenvalues of (6) (not necessarily 
different). Let u and v be the corresponding eigenfunctions such that 〈u, v〉 = 0. Choose α, β �= 0 such that 
〈αu + βv, 1〉 = 0. Let w = αu + βv. Note that P (−ρ/2)

0 (x) = 1. We have

α2μ + β2μ′ =
1∫

−1

1∫
−1

K(x, y)w(x)w(y) dx dy

=
1∫

−1

1∫
−1

(
K(x, y) −BρP

(−ρ/2)
0 (x)P (−ρ/2)

0 (y)
)
w(x)w(y) dx dy

= Bρ

∞∑
n=1

(
1 − 2n

ρ

)⎛
⎝ 1∫
−1

P (−ρ/2)
n (x)w(x) dx

⎞
⎠

2

via (1), (3), (5)

≥ 0

which is a contradiction. �
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Remark 2.5.

(i) It is instructive to compare with the case of negative powers in the kernel K(x, y) (see [26]). In this 
case, there are no negative eigenvalues since for 0 < ρ < 1, we have

1∫
−1

1∫
−1

1
|x− y|ρ f(x)f(y) dx dy =

Γ
( 1−ρ

2
)
Γ
(
1 + ρ

2
)

Γ
( 1

2
) ∞∑

n=0

(
1 + 2n

ρ

)⎛
⎝ 1∫
−1

P (ρ/2)
n (x)f(x) dx

⎞
⎠

2

≥ 0

leading to a positive quadratic form.
(ii) This is also the case for the 1D logarithmic potential [7,46] where all the eigenvalues are negative since 

the quadratic form is negative definite by virtue of the expansion

1∫
−1

1∫
−1

log |x− y|f(x)f(y) dx dy = − log 2

⎛
⎝ 1∫
−1

f(x) dx

⎞
⎠

2

−
∞∑

n=1

2
n

⎛
⎝ 1∫
−1

Tn(x)f(x) dx

⎞
⎠

2

≤ 0.

This follows from the well-known expansion

log |x− y| = − log 2 −
∞∑

n=1

2
n
Tn(x)Tn(y) (20)

where Tn(x) is the Chebyshev polynomial of the first kind of order n.
(iii) Formula (20) is a central tool in a series of works by Ledoux, Popescu, and Garoufalidis [20,34,35]

treating the one-dimensional free problem, and proving, among other results, the Poincaré inequality 
in this setting. In these works, it is referred to as Haagerup’s Lemma (see Lemma 1, p. 4817 of [35]). 
It is a key formula in Reade’s work [46] (see also [7]).

Proposition 2.6. The operator Kρ,a is non-singular.

Proof. The proof is inspired by [53] (see also [28]). We will again reduce the problem to a = 1. We will show 
that μ = 0 is not an eigenvalue. Suppose so, then Kρ,1 u = 0 for some u �= 0, normalized so that 〈u, u〉 = 1. 
If 〈u, 1〉 = 0, then as in the proof of Proposition 2.4,

〈Kρ,1u, u〉 = Bρ

∞∑
n=1

(
1 − 2n

ρ

)⎛
⎝ 1∫
−1

P (−ρ/2)
n (x)u(x) dx

⎞
⎠

2

> 0.

(Note that 〈Kρ,1u, u〉 = 0 means 〈u, P (−ρ/2)
n 〉 = 0 for n = 0, 1, . . .. Thus u ≡ 0, which contradicts the fact 

that u is an eigenfunction.) Hence we must have 〈u, 1〉 �= 0. Let μ < 0 be the unique negative eigenvalue, 
with Kρ,1v = μv, and 〈v, v〉 = 1.

Let α, β �= 0 such that 〈αu + βv, 1〉 = 0. Again by the same argument in the proof of Proposition 2.4, 
for w = αu + βv, β2μ = 〈w, Kρ,1w〉 ≥ 0 which contradicts the fact that μ < 0. Hence, μ = 0 is not an 
eigenvalue of Kρ,1. �

As a result of Proposition 2.6, Aρ,a := (Kρ,a)−1 exists. Moreover, the equation

Aρ,a v = 1 (21)

has a unique solution.
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Let

1
R0(ρ, a)

=
a∫

−a

v(x) dx = 〈v, 1〉.

