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Intro to Correlation and Linear Regression 

12.1 Bivariate Data and Correlation 

When conducting research, we might only be interested in only one variable and therefore only take 

one measurement from each of our study participants (or from each observation). However, we can 

certainly take more than one measurement from each subject (or observation). When two 

measurements are taken from each subject, the data are called bivariate data. Bivariate data involves 

two variables measured on the same subjects or observations. The prefix bi- means "two," and variate 

refers to variables.  

For example, we might ask a random set of students how long they studied before their Statistics final 

exam and then record the grade they earn on the exam. This set of measurements might look like this: 

Student Hours (x) Score (y) 

2548947 12 97 

5428763 5.1 68 

5426987 5.8 68 

4412536 5.7 71 

9947532 12.1 91 

0218665 4.1 65 

0478951 4.5 60 

1379405 12.2 100 

1986405 5.5 65 

2576430 5.4 80 

1494847 6.5 75 

1024708 8.7 82 

3601245 4.1 68 

9460572 9.7 88 

3046257 11.2 91 

1052487 5.2 75 

1094410 9.9 93 

2403587 1.5 25 

6541278 1.1 30 

3046200 11 97 

2104578 2.8 50 

4019875 5.9 70 

3026547 10.1 100 

9047852 3.6 50 

2413056 4.1 45 

7549021 2.7 30 

1904367 9.7 85 

6625780 8.1 82 

8014257 7.3 80 
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In our example study of the relationship between hours studied and exam scores, each student provides 

a pair of data points—making the data bivariate. Using this data, we can determine if there is an 

association between numbers of hours spent studying for an exam and the grade earned on the exam. 

This association will be referred to as a correlation between the two variables. Correlation expresses 

how changes in one variable are associated with changes in the other. Two variables can have a linear 

relationship, a non-linear relationship, or no relationship at all. We will focus our attention on the linear 

relationship (i.e., linear correlation). We will use an analytical measure developed by Karl Pearson, 

denoted by the variable r, to describe the linear relationship between x and y.    

Scatter plots 

Before introducing the method to calculate Pearson’s correlation coefficient, r, to describe the 

correlation between x (hours of study) and y (final score), we should plot these (x,y) pairs to see if there 

is some discernable pattern. We plot the points on a standard xy-plane.  

 

Example 12.1 Creating a Scatter Plot Using Excel: Create a scatterplot for the Hours Spent 

Studying/Final Exam Grade data and discuss the apparent correlation. 

  

 

 

 

 

 

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14

Fi
n

al
 S

co
re

Hours Spent Studying

https://youtu.be/mQG2mHtyS04
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Interpreting a Scatter Plot 

A scatter plot can show four main types of relationships between two variables: 

1. Positive Linear Relationship – As one variable increases, the other also increases, and the points 

roughly follow an upward-sloping line. 

2. Negative Linear Relationship – As one variable increases, the other decreases, and the points 

roughly follow a downward-sloping line. 

3. No Relationship – The points are scattered randomly, showing no clear pattern or association 

between the variables. 

4. Non-Linear Relationship – The variables are related, but the pattern follows a curve (e.g., U-

shaped or exponential) rather than a straight line. 
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12.2 Pearson’s Correlation Coefficient 

Now that we have seen that the scatterplot of our example data 

appears to have a positive linear relationship, we can use Pearson’s 

correlation coefficient to measure the strength of the linear 

relationship. The correlation coefficient (r) can range from -1 to 1. 

When r is negative, it implies that as one variable increases, the other 

decreases. That is called a negative linear relationship. When r is 

positive, it implies that as one variable increases, the other also 

increases. When x and y move up or down together, they are said to 

have a positive linear relationship.    

Photo of Karl Pearson in 1910 

 

The Coefficient of Correlation 

The coefficient of correlation, 𝑟 =
𝑆𝑆𝑥𝑦

√𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
 is a measure of the strength of the linear relationship 

between two variables x and y.   

Where the Sum of Squares (SS) are defined as: 

𝑆𝑆𝑦𝑦 = ∑(𝑦𝑖 − 𝑦)
2

= ∑ 𝑦𝑖
2 −

(∑ 𝑦𝑖)2

𝑛
 

𝑆𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥)2 = ∑ 𝑥𝑖
2 −

(∑ 𝑥𝑖)2

𝑛
 

𝑆𝑆𝑥𝑦 = ∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) = ∑ 𝑥𝑖𝑦𝑖 −
(∑ 𝑥𝑖)(∑ 𝑦𝑖)

𝑛
 

 

 

Example 12.2: Calculate r for the hours of study and final score data using Excel. 

