PHZ 3113 - PROBLEM SET 5

1) Text Problem 4.4 - note that moving the origin makes the function symmetric.
2) Text Problem 4.5 - note that the function is antisymmetric and that the series shown in the problem is just the Fourier series for a particular value of x.
3) Consider the function $f(x)=x^{2}$, defined over the interval $-\pi<x \leq \pi$.
a) Find the Fourier series for this function, noting that it is symmetric.
b) By inserting a particular value for x into the Fourier series derived in part a , evaluate the infinite sum given by $\sum(-1)^{n+1} / n^{2}$.
4) Consider the antisymmetric parabolic function $f(x)$ defined by the relations

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =4 \mathrm{x}(1+\mathrm{x}) \text { for } \quad-1 \leq \mathrm{x} \leq 0 \\
& =4 \mathrm{x}(1-\mathrm{x}) \text { for } 0 \leq \mathrm{x} \leq 1
\end{aligned}
$$

a) Find the Fourier series for this function
b) By substituting an appropriate value for x into the Fourier series obtained in part a, evaluate the sum $\sum(-1)^{(n-1) / 2} / n^{3}$ over odd integers $n>0$.
5) Text Problem 4.20 - note that the function is symmetric over the range given.
6) Text Problem 4.14 - note that the function is symmetric over the range given. In the second part, you need to show that the constant of integration should be set equal to zero (consider what happens when $\mathrm{x}=0$).
7) The Dirac δ-function (not actually a function) is defined so $\int \mathrm{f}(\mathrm{x}) \delta(\mathrm{x}) \mathrm{dx}=\mathrm{f}(0)$, provided the integration range includes the point $x=0$.
a) Show that the Fourier series for $\delta(x)$ over the range $-\pi \leq x \leq \pi$ is given by

$$
\delta(x)=1 /(2 \pi)+(1 / \pi) \sum \cos (n x)
$$

where the sum is over integers $\mathrm{n}>0$.
b) Integrate the result of part a using the Fourier series for $f(x)=x$ (problem 2) to obtain a Fourier series for the integrated δ-function.
c) Show that the result of part b is just the Fourier series for the unit step function given by $f(x)=0$ for $-\pi \leq x \leq 0$ and $f(x)=1$ for $0 \leq x \leq \pi$ if the integration constant in part b is chosen equal to the average value of the step function over the range $-\pi \leq x \leq \pi$.
8) Text Problem 4.21 - recall that the complex Fourier series has terms with both positive and negative n. To get the final result, you will need to split the sum into three parts: terms with $n>0$, terms with $n<0$, and the $n=0$ term.
9) Text Problem 4.19
10) Consider the triangle function $f(x)=(2 h / L)(L / 2-|x|)$ defined over the range $-\mathrm{L} / 2 \leq \mathrm{x} \leq \mathrm{L} / 2$.
a) Using the fact that $\mathrm{f}(\mathrm{x})$ is a symmetric function of x , derive its Fourier series representation. Note that aside from the constant term, your result should contain only odd values of the integer n.
b) Evaluate the integral of $[f(x)]^{2}$ over the range $-L / 2 \leq x \leq L / 2$.
c) Using the result of part b and Parseval's theorem for Fourier series, show that

$$
\sum 1 / n^{4}=\pi^{4} / 96
$$

where the sum is over odd integers n.

