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Abstract

The eigenvalues of the Dirichlet Laplacian are used to generate three different sets of features for shape recognition and classification
in binary images. The generated features are rotation-, translation-, and size-invariant. The features are also shown to be tolerant of noise
and boundary deformation. These features are used to classify hand-drawn, synthetic, and natural shapes with correct classification rates
ranging from 88.9% to 99.2%. The classification was done using few features (only two features in some cases) and simple feedforward
neural networks or minimum Euclidian distance.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It is very possible that two or more persons have simi-
lar silhouettes. But what is the probability that two persons
chosen randomly have the same silhouette? The answer is
practically zero, and thus seeing the silhouette of an acquain-
tance in the dark one can in general tell who that person is. It
was also proven mathematically that two differently shaped
drums can give similar sounds. But what is the probabil-
ity that two randomly chosen drums give the same sound?
The answer is again practically zero, and thus the following
question becomes natural: knowing the sound of a drum, de-
termined by the eigenvalues of the Dirichlet Laplacian (that
is the frequencies of the fixed membrane assuming the shape
of this drum), can one narrow down its shape? The purpose
of this paper is to show that the eigenvalues of the Dirichlet
Laplacian can indeed be used as a reliable feature descriptor
for shapes.

Shape analysis is a key component in object recogni-
tion, matching, registration and analysis. A shape description
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method generates a feature vector that will (or at least
attempt to) uniquely characterize the silhouette of the
object. This feature vector should, in many cases, be
translation-, rotation-, and size-invariant. Depending on
the application at hand, a certain level of robustness and
tolerance to shape deformation and noise is also required.
Shape recognition has greatly benefited from the classi-
cal theories of human visual perception such as [1–4] and
more modern ones [5–9]. Those theories have inspired
several methods for shape analysis that can be classified
in several ways [10]. For example, a shape recognition
technique is either numeric or non-numeric, depending on
the nature of the output of the shape analysis. While most
methods produce a vector feature to describe the shape,
a few methods such as the medial axis transform (MAT)
[11] produces another image instead. A shape recognition
technique can also be classified as either information pre-
serving or non-preserving. One can recover the shape of
an information preserving method, while a non-preserving
method may only allow for a partial recovery of the actual
shape. However, by far the most popular classification [12]
of shape techniques divides the different methods into two
groups: boundary methods and global methods. Boundary
methods treat the boundary or exterior points of the shape,
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while global methods deal with the interior points of the
object.

There is no clear consensus which method or category
of methods works best. Each method seems to give good
results in some applications and fail in some others or in
presence of noise. The method that we present in this paper
is a numerical, non-preserving global method that attempts
to use the ratios of eigenvalues of the Dirichlet Laplacian
operator of a certain shape as the feature vector.

Following a brief mathematical overview in the next sec-
tion relating shapes to eigenvalues of the Dirichlet Laplacian,
we describe in Section 3 how we compute the eigenvalues
of a given shape. In Section 4, we explain how we use these
eigenvalues to generate three different features sets that are
rotation-, translation-, and size-invariant and we probe their
stability, their tolerance to noise and boundary deformation,
and their ability to separate shapes from different classes. In
Section 5, we present the results of our shape recognition
experiments.

2. Eigenvalues of the Dirichlet Laplacian

“Can one hear the shape of a drum?” is a colorful old
question asked by Kac [13] (see also the equally entertain-
ing [14]) in a much-quoted 1966 paper and answered rela-
tively recently by Gordon et al. [15]. Unfortunately the an-
swer is negative, which means that in general, knowing the
key modes of vibration of a drum is not enough to determine
its shape. However, much can be said in the affirmative for
some cases. That is, with additional restrictions on the type
of drum, one can hear its shape. Mathematically speaking,
given a bounded planar domain �, the sequence of eigen-
values

0 < �1 < �2 ��3 � · · · ��k � · · · → ∞ (1)

of the partial differential equation

�u + �u = 0 in � (2)

with Dirichlet boundary condition u=0 on its boundary ��
is not enough to tell us what is exactly the domain �. Here,
�=�2/�x2 +�2/�y2 is the Laplacian operator. Perhaps this
is the reason why eigenvalues of the Dirichlet Laplacian did
not find their way to shape recognition except only recently
[16] despite the large body of engineering and mathematical
literature on the computational aspects of the fixed mem-
brane problem. See Refs. [17–34] to list just a few.