R0 is the one-dimensional equivalent of the Robin constant defined in [28]. Its sign is tightly associated with 
the existence of a negative eigenvalue. This fact is exploited in [10,28,57] where it is demonstrated that the 
underlying operator has a negative eigenvalue is equivalent to R0 < 0. We note also that v has the explicit 
expression

v(x) = Kρ,a 1 = Cρ

a∫
−a

|x− y|ρ dy (22)

Again we focus on the a = 1 case. As before let μ0, μ1, . . . denote the eigenvalues of (6), and let u0, u1, . . .
denote the associated normalized eigenfunctions. It follows at once that

1
R0(ρ, 1) =

∞∑
n=0

μn(ρ, 1)

⎛
⎝ 1∫
−1

un(x) dx

⎞
⎠

2

(23)

(to obtain this statement, simply expand the function v w.r.t. {un}, then integrate). An explicit calculation 
leads to

R0(ρ, 1) = (1 + ρ)(2 + ρ)
23+ρCρ

< 0

(simply integrate (22)). This calculation and (23) lead to a lower bound estimate for μ0(ρ, 1) which follows 
from dropping the positive terms in the series and applying the Cauchy–Schwarz inequality to 

(∫ 1
−1 u0

)2
, 

namely

μ0(ρ, 1) < 22+ρCρ

(1 + ρ)(2 + ρ) < 0. (24)

Remark 2.7. Troutman proved in [58] a similar bound for the negative eigenvalue of the logarithmic potential 
in terms of the transfinite diameter of the underlying domain (see also [57]). In Fig. 1 we plot λ0(ρ) := 1

μ0(ρ,1)
as a function of 0 < ρ ≤ 1.

Remark 2.8. When ρ = 1, the Green’s function for the Dirichlet eigenvalue problem on [0, 1] is given by

GD(x, y) = min(x, y) − xy = 1
2(x + y) − xy − 1

2 |x− y|

which clearly indicates that our kernel is a finite-rank perturbation of the Dirichlet kernel. Indeed,

K̃ = GD + TD

where GD denotes the integral operator corresponding to the Dirichlet kernel, and

TD : L2[0, 1] −→ L2[0, 1]
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Fig. 1. Reciprocal negative eigenvalues, λ0(ρ) = 1/μ(ρ, 1), 0 < ρ ≤ 1.

is defined by

TD f(x) :=
1∫

0

(
xy − 1

2 (x + y)
)

f(y) dy.

One can in fact calculate the eigenvalues of this perturbation. We proceed as in [2, pp. 271–276], [3, 
pp. 215–216]. Let u1(x) = x, and u2(x) = 1. Then, as in [3], TD = x∗

1(f)u1 + x∗
2(f)u2 with x∗

1(f) =∫ 1
0
(
y − 1

2
)
f(y) dy, x∗

2(f) =
∫ 1
0
(
−1

2y
)
f(y) dy. The nonzero eigenvalues of this finite rank operator are given 

by the nonzero eigenvalues of the matrix

A =
(
x∗

1(u1) x∗
1(u2)

x∗
2(u1) x∗

2(u2)

)

=

⎛
⎜⎝

∫ 1
0
(
y2 − 1

2y
)
y dy

∫ 1
0
(
y − 1

2
)

dy

−
∫ 1
0

1
2y

2 dy −
∫ 1
0

1
2y dy

⎞
⎟⎠

=
(

1/12 0
−1/6 −1/4

)
,

i.e., λ∗
1 = −1/4, λ∗

2 = 1/12, with corresponding eigenvectors v∗1(x) = −1, v∗2 = −(x − 1/2). TD is a rank 
2 correction of K̃ with one positive eigenvalue, and one negative eigenvalue, zero being an eigenvalue of 
infinite multiplicity. Our operator is nothing but a rank 1 perturbation of a positive operator. The same 
arguments of [41] can be applied to prove the uniqueness of a negative eigenvalue for K̃ .

Remark 2.9. As in Remark 2.8, the same can be said about the Green’s function for the Neumann eigenvalue 
problem on [0, 1], and our kernel. Since the Neumann kernel is given by

GN (x, y) = −max(x, y) + 1 (
x2 + y2) + 1 = −1 |x− y| − 1 (x + y) + 1 (

x2 + y2) + 1
,
2 3 2 2 2 3
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we conclude that

K̃ = GN + TN

where GN denotes the integral operator corresponding to the Neumann kernel, and

TN : L2[0, 1] −→ L2[0, 1]

is defined by

TN f(x) :=
1∫

0

(
1
2 (x + y) − 1

2
(
x2 + y2)− 1

3

)
f(y) dy.

We now calculate the eigenvalues of this perturbation.
Let u1(x) = 1

2 (x − x2), and u2(x) = 1. Then, as in [3],

TN = x∗
1(f)u1 + x∗

2(f)u2

with x∗
1(f) =

∫ 1
0 f(y) dy, x∗

2(f) =
∫ 1
0
( 1

2y −
1
2y

2 − 1
3
)
f(y) dy. The nonzero eigenvalues of this finite rank 

operator are given by the nonzero eigenvalues of the matrix

A =
(
x∗

1(u1) x∗
1(u2)

x∗
2(u1) x∗

2(u2)

)

=

⎛
⎜⎝

∫ 1
0

1
2
(
y − y2) dy

∫ 1
0 dy

∫ 1
0
(
−1

3 + 1
2y −

1
2y

2) 1
2
(
y − y2) dy

∫ 1
0
(
−1

3 + 1
2y −

1
2y

2) dy

⎞
⎟⎠

=
(

1/12 1
−7/360 −1/4

)
,

i.e., λ∗
1 = −5−

√
30

60 ≈ −0.17462, λ∗
2 = −5+

√
30

60 ≈ 0.00795. TN is also a rank 2 correction of K̃ with one 
positive eigenvalue, and one negative eigenvalue, zero being an eigenvalue of infinite multiplicity, and the 
same arguments of Remark 2.8 hold.

