
The gas laws
Equations of state

The state of any sample of substance is specified by giving the values of the
following properties:

V – the volume the sample occupies
p – the pressure of the sample
T – the temperature of the sample
n – the amount of substance in the sample
Experimental fact – these four quantities are not independent from one another. If

we select the amount, the volume, and the temperature, then we find that we have to
accept a particular pressure.

The substance obeys an equation of state, an equation in the form
p = f(n,V,T)

that relates one of the four properties to the other three.
The equations of state of most substances are not known. However, the equation of

state of a low-pressure gas is known and proves to be very simple and useful. This
equation is used to describe the behavior of gases taking part in reactions, the behavior of
the atmosphere, as a starting point for problems in chemical engineering, and even in
description of the structure of stars:

pV = nRT



                                     The individual gas laws
                                                 Boyle’s law (1661):
At constant temperature, the pressure of a fixed amount of gas is inversely

proportional to its volume:                         p ∝ 1/V

Consistent with the perfect gas equation of
state. By treating n and T as constant, it
becomes pV = constant. If we compress a
fixed amount of gas at constant
temperature into half of its original
volume, then its pressure will double.

The graph is obtained by plotting
experimental values of p against V for a
fixed amount of gas at different
temperatures and the curves predicted by
Boyle’s law. Each curve is called an
isotherm because it depicts the variation
of a property (in this case, the pressure) at
a single constant temperature.



Experimental verification of Boyle’s law

A good test of Boyle’s law is to plot the
pressure against 1/V (at constant
temperature), when a  straight line should
be obtained. This diagram shows that the
observed pressures approach a straight
line as the volume is increased and the
pressure reduced. A perfect gas would
follow the straight  line at all pressures;
real gases obey Boyle’s law in the limit of
low pressures.



                                        Charles’s law (Gay-Lussac’s law):
At constant pressure, the volume of a fixed amount of gas varies linearly with the

temperature:       V = constant x (θ + 273.15)
 θ - the temperature on the Celsius scale.

Typical plots of volume against temperature
for a series of samples of gases at different
pressures. At low pressures and for
temperatures that are not too low the volume
varies linearly with the Celsius temperature.
All the volumes extrapolate to zero as θ
approaches the same very low temperature
(-273.15 ºC). A volume cannot be negative –
this common temperature must represent the
absolute zero of temperature, a temperature
below which it is impossible to cool an
object. The Kelvin scale ascribes the value T
= 0 to this absolute zero of temperature.
Charles’s law takes the simpler form:

At constant pressure, V ∝ T.
V = constant x T   (at constant pressure)

                   V = nRT/p



An alternative version of Charles’s law, in which the pressure of a sample of gas is
monitored under conditions of constant volume, is

p = constant x T (at constant volume)

Avogadro’s principle
At a given temperature and pressure, equal volumes of gas contain the same

numbers of molecules.
If we double the number of molecules but keep the temperature and pressure

constant, then the volume of the sample will double.
Avogadro’s principle: at constant temperature and pressure, V ∝ n
This result follows from the perfect gas law by treating p and T as constants.

Avogadro’s suggestion is a principle rather than a law (a direct summary of experience)
because it is based on a model of a substance, in this case as a collection of molecules.

The molar volume, Vm, of any substance is the volume the substance occupies per
mole of molecules.

Molar volume = (volume of sample) / (amount of substance) Vm = V / n
Avogadro’s principle implies – the molar volume of a gas should be the same for all

gases at the same temperature and pressure:
Perfect gas 24.7897 L mol-1 Ammonia 24.8 Argon 24.4
Carbon dioxide 24.6 Nitrogen 24.8 Oxygen 24.8
Hydrogen 24.8 Helium 24.8



The perfect gas law
The empirical observations summarized by Boyle’s and Charles’s laws and

Avogadro’s principle can be combined into a single expression:
pV = constant x nT

The constant of proportionality was found experimentally to be the same for all
gases, is denoted R and called gas constant.