Since the celebrated work of Payne–Pólya–Weinberger
[35] (see also Refs. [37,38]) we now know a variety of uni-
versal inequalities for the eigenvalues problem (2) which do
not depend explicitly on the shape or size of the underlying
domain. For instance

�m+1 − �m �2

∑m
i=1 �i

m
for m = 1, 2, 3, . . . , (3)

which was proved back in 1956. Note that as a result of
the natural ordering of the eigenvalues (1) and (3) one can
conclude that

�m+1

�m

�3 for m = 1, 2, 3, . . . . (4)

There is also the inequality of Hile and Protter [39] which
states

m∑
i=1

�i

�m+1 − �i

� m

2
. (5)

These two inequalities were strengthened in 1991 by Yang
[40] (see also Refs. [37,38]) to

m∑
i=1

(�m+1 − �i )
2 �2

m∑
i=1

�i (�m+1 − �i ). (6)

A weaker, but explicit, form of this last inequality, still
stronger than both (3) and (5) states

�k+1 �3
1

k

k∑
j=1

�j . (7)

These eigenvalues also exhibit a variety of isoperimetric
properties. For instance, the Faber–Krahn inequality [41]
states

�1 �
�2j2

0,1

|�| , (8)

where j0,1=2.4048 . . . is the first zero of the Bessel function
J0(x) [42], and |�| is the area of the vibrating drum. There
is also the beautiful improvement of Eq. (4) (for m = 1) by
Ashbaugh–Benguria [37,38,43],

�2

�1
�

j2
1,1

j2
0,1

= 2.53873 . . . . (9)

Here j1,1=3.83171 . . . is the first zero of the Bessel function
J1(x). Equality is attained in Eqs. (8) and (9) if and only
if the underlying domain � is a disk. These inequalities are
called isoperimetric in parallel with the classical property
of the circle being the figure assuming the largest area for a
fixed perimeter. Stability results for these inequalities were
proved by Melas [44]. In the colorful language of Kac and
followers, the result of Melas states that one can hear a
convex drum if its first eigenvalue, or ratio of the first and
second eigenvalues, are close to those of a disk. In this case,
the drum must be close to a disk.

Explicit formulas to compute the eigenvalues of simple
particular shapes do exist. For example, the eigenvalues of
a square with side L are given by

�nm = �2

L2 (n2 + m2) for n, m = 0, 1, 2, . . . . (10)
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For instance, when L=�, the first few eigenvalues (counting
multiplicity) are: 2, 5, 5, 8, 10, 10, 13, 13, 17, . . . . For more
complex shapes, numerical approximation methods are used.
The inequalities listed above can be used to check the cor-
rectness of the approximation. We describe the method we
used to compute the eigenvalues of a certain shape in the
next section.

A key property of the eigenvalues of the Dirichlet
Laplacian is called domain monotinicity. It states the
following:

If �1 ⊂ �2 then �k(�1)��k(�2).

In physical terms, this means a smaller domain gives rise to
a higher pitch.

Another key property (see Chapter 5 of Ref. [45]) states
the following:

�k(��) = �k(�)

�2 , (11)

where � > 0 and �� is a scaling by � of the underlying
domain �. This means that

�k(��)

�m(��)
= �k(�)

�m(�)
. (12)

It is also well-known that the eigenvalues of the Dirich-
let Laplacian are preserved if the underlying domain � is
translated or rotated (for a proof of this property see Refs.
[16,45]). These properties make eigenvalues very useful as
features in recognizing shapes of different sizes and orien-
tations. For example, Zuliani et al. [16] used eigenvalue-
based curve descriptors in a retrieval system from a multi-
view curve dataset consisting of 40 curves imaged under 14
different points of view. Their system had a relatively high
recall rate (86%) and was shown to be tolerant of some curve
distortion. Their retrieval system was very simple using the
Euclidean distance as the similarity measure.

3. Computation of the eigenvalues

The 1950s saw also a confluence of theoretical studies of
finite difference methods (FDM) for estimating the eigen-
values of Eq. (2). The oldest and most natural finite differ-
ence scheme [30] is to replace Eq. (2) with the recursive
formula

ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij

h2 = −�uij . (13)

Here the domain is cut into squares of side h, uij is the
value of the eigenfunction corresponding to � at the lat-
tice point (ih, jh). This scheme can be put in the form
[16]

Lu = �u,

where

L = 1

h2

⎡
⎢⎢⎣

A In 0 · · · 0
In A In · · · 0
...

