PHZ 3113 - PROBLEM SET 6

1) The function $f(t)$ is defined by $f(t)=\exp (-a t)$ for $t \geq 0$.
a) Derive the Fourier sine and Fourier cosine transformations of this function.
b) Using the results of part a, show that the function exp(-at) can be represented by either of the integrals below, where the integration ranges are from 0 to ∞.

$$
\begin{aligned}
& \exp (-a t)=(2 / \pi) \int \omega \sin (\omega t) /\left(a^{2}+\omega^{2}\right) d \omega \\
& \exp (-a t)=(2 a / \pi) \int \cos (\omega t) /\left(a^{2}+\omega^{2}\right) d \omega
\end{aligned}
$$

2) Text Problem 5.2 - in part a, note that if you make a change of variable in the Fourier transform integral from x to $\mathrm{x}^{\prime}=\mathrm{x}+\mathrm{a}$, the function $\mathrm{f}(\mathrm{x})$ will not be affected due to the periodicity assumption. The result in part (c) can also be easily derived by making a change of variable.
3) Consider the differential equation, $-D d^{2} f / d x^{2}+K^{2} D f(x)=Q \delta(x)$, where K, D, and Q are constants, and $\delta(\mathrm{x})$ is the Dirac δ-function.
a) Derive the equation satisfied by the Fourier transform of $f(x)$ and solve it.
b) Perform the inverse Fourier transform to obtain the function $f(x)$ that satisfies the original differential equation. Note that since the Fourier transform is symmetric, the relevant transform is the cosine one. For $\mathrm{x}>0$, the required integral is given in problem 1. For $\mathrm{x}<0$, just replace x by -x.
4) Text Problem 5.1 - note that the function is symmetric, so that a cosine Fourier transformation is appropriate.
5) The function $q(x, t)$ satisfies the differential equation $\partial^{2} q / \partial x^{2}=\partial q / \partial t$. Define the function $\mathrm{Q}(\mathrm{k}, \mathrm{t})$ to be the Fourier transform of q with respect to x .
a) Derive the differential equation satisfied by Q and show that its solution has the form $\mathrm{Q}(\mathrm{k}, \mathrm{t})=\mathrm{A} \exp \left(-\mathrm{k}^{2} \mathrm{t}\right)$, where A is a constant.
b) Suppose that at time $\mathrm{t}=0$, the function q is given by $\mathrm{q}(\mathrm{x}, \mathrm{t}=0)=\mathrm{S} \delta(\mathrm{x})$, where δ is the Dirac δ-function, and S is a constant. Show that this condition requires that the constant A be equal to $\operatorname{S/sqrt}(2 \pi)$.
c) By evaluating the inverse Fourier transform of Q , find the function $\mathrm{q}(\mathrm{x}, \mathrm{t})$ that satisfies the original differential equation with the initial condition given in part b . To carry out the required integral, define a new variable u such that $\mathrm{u}^{2}=\mathrm{k}^{2} \mathrm{t}$-ikx$x^{2} / 4 t$ and make use of the result $\int \exp \left(-u^{2}\right) d u=\operatorname{sqrt}(\pi)$, where the integral is from $-\infty$ to $+\infty$.
6) Text Problem 5.7 - note that the function is symmetric, so that a cosine Fourier transformation is appropriate. In evaluating the convolution integral, you will have to determine the region over which the product integrand is non-zero.
7) Text Problem 5.14 - note that the result can be obtained using Parseval's theorem.
8) Consider the function $f(x)$ defined by the relations

$$
\begin{aligned}
f(x) & =1-|x| / 2 & & \text { for }-2 \leq x \leq 2 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

a) Noting that the function is symmetric, derive the Fourier cosine transform of the function.
b) Using the result of part a and Parseval's theorem for Fourier transforms, show that

$$
\int(\sin \mathrm{k} / \mathrm{k})^{4} \mathrm{dk}=2 \pi / 3
$$

where the integral ranges from $-\infty$ to $+\infty$.
9) The three dimensional Fourier transform of the function $f(\mathbf{r})$ is given by

$$
F(\mathbf{k})=1 /\left[(2 \pi)^{3.2} k^{2}\right]
$$

where k is the magnitude of the vector \mathbf{k}. Show that $f(r)=1 /(4 \pi r)$, where r is the magnitude of the position vector \mathbf{r}. The required three dimensional integral can be most easily evaluated using spherical coordinates with the k-space z-axis chosen in the direction of the position vector \mathbf{r}. To perform the k-space radial integral, you will need the result

$$
\int \sin u / u d u=\pi / 2
$$

where the integral ranges from 0 to ∞.

