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1. INTRODUCTION

In pattern recognition, objects are usually described by numerical feature
vectors that are then manipulated to create a matrix whose leading eigen-
values and eigenvectors summarize most of the important characteristics
of the set of objects. In fact, eigenvalues and eigenvectors are so ubiqui-
tous in the pattern recognition community that terms such as eigenfaces
(Turk & Pentland, 1991), eigenpalms, and eigenfingers (Ribaric & Fratric,
1982) are by now standard and selfexplanatory. It is thus not surprising
that recently many researchers have turned to the eigenvalues and eigen-
vectors of the Laplace—Beltrami operator as possible tools for shape recog-
nition purposes (Khabou, Hermi, & Rhouma, 2007a; Khabou, Rhouma, &
Hermi, 2007b, 2008; Rhouma, Khabou, & Hermi, 2009; Niethammer et al.,
2007; Reuter, Wolter, & Peinecke, 2005a,b; Peinecke, Wolter, & Reuter,
2007; Reuter, Wolter, Shenton, & Niethammer, 2009b; Reuter et al., 2007,
2009a; Zuliani, Kenney, Bhagavathy, & Manjunath, 2004). Indeed, the
ratios of the eigenvalues of the Dirichlet Laplacian, which correspond to
the frequencies of the fixed membrane assuming the shape of the drum,
satisfy the three most important criteria for shape recognition: invariance
to translation, rotation, and scaling (Khabou, Hermi, & Rhouma, 2007a;
Khabou, Rhouma, & Hermi, 2007b, 2008; Rosin, 2003; Torres-Mendez,
Ruiz-Suarez, Sucar, & Gomez, 2000; Zhang, 2002). Eigenvalues of the
Laplacian are intrinsic physical attributes describing shape.

However, there is a major difference between using the eigenvalues
and eigenvectors in the classical methods such as principal component
analysis (PCA) and kernel PCA and using the eigenvalues of the Laplacian
for shape recognition. In classical methods, the essence of the informa-
tion is stored in the eigenvectors of the leading eigenvalues, which in
essence stems from the fact that an #n x n matrix A can be approximated
by A =P~ 1DyP, where Dy is a diagonal matrix whose only nonzero ele-
ments are the first k diagonal terms D;; = ;, where |A1| > |A2| > -+ > |Ag]
(say, when the eigenvalues are distinct) are the dominant eigenvalues of
the matrix A and P is the matrix whose columns are the eigenvectors of A.
In contrast, in this chapter and in the literature mentioned above, shape is
characterized using only the eigenvalues.

The purpose of this chapter is to provide a theoretical overview of the
characteristics of the eigenvalues of four well-known linear operators and
assess their usefulness as reliable tools for shape recognition. In particular,
we revisit the eigenvalues of the Dirichlet and Neumann problems and
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examine the recent literature on shape recognition using the Laplace oper-
ator. In addition, we will also examine the ratios of eigenvalues for the
clamped plate and buckling of a clamped plate problems. To our knowl-
edge, these are new methods that involve the bi-Laplacian, which is
a fourth-order operator. Our work shows that features based on these
physical eigenvalue problems are reliable tools for shape recognition.

Shape recognition techniques can be divided into numeric and non-
numeric methods. By far, the most popular classification techniques are
of course the numeric methods, which can also be subdivided into two
groups: boundary methods and global methods. Boundary methods rep-
resent a shape by its boundary only, whereas global methods deal with all
the interior points of the object. A shape recognition technique can also be
classified as either information-preserving or non-preserving depending
on whether full recovery of the shape being analyzed is possible from the
extracted feature vectors. In this regard, all of the research in shape recog-
nition using the eigenvalues of the Laplace—Beltrami operator belong to
the class of numeric, global, and non-preserving techniques.

This chapter is structured as follows: In Section 2, we review image
recognition works using Laplacian-based features and describe their most
salient properties. In Section 3 we point out some theoretical results
regarding the eigenvalues of the Laplacian with Dirichlet and Neumann
boundary conditions with special focus on universal eigenvalue bounds.
Section 4 reviews the literature for the clamped plate and buckling of a
clamped plate eigenvalue problems. Both of these sections focus on the
properties of the eigenvalues that are of interest to the image recognition
community. In Section 5, we look in detail at the ratios of eigenvalues
for each operator for simple shapes and deduce their general pattern of
behavior, as well as their agreement with some established results and
open conjectures. In Section 6, we explain how the numerical schemes for
the various boundary conditions arise and summarize the relevant facts
for these discretization procedures. Feature vectors based on these vari-
ous eigenvalue problems that are both consistent and stable are described
in Section 7. Artificial neural networks are central to the image classifi-
cation scheme followed in this work and are thus described in Section 8.
Our calculations and numerical results are described in Section 9, fol-
lowed by a general conclusion.

2. RELATED WORK

In the age of digital information and imagery, shape is an integral part
of every object. Accordingly, shape needs to be represented, described,
matched, and retrieved effectively. Such a task is not at all evident given
that shape information is found both on the boundary of and inside a
domain. In fact, most shape representation and description methods can
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be classified into either a contour-based method or a region-based method
(Zhang & Lu, 2004; Loncarcic, 1998). Contour-based methods (CBMs) include
simple descriptors, such as circularity, eccentricity, bending energy, con-
vexity, circular variance, and many others (Rosin, 2003). Better-performing
descriptors are extracted from one-dimensional (1D) functions such as
the centroid distance, curvature, and boundary moments that are nor-
malized to be rotation, translation, and scaling invariant (Davies, 1997).
The most popular contour-based descriptor is the Fourier descriptor (FD),
which is easy to compute and normalize (Arbter, 1989; Zahn & Roskies,
1972). Founded on the well-established Fourier theory, FDs capture both
global and local features of a shape and have an acceptable noise tol-
erance (Arbter, 1989; Chellappa, 1984; Otterloo, 1991; Zahn & Roskies,
1972). According to the classification in Zhang (2002) and Zhang and Lu
(2004), CBMs also include structural methods, such as chain code rep-
resentation (livarinen & Visa, 1996), polygon decomposition (Groskey &
Mehrotra, 1990; Groskey, Neo, & Mehrotra, 1992; Mehrotra & Gary, 1995),
smooth curve decomposition (Berretti, Bimbo, & Pala, 2000), and syntac-
tic analysis Chomsky (1957); Fu (1974). While structural methods are well
suited for partial matching and occlusion problems, they are computa-
tionally costly, sensitive to noise, and difficult to implement for a general
shape database (Zhang & Lu, 2004). Region-based methods (RBMs) take into
account all points in the domain and not just those on the boundary. The
famous medial-axis transform (MAT) Blum (1967) is the main structural
method for RBM. MAT produces line segments that constitute the skeleton
of a shape and that are used to represent the shape by a graph. Moments,
however, constitute the primary RBMs. In fact, geometric moment invari-
ants were among the first tools used in shape description Hu (1962)
and were reported to perform well (Zhang, 2002) on a standard shape
database. Algebraic moments (Niblack et al., 1993; Scassellati, Slexopou-
los, & Flickner, 1994) and their generalizations to orthogonal moments
such as Legendre and Zernicke moments (Kim & Kim, 2000; Teague,
1980) offer the good combination of compact features, low computational
complexity, and good performance (Zhang & Lu, 2004).

As early as 1998, Shah recognized the potential of the eigenvalues of
the Laplacian as a segmentation tool and hinted at its usefulness as a gen-
eral pattern recognition tool (Shah, 1998). Soon after, Belkin and Niyogi
(2003) used the eigenmaps of the Laplace-Beltrami operator for dimen-
sionality and data representation and drew attention to the close ties with
spectral-based clustering (Ng, Jordan, & Weiss, 2002) and already existing
techniques used for image segmentation.

Since 2004, there have been several papers related to shape recognition
starting with the work of Zuliani et al. (2004) who constructed a descriptor
based on the eigenvalues of the Dirichlet Laplacian and showed that it has
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a good retrieval accuracy for affine invariant curve and region matching.
Soon after, Reuter, Wolter, and their co-authors produced a series of papers
(Reuter et al., 2005a,b; Peinecke et al., 2007; Reuter et al., 2009a,b) with
applications in medical imaging (Reuter et al., 2007; Niethammer et al.,
2007; Reuter et al., 2009b). In their earlier work (Reuter et al., 2005a,b)
they gave a comprehensive overview of the Laplace Beltrami properties,
and showed that a reliable shape DNA or fingerprint for both shape match-
ing and retrieval can be extracted. The same authors extended their work
to cover both grey and color images by considering that the images are a
subset of a high-dimensional Riemannian manifold (Peinecke et al., 2007).
In their most recent work, Reuter et al. (2009a,b) turned to extracting shape
information not from the spectrum of the Laplace operator but from the
eigenfunctions. In particular, the nodal sets of the eigenfunctions and their
critical points and level sets were shown to yield shape descriptors that
are capable of localizing geometric properties. Exploiting the isometry
invariance of eigenfunctions and using topological tools and features, they
introduced a novel method for hierarchical segmentation for articulated
shapes (Reuter, 2010).

In Khabou et al. (2007a,b), Khabou et al. (2008), and Rhouma et al.
(2009) we examined and compared the performance of some feature
vectors for Dirichlet and Neumann eigenvalues on some simple shapes
using simple neural networks. We also ruled out the use of the Steklov
eigenvalues as a reliable tool for shape recognition.

Recently and for the purposes of data analysis and reconstruction,
(Saito, 2008) proposed a method to analyze and represent data recorded
on a general d-dimensional domain of general shape by computing the
eigenfunctions of a Laplacian (that is neither a Dirichlet nor a Neumann
problem) defined over the domain and expanding the data into these
eigenfunctions. The boundary conditions in Saito’s problem emerge by
requiring the Laplacian to commute with the expression of Green’s func-
tion for free space. We should finally mention that for data analysis
and clustering purposes, an entire school has been developed by Ronald
Coifman and his students in which the Laplacian and various aspects
of its spectrum play a central role (see, e.g., Coifman, Kevrekidis, Lafon,
Maggioni, & Nadler, 2008; Jones, Maggioni, & Schul, 2008).