...
. . .

...
...

0 0 0 · · · A

⎤
⎥⎥⎦

n2×n2

and

A =

⎡
⎢⎢⎢⎢⎣

−4 1 0 · · · 0
1 −4 1 · · · 0
0 1 −4 · · · 0
...

...
. . .

...
...

0 0 0 · · · −4

⎤
⎥⎥⎥⎥⎦

n×n

.

Here, n is inversely proportional to h and accounts for the
size of the domain �. The eigenvalues �′

1, �
′
2, . . . of this

finite dimensional problem provide, in general [18,19,29],
lower bounds for �1, �2, . . . (respectively).

Two alternative schemes were also developed by Pólya
[29,30,33,34]. These schemes take the general form

Lij u = �Rij u.

In the first scheme, Lij u and Riju are given by

Lij u = 1

h2 (ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij ),

Rij u = − 1
12 (6uij + ui+1,j + ui,j+1 + ui−1,j

+ ui−1,j−1 + ui,j−1). (14)

In the second scheme, Lij u and Rij u take the forms,

Lij u = 1

3h2 (ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 8uij ),

Rij u = − 1
36 (16uij + 4ui+1,j + 4ui,j+1 + 4ui−1,j

+ 4ui,j−1 + ui+1,j+1 + ui+1,j−1

+ ui−1,j+1 + ui−1,j−1). (15)

The schemes described by Eqs. (14) and (15) yield upper
bounds for �1, �2, . . . . However, as h → 0, the eigenvalues
approximated using methods (13), (14) and (15) converge
to the theoretical ones (see Table 1 for the case of a square).
Method (13) is computationally simpler and faster and hence
was chosen for our purposes.

There are alternative schemes using the finite elements
method (FEM) originating in the work of Courant in the
1940s and others [25,31,46]. Another well elaborate scheme
called the method of intermediate problems of Aronszajn
and Weinstein provides different estimates for these eigen-
values (see Ref. [47] where many numerical examples are
exhibited). The works of Kuttler and Sigillito, together and
with other co-authors, provide good reviews of the use of the
difference method in determining eigenvalues [25,27,28].
The books [32,48,49] provide comprehensive references for
the finite-difference method and its many applications. We
hope to use some of these schemes for the purposes of shape
recognition in future work.
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Table 1
Comparing the first nine eigenvalues of a square of side L = � using methods (13), (14), and (15)

Exact 5 × 5 mesh 10 × 10 mesh 20 × 20 mesh

(13) (14) (15) (13) (14) (15) (13) (14) (15)

�1 2 1.95 2.15 2.05 1.99 2.04 2.01 2.00 2.01 2.00
�2 5 4.62 5.80 5.40 4.89 5.24 5.12 4.97 5.07 5.03
�3 5 4.62 5.81 5.40 4.89 5.24 5.12 4.97 5.07 5.03
�4 8 7.30 10.33 8.75 7.78 8.69 8.22 7.94 8.19 8.06
�5 10 8.27 12.84 11.97 9.46 10.85 10.57 9.85 10.23 10.15
�6 10 8.27 12.84 11.97 9.46 10.86 10.57 9.85 10.24 10.15
�7 13 10.94 18.76 15.32 12.36 14.73 13.67 12.82 13.48 13.18
�8 13 10.94 18.76 15.32 12.36 14.75 13.67 12.82 13.48 13.18
�9 17 11.92 23.96 21.89 15.33 19.30 18.81 16.53 17.64 17.48

4. Feature generation and evaluation

For a given binary image �, we consider extracting three
sets of features based on the eigenvalues described above.
They are defined by

F1(�) ≡
{(

�1

�2
,
�1

�3
,
�1

�4
, . . . ,

�1

�n

)}
, (16)

F2(�) ≡
{(

�1

�2
,
�2

�3
,
�3

�4
, . . . ,

�n−1

�n

)}
, (17)

and

F3(�)

≡
{(

�1

�2
− d1

d2
,
�1

�3
− d1

d3
,
�1

�4
− d1

d4
, . . . ,

�1

�n

− d1

dn

)}
,

(18)

where n counts the number of features we wish to use for
our recognition scheme, and d1 < d2 �d3 � · · · �dn are the
first n eigenvalues (counting multiplicity) of a disk. All three
feature sets are obviously size-invariant by virtue of Eq. (12).
The F1 features are the same as those used by Zuliani et
al. [16] in their retrieval system. The values in F1(�) and
F2(�) are in the unit cube, and those in F3(�) are between
−1 and 1—a useful range when using neural networks. This
latter descriptor is a good measure of the deviation of � from
a disk. The optimal number of features n depends on the
problem being addressed and is determined experimentally.