R = 8.31451 K-1 mol-1

8.31451 kPa L K-1 mol-1

8.20578  102 L atm K-1 mol-1

62.364 L Torr K-1 mol-1

1.98722 cal K-1 mol-1

pV = nRT – the perfect gas equation.

The most important equation in the whole of physical chemistry because it is used to
derive a wide range of relations used throughout thermodynamics.

Perfect gas law – idealization of the equations of state that gases actually obey. All gases
obey the equation ever more closely as the pressure is reduced towards zero. Example of a
limiting law – a law that becomes increasingly valid as the pressure is reduced and is obeyed
exactly in the limit of zero pressure.



A hypothetical substance which obeys the perfect gas law – perfect gas. Real gas
behaves more and more like a perfect gas as its pressure is reduced. Atmospheric pressure
(100 kPa) – most gases behave almost perfectly.

The gas constant R can be determined by evaluating R = pV/nT for a gas in the limit of p
→ 0. A more accurate value can be obtained by measuring the speed of sound in a low-
pressure gas and extrapolating its value to zero pressure.

A plot of the pressure of a fixed amount of perfect gas
against its volume and thermodynamic temperature. The
surface depicts only possible states of a perfect gas: the gas
cannot exist in states that do not correspond to points on the
surface.
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Using the perfect gas law
Example 1

A chemist is investigating the conversion of atmospheric nitrogen to usable form by
a bacteria and needs to know the pressure in kilopascals exerted by 1.25 g of nitrogen gas
in a flask of volume 250 mL at 20ºC.

€ 

p =
nRT
V

€ 

p =
(1.25 /28.02)mol × (8.31451kPaLK −1mol−1)× (20+273.15K )

0.250L
= 435kPa

€ 

nN2 =
m
MN2

=
1.25g

28.02gmol−1
=
1.25
28.02

mol     T/K = 20 + 273.15

Example 2
We are given the pressure under one set of conditions and are asked to predict the

pressure of the same sample under a different set of conditions.

€ 

p1V1
T1

= nR

€ 

p2V2
T2

= nR

€ 

p1V1
T1

=
p2V2
T2

Combined gas equation



Using the combine gas equation
In an industrial process, nitrogen is heated to 500 K in a vessel of constant volume.

If it enters the vessel at 100 atm and 300 K, what pressure would it exert at the working
temperature if it behaved as a perfect gas?

V1 = V2

€ 

p1
T1

=
p2
T2

€ 

p2 =
T2
T1
× p1 p2 = (500 K / 300 K) × (100 atm) = 167 atm

Example 3
How to use the perfect gas equation to calculate the molar volume of a perfect gas at

any temperature and pressure?

€ 

V =
nRT
p

€ 

Vm =
V
n

=
nRT
np

=
RT
p

For a given temperature and pressure all gases have the same molar volume.
It is convenient to report data in chemical research at a particular set of standard

conditions. Standard ambient temperature and pressure (SATP) – a temperature of
25ºC (more precisely, 298.15 K) and a pressure of 1 bar.

The standard pressure of 1 bar is denoted pØ: pØ = 1 bar exactly
The molar volume of a perfect gas at SATP – 24.79 L mol-1. This value implies that

at SATP 1 mol of perfect gas occupies about 25 L.
An earlier set of standard conditions – standard temperature and pressure (STP) -

0ºC and 1 atm. The molar volume of a perfect gas at STP – 22.41 L mol-1.



The gas laws and the atmosphere
The biggest sample of gases accessible to us is the atmosphere. Its
composition is maintained moderately constant by diffusion and
convection (winds, local turbulence – eddies) but the pressure and
temperature vary with altitude and the local conditions. One of
the most variable constituents is water vapor – humidity. From
Avogadro’s principle – the presence of water vapor results in a
lower density of air at a given temperature and pressure (the
molar mass of H2O is 18 g mol-1, the average molar mass of air
molecules is 29 g mol-1.
The pressure and temperature vary with altitude. In the troposphere
the average temperature is 15ºC at sea level, falling to 57 ºC at 11
km. At Kelvin scale: T ranges from 288 to 216 K, an average of
268 K.