 

 

 

 

https://youtu.be/ZgdTKz37euc
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Student 
Hours 
(x) 

Score 
(y) 

x² xy y² 

2548947 12 97 144 1164 9409 
5428763 5.1 68 26.01 346.8 4624 
5426987 5.8 68 33.64 394.4 4624 
4412536 5.7 71 32.49 404.7 5041 
9947532 12.1 91 146.41 1101.1 8281 
218665 4.1 65 16.81 266.5 4225 
478951 4.5 60 20.25 270 3600 
1379405 12.2 100 148.84 1220 10000 
1986405 5.5 65 30.25 357.5 4225 
2576430 5.4 80 29.16 432 6400 
1494847 6.5 75 42.25 487.5 5625 
1024708 8.7 82 75.69 713.4 6724 
3601245 4.1 68 16.81 278.8 4624 
9460572 9.7 88 94.09 853.6 7744 
3046257 11.2 91 125.44 1019.2 8281 
1052487 5.2 75 27.04 390 5625 
1094410 9.9 93 98.01 920.7 8649 
2403587 1.5 25 2.25 37.5 625 
6541278 1.1 30 1.21 33 900 
3046200 11 97 121 1067 9409 
2104578 2.8 50 7.84 140 2500 
4019875 5.9 70 34.81 413 4900 
3026547 10.1 100 102.01 1010 10000 
9047852 3.6 50 12.96 180 2500 
2413056 4.1 45 16.81 184.5 2025 
7549021 2.7 30 7.29 81 900 
1904367 9.7 85 94.09 824.5 7225 
6625780 8.1 82 65.61 664.2 6724 
8014257 7.3 80 53.29 584 6400 
Sum: 195.6 2081 1626.36 15838.9 161809 

 

Using the sums obtained above from the 29 ordered pairs (Σx = 195.6, Σy = 2081, Σx² = 1626.36, Σxy = 

15838.9, and Σy²=161809), we can fill in the sum of square formulas. By hand this would look like this: 

SSxx = Σx² - (Σx*Σx)/n = 1626.36 – 195.6*195.6/29 = 307.0717241 

SSyy = Σy² - (Σy*Σy)/n = 161809 – 2081*2081/29 = 12479.31034 

SSxy = Σxy - (Σx*Σy)/n = 15838.9 – 195.6*2081/29 = 1802.913793 
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Finally,  

𝑟 =
𝑆𝑆𝑥𝑦

√𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
 = 𝑟 =

1802.913793

√307.0717241∗12479.31034
 = 0.921 

 

This value for r indicates that the numbers of hours spent studying and the final exam score variables 

have a strong positive linear relationship. The positive relationship implies that more hours spent 

studying tend to appear with higher final exam scores. You are probably tempted to say that this result 

indicates that studying more causes students to get higher scores on their final exam. That conclusion is 

plausible; however, this correlation coefficient cannot confirm that inference. There are several possible 

reasons for two variables to show a strong linear relationship like this. 

 

Pearson’s correlation coefficient (r) and typical interpretations: 

• r ≈ +1.0 → Perfect positive linear relationship (points lie exactly on an upward-sloping line). 

• r between +0.7 and +0.9 → Strong positive linear relationship. 

• r between +0.4 and +0.6 → Moderate positive linear relationship. 

• r between +0.1 and +0.3 → Weak positive linear relationship. 

• r near 0 → No linear relationship. 

• r between –0.1 and –0.3 → Weak negative linear relationship. 

• r between –0.4 and –0.6 → Moderate negative linear relationship. 

• r between –0.7 and –0.9 → Strong negative linear relationship. 

• r ≈ –1.0 → Perfect negative linear relationship (points lie exactly on a downward-sloping line). 

 

 

Possible reasons why r indicates a strong linear relationship: 

1. The x variable might have a causal relationship with y. This means x is a cause for y (x causes y). 

2. The y variable might have a causal relationship with x. This means y is a cause for x (y causes x). 

3. There is a third variable that causes both x and y. This variable is called a lurking variable.  

4. The relationship is purely a coincidence. This is called a spurious relationship. Sometimes weird 

patterns turn up in data that are do purely to random chance.     
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Examples of each: 

Hours spent studying (x) are correlated with grades (y) because studying causes us to learn more and to 

perform better on exams.  