3. EIGENVALUES OF THE DIRICHLET AND NEUMANN
LAPLACIANS

In this section, we provide some background information and known
results about the eigenvalue problems we will use to extract feature



190 M. Ben Haj Rhouma et al.

vectors for our shape recognition schemes. Good sources for both basic
background and advanced lines for investigation include (Ashbaugh,
1999a,b; Ashbaugh & Benguria, 2007; Benguria & Linde, 2008; Courant
& Hilbert, 1953; Kac, 1966; Polya & Szego, 1951).

3.1. The Heat and Wave Equations

At the heart of countless engineering applications are the wave and heat
(sometimes called diffusion) equations

Utt = AU, and Ut =AU
defined on a bounded domain  C R? and valid for f > 0, where

%u  9%u
Au=—+— 3.1
=t ay? G

denotes the usual expression for the Laplacian operator.

Although we can define the problem for a higher-dimensional setting,
we restrict ourselves to plane domains, since the bulk of the application
presented herein falls in this category.

With either problem, there are associated classical homogeneous con-
ditions on the boundary 92 of fixed (Ulsq =0) or free (dU/dn|yq :=
n- Vu|yq = 0) type, and standard (also called Cauchy) initial conditions
at t = 0. Here 1 denotes the direction of the normal to the boundary.

Separating the time and space variables in the form U(x,y,t) =
T(t) u(x,y), we are led to

T  Au q N T Au
= — = — an — = —= = —
T u T u

—A
depending on whether we are dealing with waves or heat dissipation. In
both cases, we are led to the Helmholtz equation

—Au=Xiu inQ. (3.2)

The fixed boundary condition leads to the coupling of this equation with
Dirichlet condition u|yq = 0, while the free case leads to its coupling
with the Neumann condition du/dn|yq = 0. It is well known that either
problem admits a discrete spectrum {,}7°; with a complete family of
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corresponding orthonormal eigenfunctions {u,};2 ;. The solution to the
wave equation is then given by

Uy =) (An cos(y/Ant + ¢n)) Un (X, ),

while the solution to the heat equation corresponds to

Uy, H =Y Ave " uy(x,y).
n

Here, let us immediately note that if we perform the homothety trans-
formation x' = « (x — xg) cosf and ¥y’ = «(y — yp) sinf, we obtain A'u =
Au/a®. Therefore, the eigenvalues are scaled by 1/a? while they remain
translation and rotation invariant. Moreover, the ratios of these eigenval-
ues are scale invariant. These three properties are essential for any reliable

tool for shape recognition. We note that the inner product in this case is
defined by

(f,g) = [ / FO0 g, ) dady.
Q

With this setting the eigenvalues are known to be non-negative. Tradition-
ally the eigenvalues of the Dirichlet Laplacian are denoted by A1, o, .. ..
They are known to satisfy 0 < A1 < A2 < A3 < Ay — oo. The eigenvalues
of the Neumann problem are usually denoted by w1, u2,.... They are
known to satisfy 0 = 1 < 2 < uz < ... ux — oo. We also point out that
in the latter case, the discreteness of the spectrum is guaranteed as long
as the boundary 9% is not too wild. Any L? function f on the domain
can be approximated by a linear combination of a finite number of the
eigenfunctions of either spectrum. In more precise terms,

N N
1f = cnull® = // FEy) = et Pedxdy
n=1 Q =1
N
Z/f |f(X,y)|2dxdy—Zc% -0
Q n=1

as N — oo, where ¢, = (f, un)/(un, Uy).
The key properties of the eigenvalues of the Dirichlet Laplacian are as
follows:
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(1) Domain monotonicity: If Q1 C 9, then Ax(21) > Ax(Q2).
(2) Eigenvalues are invariant under rigid motion (translation, rotation).

(3) Fora > 0, A (e Q) = Ak(iz).

o

M) M(Q)
(@) Am(Q)

We also note that properties 2, 3, and 4 are satisfied by the Neumann
eigenvalues. There is no domain monotonicity in this case. However, the
feature vectors used for our shape recognition purposes do not require
such property.

(4) Scale invariance:

3.2. The Minimax Principle
Let

Jo |Vu|? dxdy

Ry = Jo u? dxdy

denote the Rayleigh ratio for an admissible function u defined in Q which
vanishes at the boundary. In the mechanical interpretation described in the
previous section, this ratio gauges the average potential to average kinetic
energy of the constrained vibration of a membrane assuming the shape of
2, Polya (1954). The numerator is usually called the Dirichlet integral.

It can be shown that the eigenvalues 1,,(2) of the Dirichlet eigenvalue
problem satisfy the minimax principle

An(2) = inf sup Ry (w), (3.3)
M yem

where M is an n-dimensional space of L?(£2), the space of square integrable
functions on .

For a family of independent C! functions 81,82, --,8n defined on Q
and vanishing along 9€2, form

n

u=)_ g
j=1
This leads to
Z’?,: a:i bt
Riw = ==L 00
Zi,j:l bij tit;

where

aij =/VglVg]dxdy and szZ/gzg]dXdy
Q Q
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With A = (4j) and B = (bjj), form the equation
‘A - AB‘ =0

and let the roots of this equation be denoted by A} <1, <--- <.
Poincaré proved in 1890 Forsythe and Wasow (2004); Pdlya (1952b) that

M < A fork=1,2,...,n.

The Rayleigh-Ritz method is the procedure of approximating the Ay via
A Rayleigh (1894) was interested in the first eigenvalue, whereas Ritz
(1909) dealt with higher eigenvalues (Waller, 1961). It is generally under-
stood that Fischer (1905) and Courant and Hilbert (1953) independently
formulated the minimax principle, and that it was the latter who fully
understood its potential as a central tool in the analysis of linear prob-
lems (Courant & Hilbert, 1953; Pélya, 1954; Waller, 1961). The formulation
(3.3) is favored by the finite difference community since it forms the basis
of most finite difference discretization schemes. Analysts and geometers
prefer the form

() = s#p 5111; Ry(u), (3.4)

where T is an n — 1-dimensional linear space and © =0 on 9, foru € T.
This formulation is the source of many of the geometric and universal
inequalities described in the following sections. These two principles are
equivalent, a result attributed to Peter Lax, see Pélya (1954).

3.3. Geometry and the Eigenvalues

The eigenvalues of the Dirichlet and Neumann Laplacians satisfy the Weyl
asymptotic formula (Weyl, 1911)

lim 2 _ jim M 2T (3.5)
k—o0 k—oo k |2]

where || denotes the area of the underlying domain 2. These asymp-
totics essentially state that if Q1 and 2 are two different domains of R?
with the same area, then there exists a threshold index k beyond which
the ratios A, (€22)/Ax(21) and Ax41(2)/Ax(2) get arbitrarily close to 1. This
argument holds as well for the ratios i (€22)/ 1k (21) and g1 (2)/ 1k (2).
Thus, for the purposes of shape recognition, ratios of large eigenvalues do
not “contain” much information. It should be noted, however, that for a
given fixed index k, 1x(2)/A1(R2) has geometric content and is the subject
of recent optimization of shape work (Antunes & Henrot, 2011; Henrot,
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2006; Henrot & Oudet, 2003; Osting, 2010; Wolf & Keller, 1994). The Weyl
asymptotics satisfied by the eigenvalues are universal in the sense that
there are valid for all domains. Inverting these formulas and incorporating
the length of the boundary one has, according to Weyl, and as z — oo

N ~ 2, 2 091 o), (3.6)
4 4
where N(z) counts the number of eigenvalues less than or equal to z and
|0€2| stands for the length of the boundary of Q. Again, these asymptotics
assume a smoothness condition on the boundary. The — and + in the sec-
ond term in the asymptotics correspond to the Dirichlet and Neumann
cases, respectively. In this form, one can hear both the area and length of
the domain from knowing the spectrum.

Fortunately, for the case of the Dirichlet eigenvalues, ratios also satisfy
a myriad of universal domain-independent inequalities, indicating the ratio
of consecutive eigenvalues is bounded. For example, Payne, Pdlya, and
Weinberger (PPW; Payne et al., 1956) proved that for k > 1

M1 — M < 2k, (3.7)

where 4y := % Zi«;l A denotes the average of the first k eigenvalues. When
k = 1, this reduces to

— <3. (3.8

Inequality (3.7) was later improved by Hile and Protter (HP; Hile &
Protter, 1980) to

A k

—_— > - (3.9)
M1 —hi T2

Yang (1991) obtained the inequality (see also the appendix in Cheng
and Yang (2006b) where a brushed version of the bulk of Yang (1991),
following the vision of Ashbaugh (2002), was published)

k K
> (kg1 — M) <2 D ki (M1 — i), (3.10)

i=1 i=1

from which a more accessible formula, better than those of PPW and HP,
ensues

Mes1 < 3. (3.11)
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More recent activity has led to further universal inequalities that
strengthen all these previous ones. Harrell and Hermi (2008) proved that
fork>j>1

A
Mgk (3.12)
j ]
and for k > %]
M9k o5k (3.13)
Aj 87 j

The state of the art in this sort of universal inequalities is the statement,
due to Harrell and Stubbe (1997), fork > j > 1

_158 (3.14)

For individual eigenvalues, much recent activity is noteworthy. Hermi
(2008) proved

Akt1
1

<1+5.13265k. (3.15)
Unaware of Hermi (2008), Cheng and Yang (2007) proved

A
% <2134k fork >3, (3.16)
1
faring better than Harrell and Hermi (2008)

kk+1
1

<2625k fork>3. (3.17)

Combining earlier works (Ashbaugh & Benguria, 1993b, 1994b; Ashbaugh
and Benguria, 1994c) with Cheng and Yang’s method (2007), Chen and
Zheng (2011) recently improved these results to