Supposing that the temperature has its average value all the way up to 11 km, the pressure varies
with altitude, h, according to the barometric formula: p = p0exp(-h/H)

p0 – the pressure at sea level
H – a constant, approximately 8 km, H=RT/Mg M – the average molar mass of air.
The pressure of the air and its density fall to half their sea level value at h = H ln 2, 6 km.



                                                Mixture of gases: partial pressures
   Dalton’s law: The pressure exerted by a mixture of perfect gases is the sum of pressures
that each gas would exert if it were alone in the container at the same temperature:
                                                                p = pA + pB + …
pJ – the pressure that a gas J would exert if it were alone in the container at the same
temperature. For each gas: pJ = nJRT/V
Dalton’s law is strictly valid only for mixtures of perfect gases but it can be treated as valid
for most conditions we encounter.

Suppose we were interested in the
composition of inhaled and exhaled air and
we knew that a certain mass of carbon
dioxide exerts a pressure of 5 kPa when
present alone in a container and that a
certain mass of oxygen exerts 20 kPa when
present alone in the same container. Then,
when both gases are present in the
container, the carbon dioxide in the
mixture contributes 5 kPa to the total
pressure and oxygen contributes 20 kPa;
according to Dalton’s law, the total
pressure of the mixture is the sum of these
two pressures, 25 kPa.



   For any type of gas in a mixture, the partial pressure, pJ, is defined as     pJ = xJ  p
xJ – the mole fraction of J in the mixture. The mole fraction of J is the amount of J
molecules expressed as a fraction of the total amount of molecules in the mixture.

   In a mixture that consist of nA A molecules,
nB B molecules, and so on, the mole fraction of J is

Mole fraction of J = (amount of J molecules)/
                                 (total amount of molecules)
   xJ = nJ/n,    n = nA + nB + …

For a binary mixture consisting of two species:
   xA = nA/(nA + nB)   xB = nB/(nA + nB)    xA + xB = 1

For a mixture of perfect gases, we can identify the
partial pressure of J with the contribution that J
makes to the total pressure. Using p = nRT/V,
    pJ = xJ nRT/V = nJRT/V

   The value of nJRT/V is the pressure that an amount
nJ of J would exert in the otherwise empty container.



From the definition of xJ, whatever the composition of the mixture,
xA + xB + … = 1
pJ = xJ × p

Therefore,
pA + pB + … = (xA + xB + …)p = p

This relation is true for both real and perfect gases.
The partial pressures pA and pB of a binary mixture of (real or

perfect) gases of total pressure p as the composition changes from
pure A to pure B. The sum of the partial pressures is equal to the
total pressure. If the gases are perfect, then the partial pressure is
also the pressure that each gas would exert if it were present alone
in the container.
Example 4. Using Dalton’s law

A container of volume 10.0 L holds 1.00 mol N2 and 3.00 mol
H2 at 298 K. What is the total pressure in atmospheres if each
component behaves as a perfect gas?

p = pA + pB = (nA + nB) RT/V
Use R = 8.206×10-2 L atm K-1 mol-1.
p = (1.00 mol + 3.00 mol) 8.206×10-2 L atm K-1 mol-1 × (298 K) /
10.0 L p = 9.78 atm

Total pressure, p = pA + pB
Partial
pressure
of B:
pB = xBp

Partial
pressure
of A:
pA = xAp

Mole fraction of B, xB0 1



Example 5. Calculating partial pressures
The mass percentage composition of dry air at sea level is approximately N2: 75.5; O2:

23.2; Ar: 1.3. What is the partial pressure of each component when the total pressure is 1 atm?
We expect species with a high mole fraction to have a proportionally high partial

pressure, as partial pressures are defined by pJ = xJ × p. To calculate mole fractions, we use the
fact that the amount of molecules J of molar mass MJ in a sample of mass mJ is nJ = mJ / MJ.
The mole fractions are independent of the total mass of the sample, so we can choose the latter
to be 100 g (for simplicity of calculations).

n(N2) = 0.755 × 100 g / 28.02 g mol-1 = 2.69 mol
n(O2) = 0.232 × 100 g / 32.00 g mol-1 = 0.725 mol
n(Ar) = 0.013 × 100 g / 39.95 g mol-1 = 0.033 mol
n = n(N2) + n(O2) + n(Ar) = 3.448 mol
x(N2) = n(N2) / n = 2.69 mol / 3.448 mol = 0.780
x(O2) = n(O2) / n = 0.725 mol / 3.448 mol = 0.210
x(Ar) = n(Ar) / n = 0.033 mol / 3.448 mol = 0.0096
p(N2) = x(N2) × p = 0.780 × 1 atm = 0.780 atm
p(O2) = x(O2) × p = 0.210 × 1 atm = 0.210 atm
p(Ar) = x(Ar) × p = 0.0096 × 1 atm = 0.0096 atm
We have not had to assume that the gases are perfect: pJ are defined as pJ = xJ × p for any

kind of gas.



                            The kinetic model of gases: three assumptions –
1. A gas consists of molecules in ceaseless random motion.
2. The size of the molecules is negligible in the sense that their diameters are much smaller
that the average distance traveled between collisions.
3. The molecules do not interact, except during collisions –
    The potential energy of the molecules is independent of their separation and may be set to
zero. The total energy of a sample of gas is the sum of the kinetic energies of all molecules
present in it. The faster the molecules travel, the greater the total energy of the gas.

The point-like molecules move randomly
with a wide range of speeds and in random
directions, both of which change when
they collide with the walls or with other
molecules.

The pressure of a gas according to the
          kinetic model

The kinetic theory accounts for the steady
pressure exerted by a gas in terms of the
collisions the molecules make with the
walls of the container. Each collision gives
rise to a brief force on the wall but, as
billions of collisions take place every
second, the walls experience a virtually
constant force, and hence the gas exerts a
steady pressure.



The pressure exerted by a gas of molar mass M in a volume V is

€ 

p =
nMc2

3V

c – the root-mean-square speed (r.m.s. speed) of the molecules: 

€ 

c =
s1
2 + s2

2 + ...+ sN
2

N
 

 
 

 

 
 

1/2

The r.m.s. speed enters kinetic theory naturally as a measure of the average kinetic
energy of the molecules. The kinetic energy of a molecule of mass m traveling at a speed

v is 

€ 

Ek =
1
2
mv2, so the mean kinetic energy is the average of this quantity, 

€ 

1
2
mc2.

Therefore,      

€ 

c =
2Ek

m
 
 
 

 
 
 
1/2

.

The r.m.s. speed is quite close in value to the mean speed, c :    

€ 

c = s1 + s2 + ...+ sN

N

For samples consisting of large numbers of molecules,       

€ 

c = 8
3π
 
 
 

 
 
 
1/2

c ≈ 0.921c

The equation for the pressure can be written as

€ 

pV =
1
3
nMc2

which resembles pV = nRT.



The average speed of gas molecules

€ 

1
3
nMc2 = nRT

€ 

c =
3RT
M

 
 
 

 
 
 
1/2

At 25ºC, an r.m.s. speed for oxygen and nitrogen molecules can be calculated as 482
and 515 m s-1, respectively. Both these values are not far off the speed of sound in air
(346 m s-1 at 25ºC).

The r.m.s. speed of molecules in a gas is proportional to the square root of the
temperature.