To test the consistency of these feature sets for a given
image class, their tolerance to noise and change in bound-
ary shape, and their capability to separate different image
classes, we conducted a set of experiments with simple com-
puter generated images. We report on the results of these
experiments in the following subsections.

4.1. Consistency and stability of features

A good feature set should be consistent for a given class.
A particular feature should have a fairly constant value for
all images from a particular class. The consistency of a fea-
ture can be measured using its standard deviation from the

mean for that image class. To test the consistency of the
three feature sets we are using, we conducted two sets of
experiments. A description of these experiments follows.

4.1.1. Simple shapes experiment
We generated 100 binary images each from five classes:

disks, ellipses, rectangles, triangles, and squares. These im-
ages had random sizes and orientations (see Figs. 1(a)–5(a)).
Note that some images were so small that it is hard, even
for a human, to distinguish them apart. The eigenvalues of
these images were computed and n = 20 features from each
set F1, F2, and F3 were generated. For each feature descrip-
tor, the average and standard deviation over the 100 im-
ages from each class were computed and are shown in Figs.
1(b)–5(b). Note that, in all cases, the F2-curve is never be-
low 1/2.53873 . . . ≈ 0.4—this is, of course, a reflection of
the theoretical result (4) (see also Eq. (9)). As can be seen
from these figures, the standard deviations for all feature sets
are fairly small. This is a good indicator of the stability and
consistency of the feature sets with regard to size and ori-
entation. The small variations are mainly due to the digital
nature of the images (pixels) and to the rounding errors in
the calculation/approximation of the eigenvalues. Some of
the shapes appear to have, on average, similar feature val-
ues (for example, the ellipses’ and squares’ features shown
in Figs. 1(b) and 2(b), respectively). However, there was a
consistent small difference between the two feature sets that
allowed even a simple neural network classifier (described
later in this section) to distinguish them apart more than
99% of the time.

4.1.2. Petal images experiment
We generated a number of binary images using the polar

equation

r = a + � cos � + cos n�. (19)

The value of � varies from 0 to 2�. This equation generates
images that look like flowers with n petals. The value of
a determines the size of the interior of the image and �
is a number between −1 and 1 that acts as a perturbation
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Fig. 1. (a) Images of 100 random ellipses and (b) the average and standard deviation of the first 20 features from F1, F2, and F3.
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Fig. 2. (a) Images of 100 random rectangles and (b) the average and standard deviation of the first 20 features from F1, F2, and F3.
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Fig. 3. (a) Images of 100 random triangles and (b) the average and standard deviation of the first 20 features from F1, F2, and F3.

parameter and affects the appearance of the petals. When
� = 0, the petals are perfectly identical. As � deviates from
zero, some of the petals get smaller and the others get bigger.
However, the number of petals does not change as long as
−1���1. When � is outside this range, the number of petals

changes and the shape of the generated image is drastically
altered. For this experiment we generated two sets of 100
images each. The first set of images was generated by setting
a = 2, n = 4, and letting � vary from 0 to 0.99. The second
set of images were generated by setting a = 2, n = 5, and
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Fig. 4. (a) Images of 100 random disks and (b) the average and standard deviation of the first 20 features from F1, F2, and F3.
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Fig. 5. (a) Images of 100 random squares and (b) the average and standard deviation of the first 20 features from F1, F2, and F3.

Fig. 6. Sample images of the (a) 4-petal and (b) 5-petal images.

letting � vary from 0 to 0.99. Sample images are shown in
Fig. 6. For each image in these two sets, we computed its
F1, F2, and F3 features. The first five features from each
feature set are plotted in Figs. 7–8. Note that all features
stayed fairly constant even though the shapes were deformed
as � changed from 0 to 0.99. This is a good indication of

the stability and consistency of these features under this sort
of boundary deformation. That the first feature in Figs. 7(b)
and 8(b) is above 0.4 is again a reflection of the Theorem
of Ashbaugh–Benguria (9) [43]. That the higher features in
Figs. 7(b) and 8(b) are above 0.4 is a standing conjecture of
Payne–Pólya–Weinberger [35].
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Fig. 7. Plot of first five (a) F1, (b) F2, and (c) F3 features for all 4-petal images.