A1
1

< 196194k fork >3, (3.18)

and

A
% <1.82417k fork > 4. (3.19)
1
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These results were recently confirmed numerically by Osting (2010), who
undertook the task of finding the star-shaped domain that maximizes
Ak+1/21, for k = 1,12. Assuming a representation of 32 by a cosine Fourier
series (thus smoothness on the boundary), Osting exhibited 13 numer-
ically obtained domains that achieve his purposes (see Figure 3 in that
paper). Note that for k =1,...,12, Osting’s numerical results suggest an
inequality of the form

A
“HL _ ck (3.20)
A

with a universal constant C that does not exceed 1.269 = ]%,1 / 2]'%,1, the con-
stant corresponding to k = 1. Much work has been devoted to improving
the bound (3.8) for A;/A1 (that is, when k = 1) since PPW conjectured in
1956 that

]2
< 21 ~ 2539 (3.21)
1,

>
=S

1

~

with equality if and only if € is a circular membrane. Here j, , is the nth
zero of the Bessel function J, (x). This conjecture was proved by Ashbaugh
and Benguria (1991, 1992) in 1991. Melas (2003) proved the stability of the
Ashbaugh and Benguria theorem under the condition that €2 is convex.
For A3/A1, the optimal bound found by Osting is 3.202 (corresponding
to a dumbbell) conjectured and found earlier by Levitin and Yagudin
(2003). This optimal bound has been disproved numerically by Trefethen
and Betcke (2006), who exhibited a “two-disk domain” with two cusps
for which A3/A1 falls short by 0.35% of the Levitin—Yagudin value. How-
ever, Levitin and Yagudin (2003) and Trefethen and Betcke (2006) duly
note that the optimal domain satisfies the condition A3 = A4. “Feasibility
regions” for all possible values of A3/X11 vs. 12/A1 have been displayed and
discussed by various authors (see Ashbaugh, 1999b; Ashbaugh and Ben-
guria, 1994b,c; Levitin and Yagudin, 2003; Chen and Zheng, 2011). The
paper by Chen and Zheng (2011) has the best bounds to date:

A3
3.1818 < sup - < 3.73785. (3.22)
a M

The lower bound corresponds to the fraction 35/11 obtained for the
V3 x /8 rectangle.

The low eigenvalues of the Dirichlet Laplacian also contain informa-
tion that is shape specific. For example, the first eigenvalues 11, called the
dominant mode, are known to contain information about the geometry. We
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have, for example, the Rayleigh-Faber-Krahn inequality

2
b4
)\1 > ﬂl
12|

where jo1 =2.4048... is the first zero of the Bessel function of first kind
Jo(x). This is an isoperimetric inequality. Equality holds when the domain
Q is a disk. This inequality is stable when Q is convex in the following
sense: If the eigenvalue 11(2) is close to that of the disk of the same area,
then the domain © is trapped between two disks whose areas are close
to Q. This result was proved by Melas (2003). A new result that strays
away from the convexity condition and gauges the stability of the Faber—
Krahn inequality in terms of a measure of the asymmetry of Q has been
recently proved by Fusco, Maggi, & Pratelli (2009). Also for convex planar
domains, we have the inequalities of Makai (1962) and Pélya (1960) (see
also Antunes and Freitas, 2006; Antunes & Henrot, 2011; Henrot, 2006):

721002 72|0Q2
—— <M< ——.
16|22 4|2

A well-known conjecture of Pélya and Szegd (1951) states that of all
n-polygons with the same area, the regular n-polygon is the one with the
smallest first eigenvalue. This has been proved by Pélya for n = 3,4 but
is still an open problem. More recently, Antunes and Freitas (2006) used a
mesh-free numerical approach to establish several conjectures regarding
the dependence of the dominant mode on the perimeter and the area.

In addition, one can prove inequalities relating the eigenvalues of
the Dirichlet Laplacian with the moments I, = fQ r*dr. For example,
Ashbaugh and Hermi (2008) proved

A1 = Am) Z,\—g = Cpa |l Z)Lz—w + 20k, 5 NG
i=1""1 i=1 i=1

for any integers p > 1 and g > 1 and where Cp; is a universal constant
depending on p and g alone. It is worth mentioning here that invariants
based on moments have been used previously as tools for shape recogni-
tion (see, e.g., Flussera & Suka, 1993; Khotanzad & Hong, 1990; Reeves,
Prokop, Andrews, & Kuhl, 1988).

A minimax principle similar to the Dirichlet problem (in both forms)
holds in this case for C! functions u with support on Q for which
Jo udxdy = 0. Examples of universal eigenvalue bounds for the Neumann
case include

wi(€2) < Ar(€2),
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which follows immediately from the minimax principle. Kornhauser and
Stakgold (1952) (see also Pdlya, 1952b) were the first to prove the state-
ment that uy < A1, a result which was generalized by Payne (1962) for
convex and smooth

i1 () = A (€2). (3.23)

Payne conjectured, Payne (1967), that this result was true in its full
generality was settled in 1991 by Friedlander. There are no known uni-
versal ratio bounds involving the Neumann eigenvalues, however, based
on observations, Ashbaugh and Benguria (1993b) conjectured (see also
Ashbaugh, 1999b) the sharp bound

H3() _,

3.24
n2(82) (324

when Q is convex. This ratio approaches the value 4 when Q tends
to an infinite strip. This question has been recently treated numerically
by Antunes and Henrot (2011). There are many inequalities relating the
geometry of Q2 to the Neumann spectrum. The oldest result of this type is
the Szeg-Weinberger inequality (see Szego, 1954; Weinberger, 1956)

2
P7T

<= 3.25

M2 = o (3.25)

with equality when Q is a disk. Here p = 1.8412 is the smallest positive
zero of [} (x). Kroger (1992) also proved that

k

1 47k?
Z;Mj = 5 W’ (3.26)

which in other words states that the Weyl asymptotic, on average, is an
upper bound for the Neumann eigenvalues. We note the recent paper
(Girouard & Polterovich, 2010) for new results relating the spectrum of the
Neumann problem and the geometry of the underlying domain. In what
follows, when we discuss Neumann eigenvalues, we will simply dismiss
w1 = 0 to avoid dividing by zero, so the first ratio would simply be 3/ 1.

4. THE CLAMPED PLATE AND BUCKLING OF A CLAMPED
PLATE PROBLEMS

As told by various authors (Stoker, 1942; Ullmann, 2007; Waller, 1961),
the initial mathematical formulation of vibration of thin plates goes back
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to the German physicist Ernest Chladni (1786) who, as one of early
“science globetrotters,” first popularized the subject through his experi-
ments stroking violin bows over metal plates covered with sand. Explain-
ing the patterns that resulted from this mechanical excitation of plates
became a fertile ground for good mathematics for the next 20 years with
contributions by James Bernoulli; Sophie Germain, who in 1815 won the
prize set by the French Academy at the behest of Napoleon Bonaparte six
years before; and Lagrange, who corrected Germain’s theory and derived
the equations of vibration of plates as we know them today:.

The vibration of a clamped plate assuming the shape of Q C R? is
governed by the equation

9
A2 =Tu inQ u:a—u=00n8§2, @.1)
n

where A? is the biharmonic operator given by
dtu ) 3t n d*u
axt T oxoy? oyt

plays the role of the Laplacian in wave equation described in Section 1.
The boundary conditions in this case are usually called “clamped” (thus
the “clamped plate problem”) or Kirchoff conditions, after the Russian
mathematician who made significant contributions to the subject in 1850s
Stoker (1942).

The problem at hand is a fourth order eigenvalue problem. As in the
case of the Dirichlet and Neumann problems, this equation exhibits a
discrete spectrum, denoted by 0 < T'; < T < --.. These eigenvalues are
invariant under translation or rotation of the domain Q. Moreover, for
o > 0 and for o Q denoting the scaling of the domain 2 by «, one has
(1) Ty = <62

o
@) De(@$?) _ Ti(®)
Cin(a€2) [ (S2)

These properties make the ratios of eigenvalues in this case suitable to
construct feature vectors for pattern recognition purposes.

The eigenvalues of the clamped plate satisfy a Weyl asymptotic for-
mula which states that they grow like k* when k is large. In fact, as
k — oo,

and

1672k
Iy " ——, 4.2
LT (4.2)
where || denotes the area of Q. They also satisfy a host of inequal-
ities. For example, one has the Li-Yau-type inequality (see, e.g.,
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Harrell & Hermi (2008); Harrell et al. (2008); Hermi (2008))

1672k?

[ = EOTER (4.3)

The Rayleigh function characterizing these eigenvalues is given by
(4.4)

In this case, the minimax principle takes the form

Ik () = inf sup Rp(u), (4.5)
M yem

where M is an n-dimensional space of L?(Q), the space of square inte-
grable functions with support on € that satisfy the clamped boundary
conditions. For an admissible function in this Rayleigh-Ritz principle, we
note that the Cauchy-Schwarz inequality leads to

Therefore

Jou? Jou? '

(fsz |Vu|2>2 < Jo(Aw)?

or
AF(Q) < Tr(Q). (4.7)

This argument goes back to Szego (1950). It can also be found in later work
of Payne and Weinberger (1958) and the more recent work of Ashbaugh
et al. (1997); Ashbaugh and Laugesen (1996).