Doubling the temperature (on the Kelvin scale) increases the mean and the r.m.s.
speed of molecules by a factor of 21/2 = 1.414…

The Maxwell distribution of speeds
Not all molecules travel at the same speed: some move more slowly than the average, and

the others may briefly move at much higher speed than the average. There is a ceaseless
redistribution of speeds among molecules as they undergo collisions. Each molecule collides
once every nanosecond (1 ns = 10-9 s) or so in a gas under normal conditions.

Distribution of molecular speeds – Maxwell distribution of speeds
The fraction f of molecules that have a speed in a narrow range between s and s+Δs

is f = F(s)Δs with 

€ 

F s( ) = 4π M
2πRT
 
 
 

 
 
 
3/2

s2e−Ms
2 /2RT



1. Because f is proportional to Δs, the fraction in the range Δs increases in proportion to the
width of the range. If at a given speed the range increases (but remains narrow), then the
fraction in that range increases in proportion.
2. The equation includes a decaying exponential function (a function in the form e-x, with x
proportional to s2). This implies that the fraction of molecules with very high speed will be
very small.
3. The factor 2M/RT multiplying s2 in the exponent is large when the molar mass, M, is large,
so the exponential factor goes most rapidly towards zero when M is large. Heavy molecules
are unlikely to be found with very high speed.

€ 

F s( ) = 4π M
2πRT
 
 
 

 
 
 
3/2

s2e−Ms
2 /2RT

4. The opposite is true when the temperature, T, is high: then the factor 2M/RT in the exponent
is small, so the exponential factor falls towards zero relatively slowly as s increases. At high
temperatures, a greater fraction of the molecules can be expected to have high speeds than at
low temperatures.
5. A factor s2 (the term before the exponent) multiplies the exponential. This factor goes to
zero as s goes to zero, so the fraction of molecules with very low speed will also be very
small.

The remaining factors form the normalization factor – ensure that, when we add together
the fractions over the entire range of speeds from zero to infinity, we get 1.



Maxwell distribution of speeds and its
variation with the temperature
Only small fractions of molecules have very
low or very high speeds. The fraction with
very high speeds increases sharply as the
temperature is raised, as the tail of the
distribution reaches up to higher speeds. This
feature plays an important role in the rates of
gas-phase chemical reactions because the rate
of a reaction depends on the energy of
collision – on their speeds.



Maxwell distribution of speeds depends on
          the molar mass of the molecules
Not only do heavy molecules have lower average speeds
than light molecules at a given temperature, but they also 
have a significantly narrower spread of speeds. That narrow
spread means that most molecules will be found with speeds
close to average. In contrast, light molecules (H2) have high
average speed and a wide spread of speeds – many molecules
will be found traveling either much faster or much slower
than the average – composition of planetary atmospheres. 



                                                           Molecular collisions
   Mean free path, λ - the average distance that a molecule travels between collisions. In gases – several
hundred molecular diameters.
   Collision frequency, z – the average rate of collisions made by one molecules, the average number of
collisions one molecules makes in a time interval divided by the length of the interval. The inverse of the
collision frequency, 1/z, is the time of flight – the average time that a molecule spends in flight between two
collisions.
The mean free path and the collision frequency are related by
c = (mean free path)/(time of flight) = λ  / (1/z) = λ z
   To find expressions for λ and z we need to suppose that the molecules are not simply point-like;
to obtain collisions we need to assume that two ‘point’ score a hit whenever they come within a
certain range d of each other; d – diameter.
The collision cross-section, σ, the target area presented by one molecule to another: σ = πd2

pN

RT

Aσ
λ

2/12
=

RT
cpN

z Aσ
2/12

=

1. Because λ ∝ 1/p, the mean free path decreases as
the pressure increases – a result of the increase in the
number of molecules present in a given volume as the
pressure increased, so each molecule travels a shorter distance before it collides with a neighbor.
2. Because λ ∝ 1/σ, the mean free path is shorter for molecules with large collision cross-sections.
3. Because z ∝ p, the collision frequency increases with the pressure of the gas – provided the temperature
is the same, each molecule takes less time to travel to its neighbor in a denser, higher-pressure gas.
4. Because z ∝ c and c ∝ 1/M1/2, providing their collision cross-sections are the same, heavy
molecules have lower collision frequencies than light molecules. Heavy molecules travel more
slowly on average than light molecules do (at the same temperature), so they collide with other
molecules less frequently.