Hours spent exercising (x) might be negatively correlated with BMI (body mass index) (y) not because 

exercise causes one to lose weight, but because when we are heavier, we find it too hard to exercise. In 

other words, it might be harder to sustain exercise habits due to the extra weight and the corresponding 

stress on our joints.  

Ice cream sales (x) and drowning deaths (y) are correlated in many places around the world not because 

ice cream causes drowning or because people eat ice cream after someone drowns as a coping 

mechanism. These variables are correlated because both variables increase during warm months and 

likely decrease during cold months.  

Consumption of margarine in a state and the divorce rate for the state are correlated not because of a 

relationship between the consumption of margarine and marital dissatisfaction but most likely due to a 

mere coincidence.  

Example 12.3 Calculating r and classify the association:  

The following set of data was derived from a used car website. The bivariate data set includes the 

mileage numbers (in thousands) and the listed sale price in 2025 dollars for the Toyota Camry SE. Use 

the following sum of squares to calculate r and discuss the type of correlation. 𝑆𝑆𝑥𝑥 = 99657.6224 

SSxy = -12326703.13, and SSyy = 1931256250 

Miles Price yr 
5 31590 25 

15 30990 25 
7 31990 25 

16 30990 25 
10 30990 25 

7 31590 25 
24 30990 25 

0.5 34990 25 
21 30990 25 
15 31590 25 
23 25990 24 
39 25990 24 
14 29990 24 
39 25990 24 
30 26990 24 
35 26990 24 
14 31590 24 
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33 26990 24 
 26 27590 24 
44 25990 24 
42 26590 24 
21 26590 24 
25 25990 23 
24 29990 23 
 49 24990 23 
34 25590 23 

8 27990 23 
36 29590 23 
 43 24590 23 
44 25990 23 
14 29990 23 
51 25590 23 
49 25590 23 
30 27590 23 
22 28990 23 
35 25590 23 
35 26590 23 
59 24990 23 
60 24590 22 
43 28990 22 
16 27990 22 
50 26990 22 
42 25590 22 
55 24590 22 
71 25590 22 
55 23590 22 

101 21990 22 
64 23590 22 
32 24590 22 
39 24590 21 
82 22590 21 
71 22590 21 
93 21590 21 
60 23590 21 

106 18990 21 
30 25990 21 
68 22990 21 

116 19590 21 
104 18590 20 

45 26590 20 
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𝑟 =
𝑆𝑆𝑥𝑦

√𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
=

−12326703.13

√99657.6224 ∗ 1931256250
= −.889 

Below are some more examples of r values and scatter plots: 

45 23990 20 
7 26990 20 

93 19990 20 
 91 20590 20 
23 24590 19 
48 21990 19 
10 25990 19 
17 25590 19 
78 20990 19 
88 19990 19 
29 23990 19 
88 19990 19 
61 21990 19 
94 19990 19 
80 20590 19 
26 23590 18 
28 23990 18 
96 19990 18 
84 19990 18 

121 17590 18 
117 17990 18 

81 19590 18 
66 20990 18 

107 16590 17 
85 17590 17 
93 16990 17 
96 16990 17 
81 17990 17 
56 19590 16 
78 17990 16 
78 17990 16 
50 19990 16 
90 17990 16 

110 16590 16 
79 15990 14 

121 14990 14 
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12.3 Linear Regression  

Probabilistic Models 

In this section, we will try to model the relationship between two variables.  In algebra, you worked with 

many models that were deterministic in nature.  For example, the model:  𝑦 = 1.07𝑥 is a deterministic 

model that will give the after-tax price for an item purchased in Palm Beach, Florida.  X here represents 

the pre-tax price of an item.  Y is the final price of the item post-tax.  This model is deterministic because 

given a pre-tax price we can exactly (there is no error in this prediction) determine the value of the item 

after tax.  Recall that the y variable is called the dependent variable because it depends upon the 

independent variable x.   

Deterministic models are great when we can get them, but often we do not know all the factors 

affecting the dependent variable (even if we did know them all, often it is not possible to include them 

all in a model).  In those cases, we will not be able to predict y without error.  This means we will need to 

create a probabilistic model: 

 𝑦 = deterministic model + 𝑅𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟 

 

        Deterministic model                    Probabilistic Model 

In the probabilistic model graph, the difference between the height of the line and the height of our 

individual points is due to the random error.   
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In this section, we will look at the simplest form of a probabilistic model:  

 

A First-Order (Straight-Line) Probabilistic Model 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀   

y = Dependent variable, x = independent variable,𝛽1= slope, 𝛽0= y-intercept, and 𝜀 = random error component. 