3. Distance matrices and matrices of negative-type

Much of the work of Section 2 can be emulated for the discrete case. We illustrate this in the one-
dimensional case, and relegate discussion in the higher dimensional setting for an upcoming paper.

For −1 ≤ x1 < · · · < xm ≤ 1, the matrix D = (|xi − xj |ρ) is called a distance matrix. These matrices 
are the subject of renewed interest in recent treatments [5,8,9,16,25] where D is identified as a matrix of 
negative-type. Such matrices have the property of exhibiting a unique simple positive eigenvalue. (Multiplying 
by the negative coefficient Cρ corresponds to the results of Section 2.) A matrix N = (Nij)m×m is said to 
be of negative-type whenever the associated quadratic form

m∑
i,j=1

Nijξiξj ≤ 0

for all choices ξi, i = 1, . . . , m, such that 
∑m

ξi = 0.
i=1
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We have traced the earliest works on these matrices to mid-1930s, in particular the papers of Schoenberg 
[49–51] and Szegő [56] where the existence and uniqueness of this positive eigenvalue is proved directly 
via various techniques. Schoenberg introduced his transformation technique to allow for higher dimensional 
considerations while Szegő relates the problem to Toeplitz forms. We also note that the existence and 
uniqueness of the positive eigenvalue follows from Perron–Frobenius theory; see in particular [19]. Much of 
this is reviewed and updated in the recent series of papers [8,9,25]. One can adapt the above propositions 
to the finite dimensional setting, also exploiting (3). We will illustrate this connection by showing that D
is of negative-type, and thus by virtue of [9], it possesses only one positive simple eigenvalue. We note that 
for 0 < ρ ≤ 1

m∑
i,j=1

|xi − xj |ρξi ξj =
Γ
( 1+ρ

2
)

Γ
(
1 − ρ

2
)

Γ
( 1

2
) ∑

i,j

ξi ξj

∞∑
n=0

(
1 − 2n

ρ

)
P (−ρ/2)
n (xi)P (−ρ/2)

n (xj)

=
Γ
( 1+ρ

2
)

Γ
(
1 − ρ

2
)

Γ
( 1

2
) ∞∑

n=0

(
1 − 2n

ρ

) ∑
i,j

P (−ρ/2)
n (xi)ξiP (−ρ/2)

n (xj)ξj

=
Γ
( 1+ρ

2
)

Γ
(
1 − ρ

2
)

Γ
( 1

2
) ∞∑

n=0

(
1 − 2n

ρ

) (∑
i

P (−ρ/2)
n (xi)ξi

)2

. (25)

Thus, when 
∑m

i=1 ξi = 0, 
∑m

i,j=1 |xi−xj |ρξi ξj ≤ 0. The matrix D is then of negative-type, and the existence 
and simplicity of a positive eigenvalue follows immediately from [9]. One can even adapt the above arguments 
of Section 2 without recourse to [9] or to Perron–Frobenius theory [19, Chap. XIII].

4. A non-local boundary value problem

In this section, we note that problem (6) reduces, when ρ = 1, with the appropriate shifts required when 
working on the interval [0, 1] as described in Remark 2.3, to the problem described in Corollary 6 from the 
article [48], which we recall:

Corollary 4.1. The eigenfunctions of the integral operator K̃ with the kernel K(x, y) = −|x − y|/2 for the 
unit interval Ω = (0, 1) satisfy the following Laplacian eigenvalue problem:

−φ′′ = λφ, x ∈ (0, 1);

φ(0) + φ(1) = −φ′(0) = φ′(1), (26)

which can be solved explicitly as follows.

• λ0 ≈ −5.756915 is the smallest (and the only negative) eigenvalue and is the solution of the following 
secular equation:

coth
√
−λ0

2 =
√
−λ0

2 . (27)

The corresponding eigenfunction is:

φ0(x) = c0 cosh
√
−λ0

(
x− 1

2

)
,

where c0 =
√

2
(
1 + sinh

√
−λ0√

)−1/2
≈ 0.7812598 is a normalization constant to have ‖φ0‖L2(Ω) = 1.
−λ0



L. Hermi, N. Saito / Appl. Comput. Harmon. Anal. 45 (2018) 59–83 71
• λ2m−1 = (2m − 1)2π2, m = 1, 2, . . ., and the corresponding eigenfunction is:

φ2m−1(x) =
√

2 cos(2m− 1)πx.