                                                          Real Gases
     Real gases do not obey the perfect gas law exactly. Deviations from the law are particularly
important at high pressures and low temperatures, especially when a gas is on the point of
condensing to liquid. Real gases deviate from the perfect gas law because molecules interact
with each other. Repulsive forces between molecules assist expansion and attractive forces
assist compression.

Intermolecular interactions
At relatively long distances (a few molecular diameters)
molecules attract each other – condensation of gases into liquids
at low temperatures. At low enough T, the molecules of a gas
have insufficient kinetic energy to escape from each other’s
attraction and they stick together.
As soon as the molecules come into close contact they repel
each other – liquids and solids have a definite bulk and do not
collapse to an infinitesimal point.
Intermolecular interactions – potential energy that contributes to
the total energy of the gas. Attractions – negative contribution,
repulsions – positive contribution.
At large separations, the energy-lowering interactions are
dominant, but at short distances the energy-raising repulsions
dominate.
The intermolecular interactions affect the bulk properties of the
gas.
At high pressure, when the average separation of the molecules
is small, the repulsive forces dominate and the gas can be
expected to be less compressible because now the forces help to
drive the molecules apart.



                                                        The isotherms of real gases
   The isotherms of real gases have shapes different from those implied by Boyle’s law.
Although the experimental isotherms resemble the perfect gas isotherms at high temperature
(and at low pressures), there are very striking differences at temperatures below about 50ºC
and at pressures about 1 bar.

Consider isotherm at 20ºC. At point A the sample is a gas. As
the sample is compressed to point B by pressing in a piston,
the pressure increases broadly in agreement with Boyle’s law,
the increase continues until point C. Beyond this point, the
piston can be pushed in without any further increase in
pressure, through D to E. The reduction in volume from E to F
requires a very large increase in pressure.
The gas at C condenses to a compact liquid at E. If we could
see the sample, we would see it begin to condense to a liquid at
C, and the condensation would be complete when the piston
was pushed in to E. At E, the piston is resting on the surface of
the liquid. The subsequent reduction in volume from E to F
corresponds to the very high pressure needed to compress a
liquid. The pressure corresponding to the line CDE, when both
liquid and vapor are in equilibrium, is called the vapor
pressure of the liquid at the temperature of the experiment.
The step from C to E – the molecules are so close on average
that they attract each other and cohere into a liquid.
The step from E to F – trying to force the molecules even
closer together when they are already in contact – trying to
overcome strong repulsive interactions between them.



                                                          The compression factor
    The compression factor, Z – the ratio of the actual volume of a gas to the molar volume of a
perfect gas under the same conditions.
    Compression factor = (molar volume of gas)/(molar volume of perfect gas)
     Z = Vm/Vm(perfect)
    Z = Vm/(RT/p) = pVm/RT For a perfect gas, Z = 1.

When Z is measured for real gases, it is found to vary
with pressure. At low pressures, some gases (methane,
ethane, and ammonia, for instance) have Z<1. Their
molar volumes are smaller than that of a perfect gas –
the molecules cluster together slightly – the attractive
interactions are dominant.
The compression factor rises above 1 at high pressures
for any gas and for some gases (H2) Z>1 at all pressures.
Z>1 – the molar volume of the gas is now greater than
that expected for a perfect gas of the same temperature
and pressure – dominant repulsive forces.
These forces drive the molecules apart when they are
forced to be close together at high pressures.
For hydrogen, the attractive interactions are so weak
that the repulsive interaction dominate even at low
pressures.