 

 

Using data to come up with estimates of the parameters 𝛽0 and 𝛽1to form an equation is called 

regression analysis. The goal of regression analysis is to find the straight line that comes closest to all 

the points in a scatter plot simultaneously. 

 

Fitting the Model: The Least Squares Approach 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 

To fit the straight-line model, we need to find a way to estimate the unknown parameters: 𝛽1& 𝛽0. 

 

 

 

 

 

 

We will demonstrate the method using data from a study looking at the relationship between average 

daily fiber intake (estimated from food journals) and LDL cholesterol levels in 25 adults between the 

ages of 49 -51.  
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We could try to fit some arbitrary line to the points above.  For Example:  

 

 

12.4 Checking for Significant Correlation 

 

 

 

 

Subject Fiber 
Intake LDL-C 

1 1 160 
2 22 87 
3 28 74 
4 42 46 
5 15 126 
6 13 103 
7 12 104 
8 14 106 
9 2 139 

10 15 120 
11 16 112 
12 29 66 
13 15 117 
14 14 92 
15 2 160 
16 4 258 
17 3 178 
18 51 34 
19 5 138 
20 4 122 
21 1 210 
22 7 106 
23 4 148 
24 8 114 
25 35 55 
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The line was created by running the line between the following two points in the data set: (2, 139) and 

(42,46). Using these points, we can derive the slope and eventually the equation of the line.  

Slope  
(𝑦2−𝑦1)

(𝑥2−𝑥1)
=

(139−46)

(2−42)
≈ −2.325.  Using the point-slope formula from Algebra, we get the linear 

equation: 𝑦̃ = −2.325𝑥 + 143.65.  This model was obtained visually (i.e.-we guessed).  We could have 

made several other guesses at the appropriate equation, so we should assess our guess. 

Let’s then compare the observed and predicted values for the visual model we found. In the table 

below, the X and Y are the actual values represented by the dots in our graph above.  The 𝑦̃ (y-tilda) is 

the value that results when we plug the x value from the leftmost column of the table into our model.  

The first of the last two columns gives us the difference between the actual y-value from the point and 

the predicted value from our line.  We call that difference the error of our prediction.  For example, our 

line model says that when x is 1 we should have y at 141.325, but the y value at x = 1 was 160.  This 

means our error is 18.675.  The last column squares these differences (or errors).   

Fiber 
Intake LDL-C 

𝑦̃ 
  y - 𝑦̃ (y - 𝑦̃)² 

1 160 141.325 18.675 348.7556 
22 87 92.5 -5.5 30.25 
28 74 78.55 -4.55 20.7025 
42 46 46 0 0 
15 126 108.775 17.225 296.7006 
13 103 113.425 -10.425 108.6806 
12 104 115.75 -11.75 138.0625 
14 106 111.1 -5.1 26.01 
2 139 139 0 0 

15 120 108.775 11.225 126.0006 
16 112 106.45 5.55 30.8025 
29 66 76.225 -10.225 104.5506 
15 117 108.775 8.225 67.65062 
14 92 111.1 -19.1 364.81 
2 160 139 21 441 
4 258 134.35 123.65 15289.32 
3 178 136.675 41.325 1707.756 

51 34 25.075 8.925 79.65562 
5 138 132.025 5.975 35.70062 
4 122 134.35 -12.35 152.5225 
1 210 141.325 68.675 4716.256 
7 106 127.375 -21.375 456.8906 
4 148 134.35 13.65 186.3225 
8 114 125.05 -11.05 122.1025 

35 55 62.275 -7.275 52.92563 
Sum of Errors 225.4 24903.43 
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One way to determine quantitatively how well a straight line fits a set of points is to note the extent to 

which the data points deviate from the line.  The quantity ∑(𝑦 − 𝑦̃) in the table above gives us the total 

deviation between our observed values and our predicted values. The ∑(𝑦 − 𝑦̃) should equal zero (the 

sum of errors should equal zero).  In our visual model, that is not the case, which is something that 

would eliminate it as a candidate model for this set of data points. We will want all our prediction lines 

to have the property that the sum of errors equals zero. This will ensure on average our prediction error 

is zero. The quantity ∑(𝑦 − 𝑦̃)2 is called the sum of squares of the errors (SSE). It gives another measure 

of deviation which gives greater emphasis to larger deviations from the line.   