These are canonical cosines with odd modes.
• λ2m, m = 1, 2, . . ., is the solution of the secular equation:

cot
√
λ2m

2 = −
√
λ2m

2 , (28)

and the corresponding eigenfunction is:

φ2m(x) = c2m cos
√
λ2m

(
x− 1

2

)
,

where c2m =
√

2
{

1 + sin
√
λ2m√

λ2m

}−1/2
is a normalization constant.

Remark 4.2. We refer the reader to [48] for the motivation of considering such an integral operator K̃ , the 
description of the higher dimensional versions, and a variety of applications. Here, however, we would like 
to point out our new interpretation of the above eigenvalue problem that was not explicitly stated in [48]. 
The above problem turns out to be equivalent to the following problem defined for the whole real axis and 
then restricting the solutions to the unit interval Ω.

−ψ′′ =
{
λψ for x ∈ Ω;
0 for x ∈ R \ Ω,

with the continuity conditions at the boundary points: ψ(0−) = ψ(0+), ψ′(0−) = ψ′(0+), ψ(1−) = ψ(1+), 
ψ′(1−) = ψ′(1+). Then, φ(x) in Corollary 4.1 is χΩ(x)ψ(x).

Remark 4.3. The three cases of the eigenvalues in Corollary 4.1, i.e., λ0; {λ2m−1}; and {λ2m} can also be 
derived from a single equation:

(
eα/2 + e−α/2

)
·
(
eα/2 + e−α/2

eα/2 − e−α/2 − α

2

)
= 0,

where λ = −α2, and α ∈ C. Searching zeros of the first factor for α ∈ iR leads to λ2m−1 = (2m − 1)2π2

whereas doing so in the second factor for α ∈ R leads to (27) and for α ∈ iR leads to (28).

Remark 4.4. Both Radoux [43] and Liron [36] dealt with the secular equation tan β = β. They explicitly 
mention that this equation came from the one-dimensional Laplacian eigenvalue problem by setting λ = −α2, 
α = iβ, β ∈ R with the following Robin boundary condition:

φ(0) = 0, φ′(1) = φ(1).

Note that φ′(0) = φ(0), φ(1) = 0 lead to tan β = −β.
On the other hand, Radoux also dealt with the other secular equation cotβ = β whereas Liron 

treated the case involving cotβ = −β. Neither of them explained why they wanted to treat these sec-
ular equations and neither of them explicitly listed the corresponding boundary condition unlike the case 
of tan β = β. In fact, simple computations similar to those in [55, Sec. 4.3] suggest that cotβ = β is 
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associated with the Robin boundary conditions (φ′(0), φ′(1)) = (φ(0), 0) or (0, −φ(1)) and cotβ = −β is 
associated with (φ′(0), φ′(1)) = (0, φ(1)) or (−φ(0), 0). But one also needs to consider the hyperbolic ver-
sions, i.e., cothα = α, in order to fully solve the eigenvalue problems with the Robin boundary conditions 
(φ′(0), φ′(1)) = (0, φ(1)) or (−φ(0), 0). Note that these Robin boundary conditions are all decoupled, i.e., 
local. To the best of our knowledge, [48] is the first to explicitly describe the unusual non-local boundary 
condition (26).

Remark 4.5. One can exploit the well-known trace formula [21,22,39]

∞∑
n=0

1
λp
n

=
1∫

0

Kp(x, x) dx, (29)

where Kp(x, y) denotes the pth iterated kernel of K(x, y), to determine the first few expressions for the 
Rayleigh function at hand. Indeed, one obtains at once

∞∑
n=0

1
λn

=
1∫

0

K(x, x) dx = 0,

and

∞∑
n=0

1
λ2
n

=
1∫

0

K2(x, x) dx = 1
4

1∫
0

(
1
3 − x + x2

)
dx = 1

24 .

However this task becomes tedious for p ≥ 3, and we propose to obtain these power sums without recourse 
to iterated kernels, but by exploiting properties of the transcendental equations of which the eigenvalues 
are roots. Note that this agrees with (10) for (ρ, a) = (1, 1/2).

5. Sum of the reciprocals of the eigenvalues of Corollary 4.1

In light of Remark 4.5, we want to show the following directly.

Theorem 5.1. Let {λn}∞n=0 be the eigenvalues of the boundary problem in Corollary 4.1, and let K(x, y) =
−|x − y|/2. Then, they satisfy the following trace formula:

∞∑
n=0

1
λn

=
1∫

0

K(x, x) dx = 0.

Proof. Let us group the eigenvalues into the three groups as indicated in Corollary 4.1:

∞∑
n=0

1
λn

= 1
λ0

+
∞∑

m=1

1
λ2m−1

+
∞∑

m=1

1
λ2m

. (30)

Now, the second term of the sum is:

∞∑ 1
λ2m−1

=
∞∑ 1

(2m− 1)2π2 (31)

m=1 m=1
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= 1
π2

∞∑
m=1

1
(2m− 1)2

= 1
π2

( ∞∑
m=1

1
m2 −

∞∑
m=1

1
(2m)2

)

= 1
π2 · 3

4

∞∑
m=1

1
m2

= 1
π2 · 3

4 · π
2

6 = 1
8 ,

where we used the famous Basel problem identity 
∑∞

m=1 1/m2 = π2/6 resolved by Euler [17] (see also 
[4,14,22,59]).

