Formula Card for Chapters Five and Six

For Problems Dealing With the Normal Distribution (they say normally distributed in the directions...)

There are three cases

- 1. Directions say: Find the probability of randomly selecting a ...
 - Draw the bell curve, label the mean, and standard deviation
 - Put a Z number line and an X number line at the bottom of the curve
 - Shade the desired area that you are looking for
 - Convert your x score into a z-score using $Z = \frac{X \mu}{\sigma}$
 - Look your z-score up on the table from the book (that is the area from your z-score to the mean on the curve)
 - If necessary perform the arithmetic needed to get your desired area
- 2. Directions say: Find the probability of randomly selecting n ... that have an average ...
 - Draw the bell curve, label the mean, and standard deviation **do not forget that for this problem the stan. dev. becomes $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
 - Put a Z number line and an \overline{X} number line at the bottom of the curve
 - Shade the desired area that you are looking for
 - Convert your \overline{X} score into a z-score using $Z = \frac{\overline{X} \mu}{\sigma_{\overline{X}}}$
 - Look your z-score up on the table from the book (that is the area from your z-score to the mean on the curve)
 - If necessary perform the arithmetic needed to get your desired area
- 3. Directions say: Find the score (height, weight, ...) that separates the bottom...
 - Draw the bell curve, label the mean, and standard deviation **Do not forget that
 for this problem we will be putting an area associated with a given percentile
 (using the normal table in reverse)
 - Put a Z number line and an X number line at the bottom of the curve
 - Look up the necessary area to get your z score on the Z table (watch your sign on the z-score)
 - Convert your z-score into an X-score using $X = Z\sigma + \mu$