We also have a gamut of universal inequalities, paralleling the case of
the Dirichlet eigenvalues, relating the eigenvalue of clamped plate to each
other, without reference to the underlying domain. The earliest of such
inequalities was proved by Payne et al. (1956):

D1 =Tk =

= o

k
>, (4.8)
j=1
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from which it follows (when k = 1) that
229, 49)

Ashbaugh (1999b) observed in the excellent review of these problems that
(4.8) follows from the stronger inequality

Ter — T < — (Z \f ) (4.10)

which reduces also (4.9) when k = 1. Hile and Yeh (1984) proved the

inequality
1/2
13/2 k F
— < I 4.11

A stronger result in this vein was shown independently by Hook and
Chen & Qian in 1990 (see Ashbaugh (1999b))

A

o] T

j=1

There is still activity in this field with the recent results of Cheng and Yang
(2006a):

k k
1 1
Mki1 = 2T = V8L 2y (Ten =T, (4.13)
=1 j=1

and Wang and Xia (2010):

12
i (Tep1 —Tj)" <8 (Z(FkJrl_Fj)z\/Fj) (Xk: Ty — \/F])
j=1 j=1

j=1
(4.14)

1/2

Ashbaugh (1999a) conjectured that one might be able to improve (4.9) to
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r2() _ I2(Disk)

~ 4.3311. 4.1
' () — I'i(Disk) 33 (4.15)

The buckling of a clamped plate problem (buckling problem) is
described by the eigenvalue problem

ou
A’u=—-AAu inQ subject to u = = 0 on 9L2. (4.16)
v

This problem admits a discrete spectrum 0 < A1 < A <--- — oo. The
critical buckling load of a clamped plate subject to a uniform compres-
sive force around its boundary is the first eigenvalue A1 of this problem.
This is the quantity of most interest to structural engineers. The Rayleigh
function characterizing these eigenvalues is then given by

Jo (Aw)?
R3(u) = 4.17)
Jo IVu? (
In this case, the minimax principle takes the form
A(R2) = iZ\I}If sup Ra(u). (4.18)

ueM

For an admissible function in this Rayleigh—Ritz principle, we note also
that the Cauchy-Schwarz inequality (4.6) leads to

Jq IVul? - Jo(Au)?
Jour T JqIVul?

or
() < Ap(S2). (4.19)
Szeg6 proved in 1950 that
' > A Aq.

This follows from the Cauchy-Schwarz inequality and the Rayleigh-Ritz
principles for these problems. The paper by Ashbaugh (2004) offers a good
review of the main properties of the buckling problem. The first systematic
study of this problem goes back to a 1937 mémoire by Weinstein (1937,
1966) (see Payne, 1967), who conjectured that the second eigenvalue of
the Dirichlet eigenvalue is a low bound for the critical buckling load

A2 <M
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with equality if Q is a circular plate. This isoperimetric inequality was
proved by Payne in 1955 (see also Payne, 1991, 1967). It is to be noted
that when € is convex, Payne (1960/1961) also showed the counterpart
inequality

A1 <40

with equality for the infinite strip (that is an elongated rectangle). Also
when Q is convex, Payne (1960/1961) showed that

16 ,
FlSE)‘l

with equality again for the infinite strip. One should note the well-known
result that states that

I < A2

follows immediately from the minimax principles for both.
The Weyl (1911) asymptotics
4k
A~ — 4.20

TeT (4.20)
for the buckling problem was proved only recently Ashbaugh et al. (2010).
For a flavor of bounds in the spirit of Faber—Krahn, we note that P6lya and
Szegd (1951) conjectured the isoperimetric inequality

>
T

A1(€2) = A(Q27) = K

(4.21)
where Q* is the disk with the same area as €, and j;,1 &~ 3.83171. Bramble
and Payne (1963) showed the weaker inequality

27[]'(2),1
€2

with ¢ & 0.787794 (see also Ashbaugh and Laugesen, 1996; Ashbaugh
et al., 1997 for higher-dimensional versions).

The buckling eigenvalues are intrinsic physical properties of the
underlying domain © and are thus invariant under translation and
rotation. They also satisfy the following scaling properties:

A1(2) >

=0y A1(RQ%) (4.22)

Ar(£2)
o2

Ap (@) = , and

Ar(@Q)  Ap(Q)
An@Q)  Ap(Q)
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The buckling eigenvalues also satisfy universal eigenvalue inequalities
similar to those described earlier. PPW Payne et al. (1956) proved in their
celebrated paper that

2 <25, (4.23)

For higher eigenvalues, Ashbaugh (1999a) (see also Ashbaugh, 2004)
proved

Ar + A3

<6
A1 -

and a host of other stronger inequalities gauging A3/A1 in terms of Ap/A1.
In 2006, Cheng and Yang were able to prove that

k

k
(A1 — A7) <4 D A (Akyr — Ay).

=1 j=1
They also conjecture that one can improve this inequality to

k

k
3 (Mg = A)* <23 A (Akgr — A))
1

j= j=1

an inequality that would be sharp in the sense of Weyl’s asymptotic
formula (4.20). One should finally note the conjecture suggested by
Ashbaugh (1999a) that

A2(Q) _ Ax(Disk)

~ 1.83079. 4.24
A1(R) — Aq1(Disk) 830 ( )

5. LESSONS FROM SIMPLE SHAPES

In 1992, Gordon, Webb, & Wolpert (1992) gave the first example of two
isospectral shapes in the plane (i.e., different shapes with the same eigen-
values of the Dirichlet Laplacian). The two shapes, commonly known as
Bilby and Hawk, provided an explicit two-dimensional negative answer to
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the question posed by Bochner and Kac in the much-quoted paper, “Can
One Hear the Shape of a Drum?” Kac (1966). Soon after Bilby and Hawk,
many other isospectral domains were invented by mathematicians (Buser,
Conway, Doyle, & Semmler, 1994)'. The isospectrality of Bilby and Hawk
was tested experimentally by physicists (Sridhar & Kudrolli, 1994) and
computed numerically using various techniques, including the 5-point
scheme described below (see Betcke & Trefethen, 2005; Driscoll, 1997;
Okada, Shudo, Tasaki, & Harayama, 2005; Wu, Sprung, & Martorell, 1995).
Two other isospectral domains, affectionately called Aye-Aye and Beluga,
are the subject of a recent experiment in nanotechnology Moon et al.
(2008). Unfortunately, these isospectral examples say that, in general, the
eigenvalues do not give a unique characterization of the shape. However,
this setback can be quickly overcome by another set of evidence—some
experimental and some theoretical—that indicates that these isospectral
domains are the exception rather than the rule. For example, new positive
theoretical results by Zelditch (2000) prove that for domains that possess
the symmetry of an ellipse and satisfy some generic conditions on the
boundary, the spectrum of the Dirichlet Laplacian uniquely determines
the shape. Later, Zelditch (2004, 2009) improved this result to real analytic
plane domains with only one symmetry.

In this section, we design a few simple experiments to match theo-
retical results described earlier with the finite difference code developed
for the various implementations of the eigenvalues at hand, and to gauge
some of the separability properties with a few features. The shapes consid-
ered in these simple experiments are rectangles, diamonds, ellipses, and
triangles (Figure 1). The case of a disk has been thoroughly discussed in
earlier sections, so here we briefly discuss rectangles. For a rectangle

O={0<x<L0<y<W},
the eigenvalues of the Dirichlet Laplacian are given by
2

l m?
Aen(d) = n? (ﬁ + W)/

where £ and m are positive integers. It is clear that its aspect ratio R = L/W,
which is invariant to scaling, can be deduced from the first ratio (see also
Ashbaugh and Benguria, 1994b,c; Levitin and Yagudin, 2003)

M@  R*+4
@O R2+1

for R>1, (5.1)

1 A gallery of such domains is available online; see http://www.geom.uiuc.edu/docs/research/drums/cover/
cover.html
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FIGURE1 Different basic shapes of varying aspect ratios ranging from 1:1 to 15:1.

that is—one can hear the aspect ratio of a rectangle. It is also clear from
Eq. (5.1) that when R — oo, the value of A»/11, and more generally %S)),
tend to constants and thus fails to identify much the aspect ratio. This
is exhibited in the asymptotic behavior shown in Figures 2 and 3 when
curves level off as the aspect ratio diverges. In this case, the rectangle
reduces to an infinite thin strip, so essentially a 1D structure for which
the eigenvalues cluster. This phenomenon is not unique to rectangles. In
the figures just described, we have generated graphs for A1/, for the four
problems at hand and the four basic shapes. One of the graphs in Figure 2a
corresponds Eq. (5.1) for rectangles. All the curves, regard-less of the oper-
ator or the shape, level off as R — oo. Figure 2b, which deals with the
Neumann case, shows that A1/, tends to 1/4 from above as the aspect
ratio tends to oo corresponding to infinite strips as conjectured by Ash-
baugh and Benguria in (3.24). When the aspect ratio is equal to 1, all the
graphs “cluster” near a specific value for A1 /5. In the case of the Dirichlet,
clamped, and buckling cases, the circle provides the lowest possible value
(when R = 1), and the more symmetric the body, the lower is the ratio (so
among all rectangles and diamonds, the square provides a minimal value
for the ratio), and among all ellipses, the circle is the minimizer. For these
cases, the membranes have fourfold symmetry, an aspect ratio equal to 1,
and pup = u3. The graphs confirm this for the basic shapes considered. The
middle range of aspect ratios should be used to guarantee the separability
of basic shapes.

Interestingly, for simple shapes with large aspect ratios, the ratio of
the first two eigenvalues for Dirichlet, Neumann, and clamped plate cases
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FIGURE 3 /A, for basic shapes of varying aspect ratios: (a) buckling, (b) clamped plate.
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is enough to differentiate between the four simple shapes considered. For
the buckling problem, the ratio Ay/A; differentiates triangles and dia-
monds but has the same asymptotic behavior for rectangles and ellipses
as the aspect ratio becomes large.

Figures 4 and 5 show the graphs of A3/1; versus A»/A; for each of
the simple shapes, and for each of the operators considered. Assuming
no prior knowledge about the aspect ratio, Figure 4a, corresponding to
the Dirichlet case, shows that while knowledge of the ratio ifgg; is not
enough to know the shape of the domain €2, the pair (12/A1,A3/A1) can
easily differentiate between rectangles, ellipses, and triangles. This phe-
nomenon is similar in the case of the clamped and buckling problems
shown in Figure 5. While Dirichlet, clamped, and buckling eigenvalues
tend to confuse “bulky” diamonds and rectangles, Neumann eigenvalues
tend to confuse thin long triangles and ellipses. These aspects are shown
in Figures 4-6 as well as in Figures 6 and 7 where graphs for A3/ vs.
A2/Aq are treated.

