1) Prove the following statements:
a) If the same linear transformation diagonalizes two matrices A and B , then the matrices A and B must commute. Hint: use the fact that the diagonalized matrices must commute since they are both diagonal.
b) The eigenvalues of an arbitrary 2 X 2 matrix A satisfy the equation

$$
\lambda^{2}-\lambda \operatorname{Tr}(\mathrm{A})+\operatorname{det}(\mathrm{A})=0
$$

2) For each of the $3 X 3$ matrices below, find the eigenvalues of the matrix and a set of eigenvectors that are normalized and orthogonal to one another (an orthonormal set).
a) 110 (row 1), 101 (row 2), 011 (row 3)
b) $50 \mathrm{sqrt}(3)$ (row 1), 030 (row 2), sqrt(3) 03 (row 3)
c) 1-1-1 (row 1), -11 -1 (row 2), $-1-11$ (row 3)
3) Text Problem 1.23 - you will first need to find the eigenvalues and the equations satisfied by the corresponding eigenvectors for each of the two matrices. Then find a set of eigenvectors that satisfies both sets of equations. Note that you should be able to make the eigenvectors orthogonal to each other and normalized as well.
4) Text Problem 1.27 - first determine the eigenvalues of the matrix H and the corresponding set of orthonormal eigenvectors. The transformation matrix U has these eigenvectors as its columns. Verify that the transformation indeed diagonalizes the matrix H .
5) The vectors \mathbf{f} and \mathbf{g} satisfy the equations $A \mathbf{f}=\lambda \mathbf{g}$ and $A^{T} \mathbf{g}=\lambda \mathbf{f}$, where A is a matrix with real elements and λ is a scalar.
a) Prove that \mathbf{f} is an eigenvector of the matrix $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ with eigenvalue λ^{2}.
b) Prove that \mathbf{g} is an eigenvector of the matrix AA^{T} with eigenvalue λ^{2}.
c) Let A be the 2 X 2 matrix with rows 2 /a $2 / \mathrm{a}$ (row 1) and $1 / \mathrm{a}-4 /$ (row 2) where $\mathrm{a}=\mathrm{sqrt}(5)$. For this matrix A, find the two possible values of λ^{2} defined above and the corresponding normalized vectors \mathbf{f} and \mathbf{g}.
6) Text Problem 1.31 - note in this problem, that the quadratic quantity $\mathrm{Q}=\mathrm{x} \cdot \mathrm{A} \cdot \mathrm{x}$ (or $x^{T} A x$ in the text's notation), where A is a symmetric matrix. You will need to first find the matrix A and its normalized eigenvectors. The signs of the corresponding eigenvalues determine the type of conic section that the equation $\mathrm{Q}=110$ represents. For elliptical conic sections, the eigenvectors are along the directions of the major and minor axes of the ellipse in the original coordinate system.
7) Text Problem 1.32 - this problem is essentially a three dimensional version of the previous problem. Note that the longest axis of the ellipsoid corresponds to the smallest of the matrix's eigenvalues.
8) Text Problem 1.33 - this problem is similar to the two previous ones, except that one of the matrix's eigenvalues is two-fold degenerate (two eigenvectors with the same eigenvalue). This means that the ellipsoid has a symmetry axis, which is in the direction of the eigenvector corresponding to the non-degenerate eigenvalue.