4.2. Tolerance to noise

Since eigenvalues are somehow affected by variation in
the boundary of an input image, we wanted to quickly inves-
tigate the tolerance of the feature sets to noise on the bound-
ary. We randomly corrupted 20% of the boundary pixels by
either adding or deleting pixels at those locations. These
boundary alterations are more visible in small images. We
computed the features of these noisy images and compared
their values to those of the original uncorrupted images. The
features of the noisy images were almost identical to those
of the original images. For example, Fig. 9 shows the av-
erage F1 features for the original and noisy images for the
five simple shape classes described earlier. As can clearly be
seen, there is little difference between the features in both
cases. This is a good indicator of the feature sets tolerance
to boundary noise.

4.3. Class separation capability

A good feature set should react differently to images from
different classes producing feature vectors that are very dif-

ferent from class to class. Another desirable property of a
feature set is that only “few” features are needed to discrim-
inate between classes. Using fewer features allows the de-
sign of a simpler and faster classification system. Obviously,
the number of features needed in a particular classification
problem depends on how many classes there are and how
complex the classes are.

For example, to separate the 4-petal images from the 5-
petal images, we need to use only the first feature from the
F1 set. Fig. 10 shows that this one feature is sufficient to
separate the 4-petal images from the 5-petal images despite
the variability in the shape of the images in each class. Note
that the first feature for 4- and 5-petal images is again above
0.4 as predicted by the Theorem of Ashbaugh–Benguria (9)
[43].

We conducted another experiment to investigate how
many F1, F2, and F3 features are necessary to separate
the computer-generated images of disks, squares, rectangles,
triangles and ellipses that we mentioned earlier. We trained
simple feedforward neural networks with one hidden layer
using n = 4, 8, 12, 16, and 20 features to classify images
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Fig. 8. Plot of first five (a) F1, (b) F2, and (c) F3 features for all 5-petal images.

from these five classes. The neural networks were trained
using half of the images (250) in the dataset. The other half is
divided equally between validation and test sets (125 each).
Table 2 summarizes the results of these experiments. As can
be seen from the table, we needed only n = 8 features from
the F1 set to attain a 99.2% correct classification rate. For
the same recognition rate, one would need n = 20 features
from the F2 set. The best recognition rate for the F3 set
was 98.4%, obtained using n = 16 features. Many of the
misclassified images were very small images that are hard
to classify even by a human.

5. Shape recognition experiments

In this section, we report the results of three shape recog-
nition experiments we conducted using three different data
sets. The results will show the effectiveness, robustness,
and noise tolerance of the three feature sets. The three data
sets we used consisted of hand-drawn shapes, computer-
generated n-petal images, and images of different tree leaves.
A description of these experiments follows.

5.1. Hand-drawn shapes

Forty disks, triangles, rectangles, ellipses, and squares of
different sizes and orientations (200 images total) were hand
drawn and scanned into the computer. Samples are shown
in Fig. 11.

As can be seen from these samples, the boundaries of
these shapes are noisy and irregular. Also, some of the el-
lipses look similar to the circles and vice versa. The three
sets of features for each image were calculated. We used the
neural nets we trained on the computer-generated shapes
(described earlier) to classify these hand-drawn images.
Table 3 summarizes the correct classification rates on the
test set for the different networks/feature sets we used.
As can be seen from the table, we were able to attain a
good classification rate (94% average) based on all features
sets and using a relatively small number of feature (only
eight in the F3 case). This shows that the feature sets were
robust/stable enough to tolerate a relatively high degree
of noise and/or deformation on the image boundary. This
also shows the class separation capability of these feature
sets.
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Fig. 9. Noise effects for F1 features for (a) ellipses, (b) rectangles, (c) triangles, (d) disks, and (e) squares.
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Fig. 10. Plot of the first F1 feature for all 4-petal and 5-petal images.

Fig. 11. Samples of the hand-drawn shapes.