The graphs that optimize A3/A; versus Az/A1, and similar considera-
tions, have been discussed abundantly in earlier work (see Ashbaugh and
Benguria, 1994b,c; Levitin and Yagudin, 2003). The case of rectangles is
explicitly discussed in these references. Suffice to say that the maximum
value for the case of rectangles in Figure 4a corresponds to the ratios
(20/11,35/11) which matches on the graph obtained using the 5-point
finite difference scheme described below. The maximum value of Ay/Aq
is, of course, 2.539, which checks as well with what is known theoretically.
In this case, A» = A3. These numbers check in Figure 6a as well, where
the maximum A,/A1 for the disk corresponds to the point (2.539,1). The
extremal among all rectangles in Figures 5a and 6a is also the extremal
among all diamonds and corresponds to the most symmetric of these
membranes—namely, the square—for which A>/A; = 2.5 for which also
A2 = A3. Graphs for the various classes of basic shapes exhibit similar
behavior for the Dirichlet, clamped, and buckling cases, raising curious
questions thus far not treated in the theoretical literature for the clamped
and buckling problems. Note also that when A2/ increases, correspond-
ing to more symmetric membranes, the feature vectors for the Dirichlet,
clamped, and buckling problems do not distinguish much between rect-
angles and diamonds. This is not the case of the Neumann problem where
clearly, in Figures 4b and 5b rectangles and diamonds, and in fact all
the basic shapes can be separated, except elongated triangles and ellipses
with large aspect ratios. There is a trade-off between Dirichlet, clamped,
and buckling features and those of Neumann case that warrants closer
future considerations. The vertical line at 4 for these two graphs con-
firms the Ashbaugh and Benguria conjecture. This is also displayed in
Figure 9 where the asymptotic line becomes horizontal and still corre-
sponds to elongated rectangles (see Antunes & Henrot, 2011). In Figure 8,
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the maximum A»/11, among all simple shapes considered, corresponds to
a disk. The case of the Neumann problem considered in Figure 9 suggests
disks minimize the ratio u3/u2, at least among the simple convex shapes
considered.

The numbers for the clamped and buckling problems check as well at
the level of the rudimentary finite difference method we are using in this
work. The optimal value of I';/ T'1 is obtained for a square plate and has a
value around 4.1597 (see Fichera, 1967). This is as observed in Figures 5a,
where we note that I'; = I's in this case, and Figure 7a. For the circular
plate, the graphs show the optimal value of about 4.3311 for I';/ 'y, for
which we also observe that I'; = I's (see Figure 7a).

In the case of the buckling problem, (Aimi & Diligenti, 1992, 1994) give
a value of about 1.7599 for a square plate. This is displayed in Figures 5b
and Figure 7b. Also for this case, A; = Agz. Clearly, for these simple shapes
the optimal given by the graphs for Ay/A; is about 1.8, which is in tune
with the inequalities (4.23) and (4.24). At the optimal A2/A1, A2 = A3 for
the case of ellipses, rectangles, and diamonds (see Figure 7b).

The extremal values for I'y/I'1, Ax/A1, and u3/up also check in
Figures 8 and 9, where for the clamped and buckling problems diamonds
and triangles are confused part of the time, and in the case of Neu-
mann, elongated triangles and ellipses with large aspect ratios are also
confused. It is clear that there is a strong, at least heuristically, correla-
tion between the Dirichlet, clamped, and buckling problems that warrants
further work. For the simple shapes considered, rectangles play a spe-
cial role in Figures 8 and 9, producing the smallest /A1, Az/A1, T2/ T,
and largest u3/p2. The ratio of the fundamental tones of the Dirichlet,
clamped, and buckling problems is maximal in all cases of basic shapes,
when the membrane is circular. For the Neumann problem, the ratio of
the first two nonzero fundamental tones is minimal for a symmetric shape,
which is the case of squares and disks displayed, respectively, at the points
(2.5,1) and (2.539, 1) in Figure 9.

6. COMPUTATION OF THE EIGENVALUES

6.1. The Discrete Laplacian

Richardson (1910), Collatz (1938), Courant (1943), and Pélya (1952) are
credited with inventing the finite difference scheme (Bramble and Hub-
bard, 1968; Hubbard, 1961; Forsythe, 1954, 1955; Forsythe and Wasow,
2004; Kuttler & Sigillito, 1984; Kuttler, 1970a; Pélya, 1952b, 1954; Wein-
berger, 1956, 1958, 1974). The short note from Oden (1990) makes a con-
nection with the finite element literature and gives a beautiful overview of
the contributors to the finite difference/finite element formulation of the
Laplacian eigenvalue value problem, tracing it back to Schellbach (1851)
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and even farther back to Bernoulli and Leibniz. Geometers and computer
scientists trace the combinatorial discrete formulation of the Laplacian
to Maxwell (1864) and Cremona (1874) Grinspun, Kélberer, Mathur, &
Wardetzky (2007). One should also mention Moler’s 1965 doctoral thesis
under Forsythe, which treated the rate of convergence of the discretized
eigenvalue problem to the original continuous one for the case of the
Dirichlet problem when the size of the mesh goes to zero, Moler (1965),
and the influential books by Forsythe and Wasow (2004) and Strikw-
erda (2004) which focus solely on finite difference schemes and provide
good introductions to various fundamental questions of finite difference
schemes such as stability, accuracy, and well-posedness.

6.2. Basic 5-Point Scheme and Dealing with the Boundary
Conditions

There are many ways to discretize and compute the eigenvalues of the
Laplacian. We use the finite difference method for our purposes. This is the
oldest and most “natural” way of discretizing the Laplacian operator. This
procedure is obtained by laying a mesh or grid of rectangles, squares, or
triangles in the plane. The tessellation thus obtained generates nodes. We
are interested in the nodes that fall inside the domain 2. Mathematicians
have devised different ways of dealing with the boundary 92 and with
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the boundary condition at hand. We first describe the discretization of the
Laplacian and then briefly note some ways authors have dealt with the
boundary conditions.

The value of the Laplacian of a function u(x,y) at a given node is
approximated by a linear combination of the values of the function at
nearby nodes. For example, for a square mesh of width h, the 5-point finite
difference approximation of order O(h?) is given by

ux+hy) +ux—hy) +ul,y+n+ul,y —h) —4u,y)
h? '

A given shape can then be thought of as a pixelated image, with h being

the width of a pixel. By Taylor expansion, it is clear that

Apu =

Au — Ayu = O(H?).

In practical terms, after discretization, with u;; representing the value of u
at the lattice point (ih, jh), one has

1
(Apu);j = h_Z(ui-i-l,j + Uijp1 + i1+ i1 — 4ugp).

Symbolically, numerical analysts write it in the form

The eigenvalue problem is replaced by a matrix eigenvalue problem

—Apu = A'uin Qy (6.1)
u=0 on 0%y,

with eigenmodes defined by 0 < Ah < Ah < kh - < Ah Here Ny, is
commensurable with the number w1th plxels 1n31de Qh (see Khabou etal.,
2007a; Zuliani et al., 2004).

The finite difference stencil is a compact graphical way to represent the
chosen finite difference scheme. The stencil for the 5-point finite difference
scheme is shown in Figure 10.

Notice that these eigenvalues satisfy a discrete version of the Courant—
Fischer minimax principle:

N sup WY 5 Yo, 0 @ +aguz + - + agug))>
k - .

UL Mk o o h2 ZQh (a1uq1 + apup + - - ~akuk)2
(6.2)
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FIGURE 10 Stencils for various finite difference Laplacian schemes: (a) 5-point scheme;
(b) 7-point-scheme; (c) 9 point scheme; (d) basic 13-point scheme for the bi-Laplacian.

Here 9; denotes the forward difference operator in the ith component, for
i=1,2,

hu,y) =ux+hy —ulxy and du(x,y) =ulx,y+h) —ulxy),

and wuj,up,...,u;, are linearly independent mesh functions vanishing
everywhere except in €.

Forsythe proved, Forsythe (1954, 1955); Forsythe and Wasow (2004)
that there exists y1, 2, ..., ¥, . . ., etc, such that

A< A — i+ o).

Moreover, the yi’s cannot be computed but are positive when € is con-
vex. Keller derived in 1965 a general result, Keller (1965), that provides a
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bound for the difference between the computer and theoretical eigen-
values for the Dirichlet eigenvalue problem from knowledge of the esti-
mates on the truncation error, under a technical condition between the
boundaries €2, and 0. If

T (ux,y) == (A — Apu(x,y)

denotes the local truncation error, for a given function u, at a point (x,y) €
Qy, then for each Ay eigenvalue of the continuous problem, there exists Al
eigenvalue of the difference problem, such that

Il () ll2

I — M <
g2

Effects of boundary regularity for the 5-point discretization of the Lapla-
cian were treated by (Bramble and Hubbard) in 1968 (see also Moler,
1965). When the equation of the boundary in local coordinates is twice
differentiable and the second derivatives satisfy a Holder condition,

Ak — A < KK

A similar result holds for the maximum difference between the eigen-
function and its discretized equivalent. More complicated situations are
treated in Bramble and Hubbard (1968) and Moler (1965). Weinberger
(1958) proved that

A
h k
)‘k = n2
1- %3 Ak
from which it follows that
h
)‘k
h2 3 h
1+ 7 M

An upper bound result that complements this is provided by Kuttler, who
showed in 1970 that

hy 120002 4+ 1 p8 M5 o1 110 36
A < Mt 29" + Tego00 1 p)” + t3maoo0 11 )

, (6.3)
1— 5 hOh2 — a5 he (A3

an inequality that improves an earlier result of Weinberger (1958)

0
A

< —Fr (6.4)
f— 1 hl
1—g3h2x

Ak
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viz., that the bound in (6.3) is asymptotically equal to
A4 lhz(,\h)2 + lh4(x’1)3 4+
k1 R T gpn TR ’
while that in (6.4) has the expansion
no Loona 14

Burden and Hedstrom (1972) proved a remarkable discrete version of
the Weyl asymptotic formula for the case of the 5-point scheme.