Remember, we visually selected the model (line) above, so it is no wonder that the sum of errors was 

not zero. However, there are usually multiple models possible that have the property that ∑(𝑦 − 𝑦̃)=0. 

Since we can find more than one model with the property ∑(𝑦 − 𝑦̃)= 0, we need additional criteria to 

choose the best fitting line. It turns out that it can be shown that there is one line for which the sum of 

errors is zero and SSE is a minimum.  This line is called the least squares line.  

 

The least squares line has the following properties: 

1. The sum of errors (SE) equals zero. 
2. The sum of squared errors (SSE) is smaller than that for any other straight-line model.   

 

The following formulas will give the Least Squares Estimates for the population 𝛽1& 𝛽0. We will use a 

“hat” symbol to denote the estimates, that is to say 𝛽̂1estimates 𝛽1 and 𝛽̂0 estimates 𝛽0.   

 

Formulas for the Least Squares Estimates 

Slope: 𝛽̂1 =
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥𝑥
 

y-intercept: 𝛽̂0 = 𝑦 − 𝛽̂1𝑥 

 

where 𝑆𝑆𝑥𝑦 = ∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) = ∑ 𝑥𝑖𝑦𝑖 −
(∑ 𝑥𝑖)(∑ 𝑦𝑖)

𝑛
 

and 𝑆𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥)2 = ∑ 𝑥𝑖
2 −

(∑ 𝑥𝑖)2

𝑛
 

 

Example 12.4 Calculate the least squares line for the fiber – LDL data using Excel: (Data Tab Video) 

  

https://youtu.be/KTiYPvYjQhk
https://youtu.be/bopNwnqfZWM
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Preliminary computations to help us do our work are provided to speed things up: 

∑ 𝑥𝑖𝑦𝑖= 30,045 

∑ 𝑥𝑖
2= 9,540 

∑ 𝑥𝑖= 362 

∑ 𝑦𝑖= 2,975 

𝑥̅= 14.48 

𝑦̅= 119 

Using the numbers from above we can get:   

𝑆𝑆𝑥𝑦 = ∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) = ∑ 𝑥𝑖𝑦𝑖 −
(∑ 𝑥𝑖)(∑ 𝑦𝑖)

𝑛
= 30,045 – (362)(2975)/25 = -13,033 

𝑆𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥)2 = ∑ 𝑥𝑖
2 −

(∑ 𝑥𝑖)2

𝑛
= 9,540 –(362)(362)/25= 4,298.24 

 

then 𝛽̂1 =
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥𝑥
= -13033/4298.24 = -3.03217 

 

and 𝛽̂0 = 𝑦 − 𝛽̂1𝑥 = 
(∑ 𝑦𝑖)

𝑛
− 𝛽̂1

(∑ 𝑥𝑖)

𝑛
= 119 − (−3.03217)(14.48) = 162.9058 

The least squares line is then given by: 

𝑦̂ = 162.91 − 3.03𝑥 
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Let us find the SSE for this line to determine if it beats our visual model: 

Fiber 
Intake LDL-C 

𝑦̃ 
  y - 𝑦̃ (y - 𝑦̃)² 

1 160 159.87363 0.12637 0.015969 
22 87 96.19806 -9.19806 84.60431 
28 74 78.00504 -4.00504 16.04035 
42 46 35.55466 10.44534 109.1051 
15 126 117.42325 8.57675 73.56064 
13 103 123.48759 -20.4876 419.7413 
12 104 126.51976 -22.5198 507.1396 
14 106 120.45542 -14.4554 208.9592 
2 139 156.84146 -17.8415 318.3177 

15 120 117.42325 2.57675 6.639641 
16 112 114.39108 -2.39108 5.717264 
29 66 74.97287 -8.97287 80.5124 
15 117 117.42325 -0.42325 0.179141 
14 92 120.45542 -28.4554 809.7109 
2 160 156.84146 3.15854 9.976375 
4 258 150.77712 107.2229 11496.75 
3 178 153.80929 24.19071 585.1905 

51 34 8.26513 25.73487 662.2835 
5 138 147.74495 -9.74495 94.96405 
4 122 150.77712 -28.7771 828.1226 
1 210 159.87363 50.12637 2512.653 
7 106 141.68061 -35.6806 1273.106 
4 148 150.77712 -2.77712 7.712395 
8 114 138.64844 -24.6484 607.5456 

35 55 56.77985 -1.77985 3.167866 
Sum of Errors 0.00054 20721.71 

 

We can now confirm our Least Squares Model is better fitting than out visual model because our LSM 

has a Sum of Errors = 0, and even if both models had that trait, the least squares model has a lower SSE. 

