1) In polar form, the complex quantity $z=x+i y$ is given by $z=r e^{i \theta}$.
a) Express $1 / \mathrm{z}$ in terms of x and y and in polar form.
b) Suppose $\mathrm{z}= \pm i$. Find the real and imaginary parts of the square root of z . Hint: express z in polar form before taking the square root. Note that together, $\pm i$ have four square roots.
2) The sine and cosine functions of a complex argument $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ can be expressed as $\sin (\mathrm{z})=-1 / 2 i[\exp (i z)-\exp (-i z)], \quad \cos (\mathrm{z})=1 / 2[\exp (i z)+\exp (-i z)]$
a) Using these expressions, show that

$$
\begin{aligned}
& \sin (z)=\sin x \cosh y+i \cos x \sinh y \\
& \cos (z)=\cos x \cosh y-i \sin x \sinh y
\end{aligned}
$$

where sinh y and cosh y are the hyperbolic sine and cosine functions.
b) Use the relations of part a to show that

$$
\begin{aligned}
& \mid \sin \mathrm{z}^{2}=\sin ^{2} \mathrm{x}+\sinh ^{2} \mathrm{y} \\
& \mid \cos \mathrm{z}^{2}=\cos ^{2} \mathrm{x}+\sinh ^{2} \mathrm{y}
\end{aligned}
$$

c) Use the relations of part a to determine the values of x and y for which $\sin (z)=0$ and for which $\cos (\mathrm{z})=0$. Note that for a complex quantity to be zero, the real and imaginary parts must be zero separately.
3) Derive the following identities for the inverse sine and tangent functions. Hint: first express the sine and tangent functions in terms of exponentials, then solve for the exponentials.
a) $\sin ^{-1}(z)=-i \ln \left[i z \pm \operatorname{sqrt}\left(1-z^{2}\right)\right]$
b) $\left.\tan ^{-1}(\mathrm{z})=1 / 2 i \ln [i+\mathrm{z}) /(i-\mathrm{z})\right]$
4) Prove the following properties of an analytic function $f(z)=u(x, y)+i v(x, y)$.
a) If $\mathrm{f}(\mathrm{z})$ and its complex conjugate are both analytic, then the function must be constant, i.e, u and v must both be constants. Hint: the Cauchy-Riemann relations must be satisfied by both the original function and the complex conjugate function if both are analytic. Show that this gives a contradiction if u and v are not both constant.
b) The function $\mathrm{f}^{*}\left(\mathrm{z}^{*}\right)$ is analytic if $\mathrm{f}(\mathrm{z})$ is (* indicates complex conjugate).
5) Text Problem 14.1 - note that both Cauchy-Riemann relations have to be satisfied by the function. You should be able to express the complete function (both real and imaginary parts) as a single function of the complex argument z .
6) Consider the integral of a complex function from the point $x=0, y=0$ in the complex plane to the point $x=1, y=1$. Consider two different paths: (i) $(0,0)$--> $(1,0)$--> $(1,1)$ and (ii) $(0,0)$--> $(0,1)$--> $(1,1)$.
a) Show that if $f(z)=z$, which is an analytic function, the two paths yield the same result. Note that when integrating in the y -direction, $\mathrm{dz}=\mathrm{idy}$.
b) Show that if $f(z)=z^{*}$ (complex conjugate of z), which is not an analytic function (how would you prove this?), the two paths yield different results.
7) Text Problem 14.7 - in the text section 14.7, it was shown, using the CauchyRiemann relations, that the real and imaginary parts of any analytic function are separate solutions of Laplace's equation. Since Laplace's equation is linear and homogeneous, any linear combination of solutions is another solution. What is desired is a linear combination of solutions that satisfies the given boundary conditions, i.e., which gives the specified values on the boundaries of the square region in the xy-plane.
8) Consider the function $\mathrm{f}(\mathrm{z})=1 /[\exp (\mathrm{z})-1]$. Show that up to terms of order z , the Laurent expansion of this function is given by $f(z) \cong 1 / z-1 / 2+z / 12$. Hint: begin with the Taylor series for $\exp (z)$ and then combine this with the binomial expansion for $(\mathrm{u}+1)^{-1}$, with u suitably chosen. Note that you have to make sure that you collect together all the terms of each order in z .
9) Consider the two mappings given by $\mathrm{w}=\mathrm{z}+(1 / \mathrm{z})$ and $\mathrm{w}=\mathrm{z}-(1 / \mathrm{z})$
a) For each of these two mappings, show that a circle of radius R in the z -plane maps into an ellipse in the w-plane. In each case, determine the semi-major and semiminor axis lengths of the ellipse and make a sketch that shows how the ellipse is oriented.
b) Determine what happens to the ellipses in part a when R --> 1 .
10) Consider the transformation from the z-plane to the w-plane that is defined by the relation $\mathrm{e}^{\mathrm{z}}=(\mathrm{a}-\mathrm{w}) /(\mathrm{a}+\mathrm{w})$, where a is a constant.
a) Show that the transformation into w-space of the real axis in z -space is given by

$$
\mathrm{w}(\mathrm{x}, \mathrm{y}=0)=-\mathrm{a} \tanh (\mathrm{x} / 2)
$$

b) Show that the transformation into w -space of the imaginary axis in z -space is given by

$$
w(x=0, y)=-i a \tan (y / 2)
$$