Hubbard (1961) performed most of the analysis for the Neumann finite
difference scheme using the 5-point formulation described above:

Apv= /,Lh 0,
and the normal boundary condition is given (for boundary pixels) by
vi; = average of adjacent “interior” points.
For example, for a boundary point on the left of a planar domain, we write
Vij+1 + Vit1,j + Vij—1 = 30ij.

Using a slightly weaker formula of the minimax principle, Hubbard (1961)
derived formulas similar to those of Weinberger and Kuttler carefully
relating the eigenvalues to curvature integrals.

The new edition of Strikwerda’s indispensable book on finite differ-
ence schemes Strikwerda (2004) offers a brief new section (Section 13.2)
that shows how to explicitly calculate the Dirichlet eigenvalues for a
5-point discretization when  is the rectangle using a discrete version of
the techniques of separation of variables and recursion techniques (see
also Burden and Hedstrom, 1972).

6.3. Higher-Order Discretizations of the Laplacian

To circumvent the problem of not being clear about the behavior of the
approximate eigenvalues compared with the exact ones, Pélya (1952b,
1954) (see also Forsythe and Wasow, 2004) proposed two modifications.
In both cases, he suggested generalized eigenvalue problems of the form

Liju =1 Rjju,
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where L;; and R;; take various forms depending on the modification.
To further the mechanical analogy, £;; and R;; are usually thought of as
elements of the stiffness and mass matrices in a system of springs in which
the mesh points are thought of as a chain of masses carrying different
weights linked by springs with different constants. In the 5-point scheme
case,

1
Liju=r3 (i1 + wijer + i1+ wij — 4 uy),

and R;; = identity.
In the first modification, Pélya (1952b) proposed to change R;; to

1
Riju = I (61 + Uig1j + Wijo1 + Ui1j + Ui1j—1 + Ujj1)-

This takes the simplified 7-point scheme represented by the stencil in
Figure 10b, where the stiffness and mass are given by

1 1 7 11
1 11
u = 0on 0%y,
This scheme satisfies the property
— A
Ak < )‘Z < 1—k2

proved by Weinberger (1956, 1958), which provides two-sided bounds for
the eigenvalues of the membrane problem, namely,

It is then clear that in this case XZ — A = O(H?).
In the second modification, Pélya (1952b) proposed to replace both £;;
and R;; with

1
Liju= 75 (Mir1j + Uig1j1 + Uije1 + -+ i jo1 — Suy)
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and

1
Riju = ~3 (6w + 4uj1,j + 4uj1 +4uij

+4uij1 + Uig1 1+ Uip1, o1 Uie1jen T+ Ui i-1)-

This amounts to a recursive scheme with stiffness and mass matrices
elements given by

L1 1 (1 41
—— 11 -8 1Jlu=—14 16 4] uinQy
2
3t \1 1 1 36 \1 4 1
u=0o0nady,

with a full 9-point scheme represented by Figure 10c. This 9-point scheme

satisfies the property Ay < XZ as well. Moreover, Lyashenko, Meredov,
and Embergenov (1984) proved that the 5-point and 9-point schemes can
be obtained to obtain a better approximation of the eigenvalues for the
continuous case,

nooTh
)\.k + Ay

= A+ O(h),

when € is strictly convex with C' boundary, where AZ denotes the
eigenvalue emanating from the 5-point scheme.

6.4. Clamped Plate and Buckling of Clamped Plate
Discretizations

A 13-point scheme naturally arises in discretizing the bi-Laplacian A2
by successively applying the 5-point Laplacian described earlier: A%u =
Ay (Apu). In this case, one gets

n* Aﬁu =u(x,y —2h) +2u(x —h,y —h) — 8u(x,y —h) + 2u(x + h,y — h)
+ u(x — 2h,y) — 8u(x — h,y) + 20u(x, y)
—8u(x+h,y) +ulx+2hy) +2u(x—h,y+h)
—8u(x,y+h) +2u(x+h,y+h) +u(x,y+ 2h). (6.5)
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With Ui denoting again the value of u at a lattice point (ih,jh), the
bi-Laplacian takes the form

h* (Aﬁu)ij = Ujj2
+2ui1,j-1 — 8ujj—1 + 2Uiy1,j-1
+ Ui — 8111‘_1,]‘ + 2014,',]‘
— 8uit1,j + Uiyoj + 2Ui1,j41
— 8ujj11 + Ui 141 + Uijio- (6.6)

The stencil for this discretization of the bi-Laplacian is represented in
Figure 10d and the stiffness matrix is then given by

1
, 2 -8 2
2 _
L —g 22 —2 1
1

In the discrete setting, the clamped plate problem takes the form
A2y =T"uin @), (6.7)
where the boundary pixels are subject to
ui/]‘ =0
and
u;j = average of adjacent “interior” points.
The case of the buckling plate takes the form
A2u=A'"Ayuin Q (6.8)
h h h .
with similar boundary conditions and Aj denoting the 5-point discretiza-
tion of the Laplacian. Each discrete problem has a finite positive sequence
of eigenvalues, commensurable in number with the number of pixels

inside €. They are usually denoted by

h h h
0<F15F2§...§[‘k§...,
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and
h h h
O<A1§A2§...§Ak§...'
These eigenvalues are characterized by the discrete version of the cor-

responding the Courant-Fischer minimax principle for these problems,
namely

W2 Y g, (Ap(aruy +agua + - - - + aguy))*

I = inf su , (69)
T alr“Z/Pﬂk h2 Y g, (@1t + agup + - - - agiig)?
and
h : h? > g, (Bp (@ur +axup + -+ + agy))?
Ay = inf sup

2 2°
WMk gy h2 Zi:l ZQ,, (0; (aquq + aguin + - - - aguy))

(6.10)

Here 9; denotes the forward difference operator described earlier and
uy,u, ..., ux are linearly independent mesh functions vanishing every-
where except in €. Weinberger (1958) proved the first inequality relating
the eigenvalues of Eq. (4.1) to those of Eq. (6.7):

Ty

1727

h

F B —

k = "2
1- 2

which leads to the lower bound

L (1’}]{1)3/2 h2 (FI];I)Z h4 (1’*2)5/2 h6
+ + + +

RER 7?2 24 87

Using the method of Weinberger (1958), Kuttler (1970b) found further
upper and lower bounds for the eigenvalues of the continuous problems
in terms of those of Egs. (6.7) and (6.8):

h b 13232
% <y < 1Fk4+h2 h (1Fk)6 — 611)
1+ &0 1— L hATl — Lo n6 (13
and
Al Al L p2Al2
k Ag < et 2 A (6.12)

_— <
2 - 1 h 1 3~
1485 A 1— g b (A2 — Lo 16 (Al)3
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These inequalities clearly show that as & — 0, the eigenvalues of the
discrete problems converge to those of the continuous case. For the dis-
cretizations considered in this paper, we used the 5-point scheme for the
Dirichlet and Neumann problems and the 13-point scheme for the case of
clamped and buckling problems.

6.5. Other Methods of Computing the Eigenvalues

Rather than providing a comprehensive review of methods of computa-
tion of the eigenvalues of the membrane problem and the other associated
problems described previously, we mention the techniques that were most
prominent recently and others that provide future hope. The “bread and
butter” of the bulk of the work of Reuter ef al. has been the finite ele-
ments method (Niethammer et al., 2007; Peinecke et al., 2007; Reuter, 2010;
Reuter et al., 2005a,b, 2009b). This is the method preferred in the work
of Levitin and Yagudin (2003). Of particular interest to the computational
community in recent years is the method of particular solutions (MPS) of Fox,
Henrici, & Moler (1967), one of the most influential works in numerical
analysis. MPS has received a recent “revival” thanks to work of Betcke and
Trefethen (2005); Trefethen and Betcke (2006) (see also Guidotti and Lam-
bers, 2008). Conformal techniques used by Driscoll (1997) proved very
efficient in providing the first high-accuracy verification of the isospec-
trality of Bilby and Hawk. Improving a truncation estimate of Moler and
Payne (1968) recently allowed (Barnett, 2009) to pursue high-lying eigen-
values with great numerical accuracy. Some of these techniques have roots
in collocation, a technique devised by Collatz in the 1930s. We also note the
method of fundamental solution as another popular method used to verify
and produce conjectures as in the work of Antunes and Freitas (2006) and
Antunes and Henrot (2011). By entirely avoiding the necessity of deal-
ing with the boundary conditions, Saito (2008) discovered a new way of
extracting geometric features from an integral operator based on Green’s
function of the entire space that is required to commute with the Lapla-
cian, leading to a nonlocal boundary condition. Last, but not least, one
should mention that in the case of the bi-Laplacian, Fichera (1967) and
Weinstein (1937, 1966) have devised the most technically difficult meth-
ods to implement, which have the advantage of yielding the most accurate
values known in the literature thus far. These methods provide two-sided
bounds for the eigenvalues. Although interest in these methods has some-
what waned, the school is still active (see Aimi & Diligenti, 1992, 1994).
Fichera’s techniques also are in need of a “revival” since they provide
highly accurate two-sided bounds for the difficult clamped and buck-
ling problems and show numerically the slow convergence of the Weyl
asymptotic formula Fichera (1967) (see also Weinberger, 1999).
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7. FEATURES BASED ON THE EIGENVALUES OF THE VARIOUS
PROBLEMS CONSIDERED

Given a planar domain 2 and a set of the first positive eigenvalues
O<M=ir=-=hu,

for either of the previously described operators, we defined in Khabou
et al. (2007a) the three feature vectors given by

A A A A
Fl(sz>=<1 1A —1>,

)L_ZIEIE,...’)\H

A A2 A An—
FZ(Q):(l 2 A3 n1>/

PO Vi
and

n n

Here d; <dp,... <d, are the first n eigenvalues of a disk. Obviously the
three feature vectors are translation, rotation, and scaling invariant. More-
over, the entries of each feature vector are all bounded, which makes them
very suitable for all sorts of algorithmic manipulations. The feature vec-
tor F3 somehow measures the distance of a domain  from a disk. In this
chapter, we also introduce a fourth feature vector, namely

A A A A
F4(Q):(2 3 Mg n+1>‘

)x_llmlﬁl'..’ 1’1)\,1

The entries of F4 are the inverses of those in F; except for the division with
n, which is meant to scale down the Weyl growth and prevent the entries
of the vector from becoming too large.

