Formula Sheet for Exam 1

For a relative frequency table:

Relative Frequency $=\frac{\text { Frequency }}{n}$

To Calculate the Mean:

$\bar{x}=\frac{\sum_{i=1}^{n} X_{i}}{n}$

To Calculate the Median:

Guidelines for calculating the sample Median:
Arrange the sample data from smallest to largest.

- If n is odd, M is the middle number
- If n is even, M is the mean of the two middle numbers

To Calculate the Variance:

$$
s^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}
$$

To Calculate the Standard Deviation:

$$
s=\sqrt{s^{2}}=\sqrt{\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}}
$$

Theorems Relating to Distributions:

The following Theorems can be used to determine what range of data values we can expect from a given distribution, and it can also be used to determine what percent of the data will lie within K standard deviations from the mean:

Chebyshev's Theorem: The proportion of any set of data lying within K standard deviations of the mean is always at least $1-\frac{1}{K^{2}}$, where $\mathrm{K}>1$.
Note: $K=\frac{U L-\mu}{\sigma}$

Empirical Rule

Approximately 68% of the data lies within 1 standard deviation of the mean.
Approximately 95% of the data lies within 2 standard deviations of the mean.
Approximately 99.7% of the data lies within 3 standard deviations of the mean.

Z-scores: $\quad Z=\frac{x-\mu}{\sigma}$