As for the last term of (30),

∞∑
m=1

1
λ2m

= 1
4

∞∑
m=1

1
x2
m

, (32)

where xm :=
√
λ2m/2 > 0 is the mth zero of the following transcendental equation; see (28):

cotx = −x. (33)

To proceed to compute (32) explicitly, let us analyze (33) more deeply. Following Radoux [43], let us first 
consider the following function and its Maclaurin series expansion:

(cotx + x) · sin x = cosx + x sin x (34)

=
(

1 − x2

2! + x4

4! − · · ·
)

+ x ·
(
x− x3

3! + x5

5! − · · ·
)

= 1 + x2

2 −
(

1
3! −

1
4!

)
x4 +

(
1
5! −

1
6!

)
x6 − · · ·

= 1 + x2

2 − 3
4!x

4 + 5
6!x

6 − · · · + (−1)k−1 2k − 1
(2k)! x2k + · · ·

Now, the function cosx +x sin x can also be expanded into the following infinite product in a manner similar 
to what Euler [17] and Rayleigh [44] did (see also [4,14,22,52,59]):

cosx + x sin x =
(

1 + x2

α2

) ∞∏
m=1

(
1 − x2

x2
m

)
, (35)

where α ≈ 1.19967864 satisfies α = cothα.
In other words, x = ±iα are the two (and only) pure imaginary roots of cosx + x sin x. This can be 

verified as follows. Let us seek for the pure imaginary zeros of cosx +x sin x by setting x = iy, y ∈ R. Then, 
we have

cosx + x sin x = cos(iy) + iy sin(iy)

= ei(iy) + e−i(iy)

2 + iy ei(iy) − e−i(iy)

2i

= ey + e−y

− y
ey − e−y

= 0,
2 2
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which is equivalent to cosh y − y sinh y = 0, i.e.,

y = coth y. (36)

The justification for the product formula (35) follows considerations similar to those for example in [33, 
Chap. 1]; see also [24]. From (35), we have

cosx + x sin x =
∞∏

m=1

(
1 − x2

x2
m

)
+ x2

α2

∞∏
m=1

(
1 − x2

x2
m

)
(37)

= 1 +
(

1
α2 −

∞∑
m=1

1
x2
m

)
x2 + · · ·

Equating the corresponding coefficients of the x2 terms of (34) and (37), we have

∞∑
m=1

1
x2
m

= 1
α2 − 1

2 .

Hence, inserting this to (32), in turn, (30) together with (31) gives us

∞∑
n=0

1
λn

= 1
λ0

+
∞∑

m=1

1
λ2m−1

+
∞∑

m=1

1
λ2m

= 1
λ0

+ 1
8 + 1

4

∞∑
m=1

1
x2
m

= 1
λ0

+ 1
8 + 1

4

(
1
α2 − 1

2

)

= 1
λ0

+ 1
4α2

= 0,

since λ0 = −4α2, which can be verified by identifying (27) with the equation (36) via α =
√
−λ0/2. �

6. Sums of higher powers of the reciprocals of the eigenvalues of Corollary 4.1

Furthermore, we can establish the following identities:

Theorem 6.1. Let {λn}∞n=0 be the eigenvalues of the boundary value problem specified in Corollary 4.1. Let 
Kp(x, y) be the pth iterated kernel of K(x, y) = −|x − y|/2. Then, we have

∞∑
n=0

1
λp
n

=
1∫

0

Kp(x, x) dx = 1
4p

(
S2p + (−1)p

α2p

)
+ 4p − 1

2 · (2p)! |B2p|, (38)

where

S2p :=
∞∑ 1

x2p =
∞∑ (

4
λ2m

)p

,

m=1 m m=1
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and B2p is the Bernoulli number, which is defined via the generating function:

x

ex − 1 =
∞∑

n=0

Bn

n! x
n.

Moreover, S2p satisfies the following recursion formula:

n+1∑
�=1

(−1)n−�+1 (2 (n− � + 1) − 1)
(2 (n− � + 1))!