The multitude of universal properties discussed in previous sections
guarantee that the entries of the feature vectors are positive and bounded,
and thus suitable for algorithmic manipulations. In particular, bounded
input is quite convenient for artificial neural networks, which we discuss
next.

8. ARTIFICIAL NEURAL NETWORKS

By most accounts, the artificial neural network (ANN) idea was born in
1943, when McCulloch and Pitts published their well-known paper that
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showed it was mathematically possible to create an interconnected net-
work capable of solving any computable task. ANNs were inspired by
the way the human brain learns and processes information. In fact, the
structure of an ANN mimics that of a human brain: It is composed of a
large number of highly interconnected simple processing elements (neu-
rons) working in parallel to learn/solve a specific problem. The human
brain contains somewhere between 10 billion and 100 billion neurons that
are massively interconnected. A particular neuron receives weighted stim-
uli from other neurons and simply “fires” (or not) depending on the total
strength of the stimulus it receives. In a way, a neuron acts like a primitive
processor with many inputs and one output, where its output y can be
expressed as:

¢
y=f (Z xiwi),
i=0

where, xg = 1, wy is called the neuron bias, x1,...,x, are the stimuli from
other neurons, and wy, . .., w, are the weights of those stimuli (Figure 11).
The function f, called the activation function, is typically a thresholding
function:

1 ifx>0

fo = {0 ifx <0.

Some ANN neurons use this type of activation function, but others use
a continuous version of it, mainly

1
1 4 e~ Lo xiwi ’

fx) =

where a > 0.
The neurons in the human brain are interconnected in highly com-
plicated and dynamic patterns with new connections established and

X4
W1

X2
. w,

X

FIGURE 11 Neuron structure.
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Input First hidden Second hidden
layer layer layer

FIGURE 12 Feed-forward ANN composed of one input layer, two hidden layers, and
one output layer.

old ones pruned as the brain develops and adapts. Similarly, several
ANN structures exist with the “feed-forward” structure one of the most
commonly used (Figure 12) (Haykin, 1994). A feed-forward structure is
composed of a sea of neurons grouped into “layers.” The first layer is the
input layer where an input pattern is fed to the network. As input patterns
are “fed-forward” to the middle layers (called hidden layers), informa-
tion in the input patterns is mapped to other hyperspaces (possibly of
higher dimensionality than the input space) where the patterns are “reor-
ganized” before being fed to the final layer (called the output layer) where
decision/approximation is made.

Like a human brain, an ANN can be trained to learn by example. Many
ANN training strategies exist; however, the supervised backpropagation
training algorithm is one of the most commonly used (Werbos, 1974;
Rumelhart, Hinton, & Williams, 1986; Werbos, 1998). The backpropagation
algorithm is a gradient descent method (Strikwerda, 2004) that iteratively
updates the neurons’ connection weights to optimize a cost function, typi-
cally chosen to be the least squares error between desired responses and
actual responses of the network for a set of training patterns. More pre-
cisely, the training process tries to find the weights to minimize the cost
function

N
J=)_ E@),
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where N is the total number of training samples and

1 M
E@) =5 e

m=1

is the difference between the desired and actual ANN output at the output
layer for training sample i (M is the number neurons at that layer). The
term €2, (i) represents the difference between the desired and actual output
atneuron m of the output layer. At every iteration of the training process, a
training sample is presented to the ANN and its output is calculated using
the current weight values. The difference between the desired and actual
outputs is calculated and is used to proportionally update the weights
starting at the output neurons and moving backwards toward the input
neurons (Haykin, 1994). The training stops when the cost function reaches
zero or stabilizes.

Neural network usage saw a huge boost in the 1980s and 1990s when
computer power became adequate enough to simulate and train such
massively connected structures. ANNs have been used in a variety of
applications ranging from stock price prediction, robotics, quantum chem-
istry, to automatic target detection and recognition (Haykin, 1994; Poggio
and Girosi, 1990). They are especially useful as pattern classifiers because
of their fault tolerance, robustness, and universal function approxima-
tion ability (Sandberg, 1992). In theory, a multilayer feed-forward neural
network with enough nodes and hidden layers can approximate any
bounded function and its derivative to any arbitrary accuracy given a
“large enough” training set (Hornik, Stinchrombe, & White, 1990). This
property also means that a neural network can be used to separate pat-
terns from different classes even if the classes are not linearly separable
(i.e., no hyperplane exists that can separate patterns from the different
classes). Another desired property of ANNS is their generalization capa-
bility. Generalization is a measure of how well a trained network performs
on testing patterns not seen during the training process. For the aforemen-
tioned reasons, we decided to use feed-forward ANNSs as classifiers in this
work.

9. EXPERIMENTAL RESULTS

We conducted two sets of experiments to evaluate and compare the per-
formance of the Dirichlet, Neumann, buckling plate, and clamped plate
features. We used a variety of datasets in our experiments. Some were
computer generated (CG), some were hand-drawn (HD), and some were
extracted from a standard database of fish images. In the first set of exper-
iments, we wanted to investigate the class separation capabilities of the
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different features and their tolerance of boundary deformation. In the sec-
ond set of experiments, we wanted to investigate the noise tolerance of
the different features; particularly, we wanted to see how these features
reacted to holes in the shapes and intruding and extruding noise at the
boundary. The results of these experiments are described in the following
sections.

9. Class Separation Capability and Tolerance of Boundary
Deformation

A good feature set should react differently to images from different classes
producing feature vectors that are very different from class to class.
Another desirable property of a feature set is that only a “few” features are
needed to discriminate between classes. Using fewer features allows the
design of a simpler—and hence faster—classifier. Obviously, the number
of features needed in a particular classification problem depends on the
number of classes and their complexity. A good feature set should also be
tolerant of some variations within a class. To test these properties in our
proposed feature sets, we conducted two sets of experiments. The first set
of experiments was conducted using simple hand-drawn and computer-
generated images of disks, triangles, rectangles, ellipses, diamonds, and
squares. The second set of experiments was conducted using a subset of
natural shapes from a standard dataset of fish images.

9.2. Computer-Generated and Hand-Drawn Shapes

A total of 288 hand-drawn images of disks, triangles, rectangles, ellipses,
diamonds, and squares of different sizes and orientations were scanned
into the computer. Samples are shown in Figure 13. As can be seen from
these samples, the boundaries of these shapes are noisy and irregular.
The Dirichlet, Neumann, clamped-plate, and buckling plate eigenvalues
of these hand-drawn images were computed and n = 20 Fj, F», F3, and
F, features from each group were generated. Next, we trained simple
feed-forward neural networks with one hidden layer with n = 4, 8,12, 16,
and 20 features of 300 computer-generated images of disks, triangles, rect-
angles, ellipses, diamonds, and squares. The ellipses, rectangles, and
diamonds had variable aspect ratios ranging from 2 to 2.5. The triangles
were completely random. The trained neural networks were then tested
using a different set of 300 computer generated pictures and the set of
288 hand-drawn shapes. We wanted to gauge the robustness of the fea-
tures and their tolerance of noise and boundary deformation since the
computer-generated shapes can be thought of as “noise-free” version of
the hand-drawn shapes. Tables 1-4 summarize the results of these exper-
iments. As clearly seen in the tables, we were able to attain very high
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FIGURE13 Sample hand-drawn shapes.

TABLE1 Correct Classification Rates of Computer-Generated (CG)
and Hand-Drawn (HD) Shapes Using Dirichlet Features

Fq F> F3 Fy
N CG HD CG HD CG HD CG HD
4 98.0 951 973 892 960 91.7 973 958
8 993 941 993 924 98.0 944 993 96.2
12 99.0 944 993 924 987 938 99.3 96.5
16 99.3 958 993 941 990 96.2 99.7 965
20 99.7 965 993 878 993 965 99.0 97.2

Average 99.1 952 989 912 98.2 945 989 96.4

classification rates (up to 100%) using all the feature sets. This testifies
to the ability of all the feature sets (whether they are based on Dirichlet,
Neumann, buckling, or clamped plate eigenvalues) to separate the six
classes. Also, all feature sets proved to be tolerant of boundary variations
and performed very well with both computer-generated and hand-drawn
images. Moreover, all feature sets were able to achieve a high classification
rate using only a small number of features (classification rates well above
90% using only 4 or 8 features). This is further evidence of these features’
usefulness as shape classifiers.
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TABLE2 Correct Classification Rates of Computer-Generated (CG)
and Hand-Drawn (HD) Shapes Using Neumann Features

F; F, F3 Fy
N CG HD CG HD CG HD CG HD
4 99.0 931 99.0 951 983 931 99.0 96.5
8 99.3 972 997 972 993 983 99.3 979
12 99.7 979 99.0 965 100 983 99.7 983
16 100 98.6 983 965 100 97.6 99.7 98.6
20 99.7 979 987 958 100 96.5 99.7 99.0

Average 99.6 969 989 96.2 99.5 96.8 99.5 98.1

TABLE3 Correct Classification Rates of Computer-Generated (CG)
and Hand-Drawn (HD) Shapes Using Clamped-Plate Features

F1 F F;3 Fy
N CG Hb CG HD CG HD CG HD
4 933 903 940 764 937 89.6 957 927
8 95.7 875 960 91.7 953 90.3 963 91.7
12 977 896 970 920 96.0 89.6 96.0 93.8
16 983 924 983 809 98.0 89.6 98.7 924
20 98.0 903 98.7 84.0 99.0 913 973 951

Average 96.6 90.0 96.8 85.0 96.4 90.1 96.8 93.1

TABLE 4 Classification Rates of Computer-Generated (CG) and
Hand-Drawn (HD) Shapes Using Buckling Plate Features

Fq F> F3 Fy
N CG HD CG HD CG HD CG HD
4 98.0 913 927 86.8 927 87.8 93.7 927
8 93.7 917 947 899 93.7 872 933 90.3
12 947 903 940 858 96.0 91.3 95.0 95.8
16 943 924 953 89.6 96.7 924 96.0 95.1
20 97.7 944 947 854 957 941 96.0 94.1

Average 95.7 92.0 943 87.5 95.0 90.6 94.8 93.6

On average, the Dirichlet and the Neumann features performed com-
parably to each other and were consistently better than the clamped
plate or the buckling plate features. The performance similarity of the
Dirichlet and Neumann features was observed in some of our earlier
published work (Khabou et al., 2007a,b, 2008). However, the better perfor-
mance of the Dirichlet and Neumann features compared with the clamped
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plate and buckling plate features is a new observation and merits fur-
ther scrutiny. From an engineering perspective, this relates to the fact
that the clamped plate and buckling features are based on fourth-order
derivatives, whereas Dirichlet and Neumann are based on second-order
derivatives, which are less sensitive to noise than the fourth order.

