Chebyshev's Theorem: The proportion of any set of data lying within K standard deviations of the mean is always at least $1-\frac{1}{K^{2}}$, where $\mathrm{K}>1$.

Expected Value(mean of a probability distribution)

-Key Words: Find the Expected Value
-Formulas: $E(X)=\mu=\sum x \cdot P(x) \quad$ (see table below)

x	$P(x)$	$x \cdot P(x)$
\vdots	\vdots	\vdots
		$\sum x \cdot P(x)$

For Problems Dealing With the Normal Distribution (they say normally distributed in the directions...)
There are three cases

1. Directions say: Find the probability of randomly selecting a ...

- Draw the bell curve, label the mean, and standard deviation
- Put a Z number line and an X number line at the bottom of the curve
- Shade the desired area that you are looking for
- Convert your x - score into a z-score using $Z=\frac{X-\mu}{\sigma}$
- Look your z-score up on the table from the book (that is the area from your zscore to the mean on the curve)
- If necessary perform the arithmetic needed to get your desired area

2. Directions say: Find the probability of randomly selecting n...that have an average ...

- Draw the bell curve, label the mean, and standard deviation $* *$ do not forget that for this problem the stan. dev. becomes $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$
- Put a Z number line and an \bar{X} number line at the bottom of the curve
- Shade the desired area that you are looking for
- Convert your \bar{X} - score into a z-score using $Z=\frac{\bar{X}-\mu}{\sigma_{\bar{X}}}$
- Look your z-score up on the table from the book (that is the area from your zscore to the mean on the curve)
- If necessary perform the arithmetic needed to get your desired area

3. Directions say: Find the score (height, weight, ...) that separates the bottom...

- Draw the bell curve, label the mean, and standard deviation **Do not forget that for this problem we will be putting an area associated with a given percentile (using the normal table in reverse)
- Put a Z number line and an X number line at the bottom of the curve
- Look up the necessary area to get your z - score on the Z table (watch your sign on the z -score)
- Convert your z- score into an X-score using $X=Z \sigma+\mu$

Confidence Interval

Steps to Create a Confidence Interval for the mean (Large Sample)

1. List all given sample data from the problem including sample size and C-level
2. Find $z_{\alpha / 2}$
3. Calculate the margin of error, $E=z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)$
4. Calculate $[\bar{x}-E, \bar{x}+E]$

Steps to Create a Confidence Interval for the mean (Small Sample)

1. List all given sample data from the problem including sample size and C-level
2. Find $t_{\alpha / 2}$
3. Calculate the margin of error, $E=t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)$
4. Calculate $[\bar{x}-E, \bar{x}+E]$

Steps to test a hypothesis:

1. Express the original claim symbolically
2. Identify the Null and Alternative hypothesis
3. Record the data from the problem
4. Calculate the test statistic using either $z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}$ or $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}$ or $\rho=\frac{\hat{p}-\rho_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}$
5. Determine your rejection region (or find your p-value).
6. Find the initial conclusion
7. Word your final conclusion

Steps to creating a Confidence Interval for a population proportion:

1. Gather sample data: x (or \hat{p}), n , and C-level, calculate $\hat{p}=\frac{x}{n} \&(1-\hat{p})=\hat{q}$
2. Find $Z_{\alpha / 2}$
3. Calculate the Margin of Error, $\mathrm{E}=Z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$
4. Finally, form $[\hat{p}-E, \hat{p}+E]$

Sample Size for Estimating the Mean:

$n=\left[\frac{z_{\alpha / 2} \sigma}{E}\right]^{2}$