{
S2� + (−1)�

α2�

}
= (−1)n

2(2n)! . (39)

Proof. The first equality in (38) connecting the sum of the powers of the eigenvalues and the trace of the 
iterated kernel is the standard fact and its proof can be found in, e.g., [39, Sec. 15]. Now, to prove the 
second equality, we have

∞∑
n=0

1
λp
n

= 1
λp

0
+

∞∑
m=1

1
λp

2m−1
+

∞∑
m=1

1
λp

2m

=
(

−1
4α2

)p

+ 1
π2p

∞∑
m=1

1
(2m− 1)2p + 1

4p
∞∑

m=1

1
x2p
m

= (−1)p

4pα2p + 1
π2p

(
1 − 1

22p

) ∞∑
m=1

1
m2p + 1

4pS2p

= 1
4p

{
S2p + (−1)p

α2p + 4p − 1
π2p

∞∑
m=1

1
m2p

}

= 1
4p

(
S2p + (−1)p

α2p

)
+ 4p − 1

2(2p)! |B2p|,

where we used the following well-known formula first obtained by Euler (see, e.g., [4,14,59]) to derive the 
last equality:

∞∑
m=1

1
m2p = (2π)2p

2(2p)! |B2p|.

Now, to prove the recursion formula (39), we follow Radoux [43] again. Taking the logarithm of the 
product formula (35) followed by differentiation with respect to x, we have

x cosx
cosx + x sin x

=
2x
α

1 + x2

α2

+
∞∑

m=1

−2x
x2
m

1 − x2

x2
m

,

which leads to

1
2 cosx = (cosx + x sin x) ·

{
1
α2

1
1 + x2

α2

−
∞∑

m=1

1
x2
m

1
1 − x2

x2
m

}
.

Expanding each term into the Maclaurin series or the geometric series, we have

1
2

∞∑ (−1)nx2n

(2n)! =
( ∞∑ (−1)k−1(2k − 1)

(2k)! x2k

)
·
( ∞∑(

(−1)�

α2�+2 − S2�+2

)
x2�

)
.

n=0 k=0 �=0



76 L. Hermi, N. Saito / Appl. Comput. Harmon. Anal. 45 (2018) 59–83
Hence, comparing the coefficients of the x2n term, we have:

(−1)n

2(2n)! =
n∑

k=0

(−1)n−k−1(2n− 2k − 1)
(2n− 2k)!

(
(−1)k

α2k+2 − S2k+2

)

=
n+1∑
�=1

(−1)n−�+1(2(n− � + 1) − 1)
(2(n− � + 1))!

(
S2� + (−1)�

α2�

)
via setting � = k + 1,

which is (39). �
As above, Ap :=

∑∞
n=0

1
λp
n
. Here are the first few sums:

A1 = 0; A2 = 1
24; A3 = − 1

240 , . . .

7. The generating function and obtaining recursive formulas all at once

In this section, we show how to obtain the recursion formulas for the Ap’s at once and without recourse 
to the knowledge of Bernoulli numbers. The main result is the following theorem.

Theorem 7.1. Let {λn}∞n=0 be the eigenvalues of the boundary problem in Corollary 4.1, and let Kp(x, y) be 
the pth iterated kernel of K(x, y) = −|x − y|/2. Then,

Ap =
∞∑

n=0

1
λp
n

=
1∫

0

Kp(x, x) dx

satisfies the recursion formula:

4Ap+1 +
p−1∑
k=1

(−1)k
(

2
(2k)! −

1
(2k − 1)!

)
Ap−k+1 = (−1)p+1p

(2p + 1)! , p = 1, 2, . . . ,

with A1 = 0.

Proof. From the statement of Corollary 4.1 and (35), it is clear that

(cosx + x sin x) · cosx =
(

1 + x2

α2

) ∞∏
m=1

(
1 − x2

x2
m

)

where λ0 = −4α2 as defined above and where we set xk =
√
λk/2, for k = 1, 2, . . . . One can again justify 

this product formula as in Knopp [33, Chap. 1] or any standard Complex Analysis textbook which treats 
the Weierstrass Factor Theorem.

In terms of the eigenvalues one has, after some trigonometric substitutions,

1 + cosx
2 + x

4 sin x =
(

1 − x2

λ0

) ∞∏
m=1

(
1 − x2

λm

)
. (40)

Expanding the LHS into a Maclaurin series and equating lead to

1 +
∞∑

(−1)k
(

1
2(2k)! −

1
4(2k − 1)!

)
x2k = 1 −

( ∞∑ 1
λk

)
x2 +

⎛
⎝ ∞∑ 1

λkλj

⎞
⎠x4 − . . . .
k=1 k=0 j,k=0
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With αk := (−1)k
(

1
2(2k)! −

1
4(2k−1)!

)
denoting the coefficients of the Maclaurin expansion, one can recourse 

to Speigel’s formulas [52,21]

∞∑
k=0

1
λk

= −α1

∞∑
k=0

1
λ2
k

= α2
1 − 2α2

∞∑
k=0

1
λ3
k

= 3α1α2 − 3α3 − α3
1

∞∑
k=0

1
λ4
k

= α4
1 − 4α2

1α2 + 2α2
2 + 4α1α3 − 4α4

to obtain, as above,

A1 =
∞∑
k=0

1
λk

= 0

A2 =
∞∑
k=0

1
λ2
k

= 1
24

A3 =
∞∑
k=0

1
λ3
k

= − 1
240

A4 =
∞∑
k=0

1
λ4
k

= 41
40320

A5 =
∞∑
k=0

1
λ5
k

= − 107
725760

A6 =
∞∑
k=0

1
λ6
k

= 4559
159667200 , etc.