Finally, we created our model for the purpose of making predictions about the average y for a given x. In 

this example, we would want to do something like predict the average LDL level for people eating 15 

grams of fiber daily. Unfortunately, we cannot jump into using this model until we confirm the model’s 

variables have a significant linear association. Elsewhere in the course, we will be able to test this in a 

formal way, but for this brief introduction to simple linear regression, we will check if there is significant 

association by using n, r, and a table of critical r values.  
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Example 12.5 Checking for a significant r value: 

First, we need to determine our correlation coefficient, r. Recall the formula is: 

 𝑟 =
𝑆𝑆𝑥𝑦

√𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
 

We have already found SSxy and SSxx, so we only need to calculate SSyy: 

SSyy = Σy² - (Σy*Σy)/n = 414,265 - 2,975*2,975/25 = 60,240 

Using our three SS values: 

SSyy = Σy² - (Σy*Σy)/n = 414,265 - 2,975*2,975/25 = 60,240 

𝑆𝑆𝑥𝑦 = ∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) = ∑ 𝑥𝑖𝑦𝑖 −
(∑ 𝑥𝑖)(∑ 𝑦𝑖)

𝑛
= 30,045 – (362)(2975)/25 = -13,033 

𝑆𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥)2 = ∑ 𝑥𝑖
2 −

(∑ 𝑥𝑖)2

𝑛
= 9,540 –(362)(362)/25= 4,298.24 

We get: 

𝑟 =
𝑆𝑆𝑥𝑦

√𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
 = 𝑟 =

−13033

√4298.24∗60240
= -0.810 

This looks like a strong, negative linear relationship, but to check if it is significant, we will take 

the n and r to the table below to confirm significance: 

Critical Values of the Pearson Correlation 
Coefficient  

n α = 0.05 α = 0.01  

4 0.95 0.99  

5 0.878 0.959  

6 0.811 0.917  

7 0.754 0.875  

8 0.707 0.834  

9 0.666 0.798  

10 0.632 0.765  

11 0.602 0.735  

12 0.576 0.708  

13 0.553 0.684  

14 0.532 0.661  

15 0.514 0.641  

16 0.497 0.623  

17 0.482 0.606  

18 0.468 0.59  

https://youtu.be/KrdW1jVCwok
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19 0.456 0.575  

20 0.444 0.561  

25 0.396 0.505  

30 0.361 0.463  

35 0.335 0.43  

40 0.312 0.402  

45 0.294 0.378  

50 0.279 0.361  

60 0.254 0.33  

70 0.236 0.305  

80 0.22 0.286  

90 0.207 0.269  

100 0.196 0.256  

 

If we look at the row for n = 25 and take the critical r value from the 0.05 column, we can 

determine if we have a significant linear correlation. 

The table provides the value: 0.396. If the absolute value of our correlation coefficient (r) is 

greater than this value, we can conclude the correlation is significant. Since our r value was -

0.810, its absolute value is larger than the critical value of 0.396.  

Since |−0.810| > 0.396, we conclude there is a significant linear relationship between fiber 

intake and LDL cholesterol.  

Now that we have confirmed the significant linear relationship exists between these two 

variables, we can use the model to make predictions.  

  

Example 12.6 Using the model for prediction: 

Using the model developed from the fiber and LDL cholesterol data set, determine the average 

LDL number for adults with a daily intake of fiber of 15 grams.  

  
𝑦̂ = 162.91 − 3.03𝑥 

Interpreting the Slope and y-Intercept 

The standard interpretation of the slope is, “the slope represents the average change in y for a unit 

change in x.” For example, for every additional gram of fiber eaten each day, the average change in LDL 

cholesterol is 3.03 mg/dL.  

https://youtu.be/YNmMbt_bcNU
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To interpret the y-intercept, we set x = 0. For example, the average LDL value for those eating 0 grams of 

fiber each day is 162.91 mg/dL. For some models, the y-intercept will not be interpretable. For example, 

if you create a model for predicting average shoe size (y) based on male height (x), it is nonsensical to 

set the height to zero.   

   