Table 2
Correct classification rates of simple shapes using different number of
features from F1, F2, and F3 sets

n F1 features (%) F2 features (%) F3 features (%)

4 96.0 96.8 96.0
8 99.2 98.4 97.6

12 95.2 95.2 96.8
16 97.6 97.2 98.4
20 97.6 99.2 98.4

5.2. N-petal images

We generated five sets of 100 n-petal images for n = 3–7
(total of 500 images) using Eq. (19). For each set, the vari-
able a was randomly chosen between 1 and 2 and � was
randomly chosen between 0 and 1. This created a lot of vari-
ation in the images from a particular class and made images

Table 3
Classification results of the hand-drawn shapes

F1 features F2 features F3 features

Number of features used 12 12 8
Correct classification rate (%) 94.5 93.5 94.0

Fig. 12. Sample n-petal images (n = 3, . . . , 7).

from some classes look similar to images from other classes.
Sample images are shown in Fig. 12 . The three sets of fea-
tures for these images were generated and a group of simple
feedforward neural nets with one hidden layer were trained
on 60% of the images in the data set (300 images) and tested
on the remaining 40% (200 images). The number of features
used by the neural nets was varied from 4 to 20. Table 4 sum-
marizes the correct classification results of these nets on the
test set. Note that all features performed well (all produced a
correct classification rate of at least 90%) and we were able
to attain a 97.5% correct classification rate with F1 features.
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Fig. 13. Picture of the leaves from five different types of trees: (a) gray-scale; (b) thresholded.

Table 4
Classification results of the n-petal images (n = 3, . . . , 7)

Number of F1 features F2 features F3 features
features (%) (%) (%)

4 70.5 65 74.5
8 79.5 83 88.5

12 93 90 92
16 95 89 92
20 97.5 88 94.5

This is another evidence of the robustness/stability of these
feature sets, their tolerance of noise and image deformation,
and their class separation capability.

5.3. Leaf images

A total of 72 gray-scale images of leaves from five dif-
ferent types of trees were photographed and scanned. The
images were thresholded and their F1, F2, and F3 features
computed. Fig. 13 shows the gray-scale and thresholded im-
ages of the leaves. The average feature vector of the leaves
from each class was calculated. These average feature vec-
tors were used as prototypes to represent each of the five leaf
classes (one prototype per class). The 72 leaves were clas-
sified using the minimum Euclidian distance to the proto-
types (the smallest Euclidian distance to a prototype in-
dicates the class to which the image belongs). We varied
the number of features used in the classification from 1 to
20. The best classification results using each feature set are
shown in Table 5 along with the number of features that al-
lowed such results. As can be seen from the table, correct
classification rates of about 89% were achieved using very

Table 5
Classification results of leaf images

F1 features F2 features F3 features

Number of features used 2 4 2
Correct classification rate (%) 88.9 84.7 88.9

few features (2 or 4) despite the fact that our classifier is
very basic and that some leaves from two different classes
(upper left and lower right parts of the figure) have very
similar shapes and were responsible for many classification
errors. A neural network-based classifier would have proba-
bly yielded better classification results (due to its non-linear
classification boundary capability). However, due to the lim-
ited number of samples in this data set, rigorous training and
testing of neural networks are not possible.

6. Conclusion

We have studied three sets of features based on the eigen-
values of the Dirichlet Laplacian. These sets of features are
translation-, rotation-, and size-invariant. We have shown
that the three sets of features were tolerant of boundary noise
and deformation and have good inter-class discrimination
capabilities. The three sets of features were used success-
fully to classify natural and man-made images with a high
degree of accuracy and using a relatively small number of
features (only two features in some cases). We plan to un-
dertake this task of classification using the eigenvalues of
the Neumann Laplacian (or free membrane) in further stud-
ies. Future work also includes using finite elements method
to compute these eigenvalues and an extension of this work
to gray-scale images.
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7. Summary

We have proposed and studied three sets of features for
shape recognition and classification in binary images. The
features are based on the eigenvalues of the Dirichlet Lapla-
cian and are translation-, rotation-, and size-invariant. We
conducted experiments using computer-generated images
that showed the three feature sets were robust, tolerant to
boundary noise and deformation, and have good inter-class
discrimination capabilities. The three sets of features were
used successfully to classify hand-drawn shapes with an av-
erage correct classification rate of 94%; synthetic n-pedal
images with a correct classification rate ranging from 90%
to 97.5%; and natural images of leaves with a correct clas-
sification rate of almost 89%. The classification was done
using few features (only two features in some cases) and
simple feedforward neural networks or minimum Euclidian
distance.
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