One can generate a recursion formula for the Ap sequence employing what Ismail and Muldoon [24]
call, properly, the “Euler–Rayleigh” technique. The logarithmic derivative of the entire function f(z) =
1+cos z

2 + z
4 sin z appearing in (40) gives,

−sin z

4 + z cos z
4

1 + cos z
2 + z sin z

4

= − 2z
λ0 − z2 − 2

∞∑
k=1

z

λk − z2

Or, substituting λ0 = −4α2 and λk = 4x2
k, and after some manipulation,

−sin 2z
4 + z cos 2z

2
1 + cos 2z + z sin 2z = z

α2 + z2 −
∞∑
k=1

z

x2
k − z2 =: −zG(z). (41)
2 2
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The function

G(t) = − 1
α2 + t2

+
∞∑
k=1

1
x2
k − t2

is known as the generating function of Ap. That is, one can obtain the needed recursion formula for this 
sequence from consideration of this function. To simplify notation, we let M� := 4�+1A�+1. It is then clear 
that

M�−1 = (−1)�

α2� +
∞∑

m=1

1
x2�
m

.

Moreover, a straightforward calculation leads to

∞∑
�=0

M�t
2� = G(t).

By (41), one then obtains

sin 2t
4t − cos 2t

2 =
(

1 + cos 2t
2 + t

2 sin 2t
) ( ∞∑

�=0

M�t
2�

)
.

Expanding into power series leads to

∞∑
n=1

(−1)n+1 4nn
(2n + 1)! t

2n =
(

1 +
∞∑
k=1

(−1)k
(

22k−1

(2k)! − 22k−2

(2k − 1)!

)
t2k

) ( ∞∑
�=0

M�t
2�

)
.

From which one obtains M0 = 0, and

∑
k+�=p

(−1)k
(

22k−1

(2k)! − 22k−2

(2k − 1)!

)
M� = (−1)p+14pp

(2p + 1)! .

In terms of the Ap’s one has, A1 = 0, as before,

4Ap+1 +
p−1∑
k=1

(−1)k4−k+1
(

22k−1

(2k)! − 22k−2

(2k − 1)!

)
Ap−k+1 = (−1)p+1p

(2p + 1)! ,

which is the same as the desired statement of the theorem. �
Remark 7.2. We note that the recursion generates the following values A2 = 1/24, A3 = −1/240, A4 =
41/40320, A5 = −107/725760, etc., corresponding to what we obtained differently in Section 6.

Remark 7.3. As in [24], one can exploit the formulas generated for the Ap’s to obtain

−|A2m−1|−1/(2m−1) < λ0 < −A
−1/(2m)
2m (42)

and

A2m/A2m+1 < λ0 < A2m−1/A2m, (43)
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Table 1
Lower and upper bounds for the fundamental eigenvalue 
for ρ = 1 case for the root form (42).
m Lower bound Upper bound
1 −∞ −4.89897949
2 −6.21446501 −5.59995022
3 −5.83823874 −5.71993402
4 −5.77606747 −5.74734325
5 −5.76193721 −5.75429713
6 −5.75830922 −5.75617178
7 −5.75731625 −5.75669839
8 −5.75703353 −5.75685075
9 −5.75695083 −5.75689582

10 −5.75692616 −5.75690938
11 −5.75691868 −5.75691351
12 −5.75691639 −5.75691478
13 −5.75691568 −5.75691518
14 −5.75691546 −5.75691530
15 −5.75691539 −5.75691534

Table 2
Lower and upper bounds for the fundamental eigenvalue 
for ρ = 1 case for the rational form (43).
m Lower bound Upper bound
1 −10 0
2 −6.89719626 −4.09756098
3 −6.12462755 −5.16341303
4 −5.88003088 −5.55023389
5 −5.79858435 −5.68599065
6 −5.77106766 −5.73271224
7 −5.76172760 −5.74867218
8 −5.75855232 −5.75410976
9 −5.75747228 −5.75596068

10 −5.75710484 −5.75659053
11 −5.75697983 −5.75680484
12 −5.75693729 −5.75687776
13 −5.75692282 −5.75690257
14 −5.75691790 −5.75691101
15 −5.75691622 −5.75691388

for m = 1, 2, 3, . . .. These inequalities provide strict improvable bounds for the unique negative root of the 
transcendental equation (27) and another way of obtaining it. As it is clear from Table 1 and Table 2, the 
root form converges faster. These bounds agree with the λ0 value found numerically in the earlier paper 
[48], quoted in Corollary 4.1, and we provide a new fast way, in the tradition of Rayleigh, to compute it.