It is also interesting to notice that, on average, the Fi, F3, and F4
features seem to have similar performance, better than that of the F
features regardless of which Laplacian the eigenvalues are based on.
This trend was also observed in some of our previously published work
(Rhouma et al., 2009). We believe that this may be explained by the fact
that some shapes may have completely different eigenvalues but sim-
ilar multiplicity, which yields similar F, features. For example, if the
first 5 eigenvalues of a shape S; are {2,3,3,6,6} and those of a second
shape S, are {1,8,8,16,16}, their F, features will be {2/3,1,1/2,1} and
{1/8,1,1/2,1}, respectively, which are quite similar (they differ by only
one value). However, the F1, F3, and F4 features, on the other hand, would
be very different (for example, the F; features would be {2/3,2/3,1/3,1/3}
and {1/8,1/8,1/16,1/16} respectively). In fact, as we argued earlier, the
values of Ax;1/Ax converges to 1 as k — oo and thus do not carry much
information about a specific shape. Moreover, if two shapes €1 and
have identical eigenvalues save for the first one, then the F, feature vec-
tors of both shapes are almost identical. In contrast, the feature vectors Fy,
F3, and F4 do carry in each entry the value of A1, and, by Weyl’s asymp-
totic formula, geometric content as well, even when the dimension of the
feature vector is high (see Osting, 2010; Weyl, 1911).

9.3. Natural Shapes

In this experiment, we wanted to gauge and compare the performance
of our features using a subset of a standard database of natural shapes.
Our dataset consists of 195 images of sting ray, snapper, eel, mullet, and
flounder-like fish from the standard SQUID dataset® (University of Surrey,
UK) (samples are shown in Figure 14). The data set was divided into
training and testing pools consisting of 95 and 100 images, respectively.
The Dirichlet, Neumann, buckling plate, and clamped plate features were
generated from all the images. To illustrate the class separation capability
of the different generated features, we plotted the ratios of 11/A3 versus
A1/Az for the eel, flounder, and mullet images (we did not include the
other two fish classes in the plots because they made them look busy
and hard to read). These plots are shown in Figures 15-16. As can clearly

2 See http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html
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FIGURE 14 Fish images in the dataset.

be seen in these graphs, features from the same fish class seem to clus-
ter together, exhibiting behavior similar to that described by Antunes and
Henrot (2011). This clustering phenomenon is a good indication of the
features’ potential class separability capability. It is also worth noting that
since the flounder images are the closest shapes to a disk, the values of
their A1/A3 and A1/X; are also the closest to those of a perfect disk. The
values of A1/A3 and A1/, for the eel images are at the other end of the
spectrum (very elongated shapes), whereas those of the mullets are some-
where in between (their width/length aspect ratios is somewhere between
those of the flounders and the eels).

After generating the different features for all the fish images, we cre-
ated simple feed-forward neural networks with one hidden layer and an
input layer that uses n =4,8,12,16, and 20 features. These neural net-
works were trained using the 95 fish images in the training subset and
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TABLE5 Correct Classification Rates of the Fish Images

Neumann Dirichlet Buckling-plate ~ Clamped-plate
N Fi Fp F3 F4 Fi Fo F3 F4 Fi Fp F3 F4 F1 F» F3 F4
4 88 85 89 87 92 95 94 94 87 84 93 85 90 87 92 89
8 94 89 91 91 93 94 94 94 89 83 92 90 90 86 91 90
12 91 86 90 92 93 93 94 97 88 84 93 90 92 80 93 96
16 95 87 95 96 94 91 92 98 91 85 92 92 92 85 93 94
20 95 88 95 97 94 88 93 98 92 87 93 93 92 81 92 94

Average 93 87 92 93 93 92 93 96 89 85 93 90 91 84 92 93

tested using the 100 images in the testing subset. Table 5 shows the correct
classification rates on the testing set. As clearly seen in this table, very
good classification rates (above 90%) were achieved using all the fea-
ture sets, which reiterates that they are good shape discriminators and
are tolerant of boundary deformation given all the variability in the fish
images. It is worth mentioning that most classification errors were due to
confusion between flounder-like and snapper-like images, which are the
most similar classes. We also notice that, yet again, the Dirichlet and Neu-
mann features performed similarly and better than the clamped plate and
the buckling plate features. The Dirichlet and Neumann features attained
better classification rates with fewer features. This shows that they are
more stable and more tolerant of boundary variations. Similar to the trend
observed in the computer and hand-drawn images, the clamped plate
and buckling plate features had similar performance with the fish images.
Also, we observe again that the F, features did not perform as well as the
F1, F3, and F, features regardless of which eigenvalue problem is used to
generate the features. On average, the Dirichlet features have an advan-
tage over all other operators, especially when the number of features is
small (see Table 5).

94. Effect of Holes and Boundary Noise on Features

The effect of holes and boundary deformation on the value of eigenval-
ues are commonly studied problems in mathematics (see, e.g., Flucher,
1995; Harrell, Kroger, & Kurata, 2001; Cox, 1995). For instance, the classi-
cal paper of Kac (1966) provides a means of extracting the number of holes
contained in a domain from knowing the spectrum for a domain when its
boundary is smooth.

In this set of experiments, we wanted to see how our features would
react to the presence of holes of different sizes in an image and to the
presence of intruding and extruding noise on the boundary. We conducted
two experiments: In the first experiment, we created a sequence of square
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FIGURE 17 Images of squares with holes of size ranging from 0% to almost 60%.

shapes with a hole of gradually increasing size ranging from 0% to almost
55% of the solid square area (Figure 17).

We computed the first five F1, F, F3, and F4 Neumann, Dirichlet,
clamped plate, and buckling plate features of these shapes. The average
and standard deviation of the feature values are plotted in Figures 18-20.
The standard deviation is a measure of how the feature values varied as
the size of the hole increased. Based on these graphs, it seems that the Neu-
mann and the buckling plate features are the most tolerant of the presence
of a central hole in the square shape. They exhibited the least amount of
variation as the hole was introduced into the shape and its size increased.
The Dirichlet and clamped plate features appear to behave similar to each
other (similar standard deviation), but seem less tolerant of the holes than
the Neumann and the buckling plate features. To further test these obser-
vations, we plotted the values of A1/42 and A1/A3 as a function of the size
of the central hole in Figure 20. In Figure 20a all eigenvalue ratios except
the Neumann reacted to the introduction of the central hole. Since all the
figures considered are symmetric, uy = 3, resulting in a constant line at
1 in the Neumann case. To avoid multiplicity considerations as a result of
symmetry, the graphs in Figure 20b clearly display the reaction of A3/11
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to the gradual increase of the hole size. As the domain thins, all graphs in
Figures 20a and b exhibit a clearly defined asymptotic behavior that trans-
lates into an inability to “hear domains with large holes” for features built
of ratios of eigenvalues.

In the second experiment, we wanted to investigate the effect of mul-
tiple holes and the presence of intruding and extruding boundary noise
on the feature values. We created 12 square and 12 disk shapes with
various extruding and intruding “noise” and/or different numbers of
holes in them (Figures 21a and b). We then computed their Neumann,
Dirichlet, clamped plate, and buckling plate eigenvalues. We plotted the
ratios of A1/A2,A1/A3, and A1/A4, in Figures 22-24. All features reacted to
the “noise” and hole(s) to some degree. All features seemed to react the
most to the intruding “noise” in image 6 (row 2, column 2). The reaction
to the hole(s) seemed less pronounced than the reaction to the intruding or
extruding noise. Overall, the Dirichlet features seemed to react relatively
the least to the “noise.”

10. CONCLUSION

Eigenvalues of Laplacian operators were used to create translation-,
rotation-, and size-invariant features for shape description and recogni-
tion purposes. Sets of experiments conducted with simple shapes show
that the features confirm a set of known theoretical properties discussed
in details in this chapter. Also, we observe that the features exhibit some
interesting asymptotic behaviors. The features were also used to clas-
sify computer-generated, hand-drawn, and natural images with a great
level of accuracy. The excellent classification results, which were achieved
using a relatively small number of features (only four features in some
cases), demonstrate that these features have a good interclass discrim-
ination capability and can successfully be used to greatly compress the
information necessary to represent and index a particular shape (e.g., in
a searchable shape database). The Dirichlet and Neumann features per-
formed almost identically in our classification tests as did the clamped
plate and buckling plate features. We noticed that the Dirichlet and Neu-
mann features had a consistent slight edge in performance compared with
the clamped plate and buckling plate features.

The stability of all features in the presence of noise, boundary defor-
mation, and holes was investigated. All features proved quite stable and
tolerant of noise, small boundary deformation, and small holes. This indi-
cates that these features, in essence, capture the dominant (i.e., low-pass
filtered) portion of the shape and are not very sensitive to small variations
on a shape’s boundary.
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(a) Twelve square shapes with various types of “noise.”

90 d
0 ¢ 0O

00O

(b) Twelve disk shapes with various types of “noise.”

FIGURE 21 Aberrations of basic shapes via hole and boundary “noise.”
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