PHZ 3113 - PROBLEM SET 3

1) Text Problem 1.9 - note that two matrices anticommute if $\mathrm{BA}=-\mathrm{AB}$. Evaluation of the expression in the last part is facilitated by first showing that the matrices A and C anticommute.
2) Prove the following statements:
a) Any matrix that is the commutator of two other matrices has zero trace; i.e., if $C=[A, B]$, then $\operatorname{Trace}(C)=0$.
b) If A is a diagonal matrix with no two elements equal to each other and if A commutes with a second matrix B, then the matrix B must also be a diagonal matrix.
3) Find the inverse of the $3 X 3$ matrix whose rows are 321 (row1), 221 (row2), and 114 (row 3).
4) Prove the following statements:
a) If a matrix C is defined by the relation $\mathrm{C}=\mathrm{S}^{\dagger} \mathrm{S}$, where S is any non-null matrix and S^{\dagger} is its Hermitian conjugate, then the trace of C will be greater than zero.
b) If A and B are any two Hermitian matrices, then the matrices $C=A B+B A$ and $\mathrm{D}=i(\mathrm{AB}-\mathrm{BA})$ are also Hermitian matrices.
5) Text Problem 1.14 - to determine whether each set of equations has a non-zero solution, you will need to evaluate the determinant of the coefficient matrix.
6) Text Problem 1.16 - to determine whether the set of equations has a unique solution, you will need to evaluate the determinant of the coefficient matrix. Note that the problem specifies that a matrix method (not Gaussian elimination) is to be used to obtain the solution.
7) Text Problem 1.7 - In part d of this problem, it is useful to multiply the equation defining A on the left by $1+S$ and then to consider the transpose of the resulting equation using the fact that $S^{T}=-S$.
8) Text Problem 1.18 - recall that for a unique solution to a set of inhomogeneous linear equations, the determinant of the coefficient matrix must be non-zero. You should find that the determinant is zero for two values of the parameter α. You need to consider these two values separately. For one value, there is no solution at all; for the other there is an infinity of solutions. For the second case, you should be able to express two of the unknown quantities in terms of the third.