8. Higher dimensional considerations

One of the motivations that led to the non-local BVP considered in [48] is that one is able to read the 
spectral data (eigenvalues, eigenfunctions) by discretizing then computing integrals involving the kernel 
K(x, y) over a domain Ω ⊂ R

d without imposing conditions on ∂Ω. For the two-dimensional case, K(x, y)
takes the form of a logarithmic kernel

K(x,y) = − 1
2π log ‖x− y‖. (44)

Troutman [58] gave an analytical proof for the existence of at most one negative eigenvalue and gave an 
upper bound estimate for it in terms of the area and transfinite diameter of Ω. (The transfinite diameter is a 
measure of the compactness of a domain; see [58] for the definition.) In [28], Kac offers a probabilistic proof 
of this fact (see also [10,53,54] and the generalization in [57]). Related works are also offered in [7,41,46].
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With Ap denoting the power sum in (29) and the iterated integrals computed numerically, (42) and (43)
provide a practical and improvable means of computing this negative eigenvalue for a specific domain. When 
the transfinite diameter of Ω is less than or equal to one, this negative eigenvalue disappears. This is the 
case of the unit disk. In [48], it was found that the eigenvalues of the nonlocal BVP associated with the 
kernel (44) are of two types, j2

0,n, with multiplicity 3, and j2
m−1,n with multiplicity 2, for m = 2, 3, . . ., and 

n = 1, 2, . . .. Based on the values of the Rayleigh function σ2p(ν) defined in (12), one can generate for the 
first few power sums. While 

∑∞
k=1 1/λk is easily seen to diverge, we have

∞∑
k=1

1
λ2
k

= 3σ4(0) + 2
∞∑
ν=1

σ4(ν) = 3
32 + 1

8

(
π2

6 − 3
2

)
.

Similarly

∞∑
k=1

1
λp
k

= 3σ2p(0) + 2
∞∑
ν=1

σ2p(ν)

can be carried out explicitly for p = 3, 4, . . ., but there may not be an obvious recursion scheme.
When the kernel takes the form

K(x,y) = ‖x− y‖ρ (45)

for 0 < ρ ≤ 1 on Ω ⊂ R
2 one can prove the existence of a negative eigenvalue based on the formula (3)

independently of classical proofs based on the Schoenberg transformation [49–51]. Renewed interest focuses 
on the discrete case, namely that of nature of the spectrum of distance matrices [8,9] (see also [16,25]
where the density of states is treated and its limiting distribution when the size of the matrix goes to ∞ is 
determined). We describe the procedure for

Ω ⊂ {x ∈ R
2, such that ‖x‖ < 1}.

We first note the identity

‖x‖ρ = 1
Cρ

π∫
−π

|x · ξ|ρ dσ(ξ) (46)

where dσ(ξ) = dθ denotes the element of arclength, and this time

Cρ :=
π∫

−π

| cos θ|ρ dθ =
2Γ

(1
2
)

Γ
( 1+ρ

2
)

Γ
(
1 + ρ

2
) > 0.

Combining (46) and (3), one obtains

‖x− y‖ρ =
Γ
(
1 + ρ

2
)

2Γ
(1

2
)

Γ
( 1+ρ

2
)

π∫
−π

|x · ξ − y · ξ|ρ dσ(ξ)

= Dρ

∞∑
n=0

(
1 − 2n

ρ

) π∫
P

(
− ρ

2
)

n (x · ξ)P
(
− ρ

2
)

n (y · ξ) dσ(ξ)

−π
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where

Dρ :=
Γ
(
1 + ρ

2
)

Γ
(
1 − ρ

2
)

2π .

It then becomes transparent how to proceed in the case of the quadratic form with kernel (45), viz.,

∫
Ω

∫
Ω

K(x,y)f(x)f(y) dxdy = Dρ

∞∑
n=0

(
1 − 2n

ρ

) π∫
−π

⎛
⎝∫

Ω

f(x)P
(
− ρ

2
)

n (x · ξ) dx

⎞
⎠

2

dσ(ξ).

When 
∫
Ω f(x) dx = 0, the quadratic form is such that

∫
Ω

∫
Ω

K(x,y)f(x)f(y) dxdy ≤ 0.

One can even introduce the notion of a kernel of negative-type. In the discrete case, the 2-dimensional 
version of (25), when {xi} are confined to the unit disk, takes the form

∑
i,j

‖xi − xj‖ρtitj = Dρ

∞∑
n=0

(
1 − 2n

ρ

) π∫
−π

(∑
i

tiP
(
− ρ

2
)

n (xi · ξ)
)2

dσ(ξ).

When 
∑

ti = 0, the quadratic form is such that

∑
i,j

‖xi − xj‖ρtitj ≤ 0.

Thus the matrix (‖xi − xj‖ρ) is also of negative-type, and the results of [9] can be used to complete the 
proof for the existence, uniqueness, and simplicity of a positive eigenvalue.
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