Formula Card Exam 2 STA3123

Steps for constructing the **Confidence Interval for the True Difference between the Population Means** (large, independent samples):

Step 1 Gather Data from Problem, Calculate $\overline{X}_1 - \overline{X}_2$, and Calculate $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$.

Step 2 Find $Z_{\alpha/2}$

Step 3 Use the results from steps 2 and 1 to get the margin of error, $E = Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

Step 4 Form
$$\left[(\overline{X}_1 - \overline{X}_2) - E, (\overline{X}_1 - \overline{X}_2) + E\right]$$

Steps to test a hypothesis for the True Difference between the Population Means (large, independent samples):

- 1. Express the original claim symbolically *
- 2. Identify the Null and Alternative hypothesis*
- 3. Record the data from the problem

4. Calculate the test statistic
$$z = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 5. Determine your rejection region
- 6. Find the initial conclusion
- 7. Word your final conclusion

*note the claim, the null, and the alternative will vary, for example one case could be: $\begin{aligned} H_0: \mu_1 = \mu_2 \\ H_A: \mu_1 \neq \mu_2 \end{aligned}$

Steps for constructing the **Confidence Interval for the True Difference between the Population Means** (Small, independent samples with equal variances):

Step 1 Gather Data from Problem, Calculate $\overline{X}_1 - \overline{X}_2$, and Calculate $S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

Step 2 Find $t_{\alpha/2}$ using $n_1 + n_2 - 2$ as the degrees of freedom

Step 3 Find E =
$$t_{\alpha/2} \sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}$$

Step 4 Form $\left[(\overline{X}_1 - \overline{X}_2) - E, (\overline{X}_1 - \overline{X}_2) + E\right]$

Note: Do not assume equal variances for the small sample size problems unless I specify. That means you will use the Welch-Satterthwaite method below unless I say otherwise. Steps for constructing the Confidence Interval for the True Difference between the Population Means (Small, independent samples with unequal variances): Welch-Satterthwaite method

Step 1 Gather Data from Problem, Calculate $\overline{X}_1 - \overline{X}_2$, Calculate $A = \frac{s_1^2}{n_1}$, Calculate $B = \frac{s_2^2}{n_2}$, and

Calculate
$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Step 2 Find $t_{\alpha/2}$ using degrees of freedom = $\frac{(A+B)^2}{\frac{A^2}{n_1-1} + \frac{B^2}{n_2-1}}$ *(truncate to the nearest whole number)

Step 3 Find E = $t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ **Step 4** Form $\left[(\bar{X}_1 - \bar{X}_2) - E, (\bar{X}_1 - \bar{X}_2) + E \right]$

Steps to test a hypothesis for the True Difference between the Population Means (Small, independent samples with equal variances):

- 1. Express the original claim symbolically *
- 2. Identify the Null and Alternative hypothesis*
- 3. Record the data from the problem

4. Calculate the test statistic
$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - D_0}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}}, \text{ where } S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2},$$

and d.f.= $n_1 + n_2 - 2$

- 5. Determine your rejection region
- 6. Find the initial conclusion
- 7. Word your final conclusion

*note the claim, the null, and the alternative will vary, for example one case could be: $\frac{H_0: \mu_1 = \mu_2}{H_A: \mu_1 \neq \mu_2}$

Steps to test a hypothesis for the True Difference between the Population Means (Small, independent samples with unequal variances):

- 1. Express the original claim symbolically *
- 2. Identify the Null and Alternative hypothesis*
- 3. Record the data from the problem

4. Calculate the test statistic
$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
,
where t has degrees of freedom = $\frac{\left(A + B\right)^2}{\frac{A^2}{n_1 - 1} + \frac{B^2}{n_2 - 1}}$ and $A = \frac{s_1^2}{n_1}$ and $B = \frac{s_2^2}{n_2}$

- 5. Determine your rejection region
- 6. Find the initial conclusion
- 7. Word your final conclusion

*note the claim, the null, and the alternative will vary, for example one case could be: $H_0: \mu_1 = \mu_2$ $H_A: \mu_1 \neq \mu_2$

Hypothesis test for Comparing Two Population Means: Matched Pairs (dependent t-test)

- 1. Express the original claim symbolically: $\mu_d > 0 *$
- 2. Identify the Null and Alternative hypothesis: $\frac{H_0:\mu_d\leq 0}{H_A:\mu_d>0}*$
- 3. Record the data from the problem: $\overline{X_d}$, S_d , n_d , and α
- 4. Calculate the test statistic: $t = \frac{\overline{X_d} \mu_d}{\frac{S_d}{\sqrt{n_d}}}$
- 5. Determine your rejection region
- 6. Find the initial conclusion
- 7. Word your final conclusion

*note the pair of hypotheses will vary depending on the problem.

Confidence Interval for Paired Differences:

$$\left[\overline{X_{d}} - t_{\alpha/2} \frac{S_{d}}{\sqrt{n_{d}}}, \overline{X_{d}} + t_{\alpha/2} \frac{S_{d}}{\sqrt{n_{d}}}\right]$$

Hypothesis Test for Comparing Two Population Proportions (Independent Sampling)

- 1. Express the original claim symbolically: $p_1 < p_2^*$
- 2. Identify the Null and Alternative hypothesis: $\frac{H_0:(p_1 p_2) \ge 0}{H_A:(p_1 p_2) < 0} *$
- 3. Record the data from the problem: $\hat{p}_1, \hat{p}_2, \alpha$
- 4. Calculate the test statistic:

$$z \approx \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
, where $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$

- 5. Determine your rejection region
- 6. Find the initial conclusion
- 7. Word your final conclusion

*note the pair of hypotheses will vary depending on the problem.

Confidence Interval for $(p_1 - p_2)$:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}} \approx (\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

Hypothesis Test for Comparing Two Population Variances: Independent Sampling

1. Express the original claim symbolically: $\frac{\sigma_L^2}{\sigma_s^2} > 1$ (The smaller on bottom always)*

$$H_0: \frac{\sigma_L^2}{\sigma_s^2} \le 1$$
$$H_A: \frac{\sigma_L^2}{\sigma_s^2} > 1$$

2. Identify the Null and Alternative hypothesis:

- 3. Record the data from the problem
- 4. Calculate the test statistic: $F = \frac{(S_L)^2}{(S_S)^2}$
- Determine your critical value and rejection region: (see the F-Tables)
 Steps to determine the critical value for an F-test:
 - a. Determine the number of tails and alpha (divide alpha in half if two-tails)
 - b. Determine the table to use based on step a.
 - c. Use the numerator degree of freedom for the top row of table and the denominator degree of freedom for the left column of the table.
- 6. Find the initial conclusion
- 7. Word your final conclusion

*note the pair of hypotheses will vary depending on the problem.