The virial equation of state
The deviation of Z from 1 can be used to construct and empirical (observational) equation

of state. We suppose that, for real gases, the relation Z = 1 is only the first term of a lengthier
equation:

€ 

Z =1+ ′ B p + ′ C p2 + ...    or           

€ 

Z =1+
B
Vm

+
C
Vm
2 + ...

B, C, … - virial coefficients – vary from gas to gas and depend on the temperature.
This technique, of taking a limiting expression and supposing that it is the first term of a

more complicated expression, is quite common in physical chemistry.
The limiting expression is the first approximation to the true expression, whatever that

may be, and the additional terms take into account secondary effects that the limiting
expression ignores.

B – the most important additional term. Positive for hydrogen but negative for methane,
ethane, and ammonia.

Regardless of the sign of B, the positive term C/Vm
2 becomes large at high pressures and

Z becomes greater than 1.
The values of the virial coefficients for many gases are known from measurements

of Z over a range of pressures and fitting the data to the equation.
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pVm
RT

=1+
B
Vm

+
C
Vm
2 + ...
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p =
nRT
V

1+
nB
V

+
n2C
V 2 + ...
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 
    the virial equation of state



At very low pressures, when the molar volume is very large, the terms B/Vm and
C/Vm

2 are both very small, and only the 1 inside the parentheses survive. In this limit (of
p approaching 0), the equation of state approaches that of a perfect gas.

Although the equation of state of a real gas may coincide with those of the perfect gas
law as p → 0, not all of its properties necessarily coincide with those of a perfect gas in
that limit. Consider dZ/dp – the slope of the graph of compression factor against pressure.
For a perfect gas:

Z = 1 ⇒ dZ/dp = 0 always

For a real gas:

€ 

Z =1+ ′ B p + ′ C p2 + ...

  

€ 

dZ
dp

= ′ B +2p ′ C +K→ ′ B as p → 0

B' is not necessarily 0, so the slope of Z with respect to p does not necessarily approach 0 (the
perfect gas value). Because several properties depend on derivatives, the properties of real gases
do not always coincide with the perfect gas values at low temperatures. Similarly,

€ 

dZ
d 1/Vm( )

→ B as Vm →∞, corresponding to p → 0



Virial coefficients depend on temperature ⇒
there may be a temperature at which Z → 1 with zero
slope at low p or high Vm – Boyle temperature TB.
Z has a zero slope as p → 0 if B = 0 ⇒
B = 0 at Boyle temperature.
Then, pVm ≈ RTB over a more extended range of
pressures than at other T, because the B/Vm term in the
virial equation is zero and higher terms are negligibly
small. TB = 22.64 K for He, 364.8 K for air.Lower

temperature

Higher
temperature

Perfect
gas

Boyle
temperature

1

Z

Pressure



                                                       The critical temperature
    If we look inside the container at point D, we would see the liquid separated from the
remaining gas by a sharp surface. At a slightly higher T, a liquid forms but at a higher pressure. It
might be more difficult to make out the surface – the remaining gas is at such a high pressure that
its density is similar to that of the liquid. At the special T (31.04ºC or 304.19 K for CO2) the
gaseous state transforms continuously into the condensed state and at no stage is there a visible
surface between the two states of matter.

At critical temperature, Tc, and at all higher
temperatures, a single form form of matter fills the
container at all stages of the compression and there is
no separation of a liquid from the gas. A gas cannot be
condensed to a liquid by the application of pressure
unless the temperature is below the critical
temperature. Tc, critical pressure pc, critical molar
volume Vc - critical constants of a substance, define the
critical point of the gas.
Critical temperature/ºC
He -268 Ne -229
Ar -123 Kr -64
Xe 17 Cl2 144
Br2 311 H2 -240
O2 -118 H2O 374
N2 -147 NH3 132
CO2 31 CH4 -83
CCL4 283 C6H6 289 Supercritical fluids are currently being used as solvents.

The dense fluid obtained by compressing a gas at T>Tc is not 
a true liquid, but it behaves like a liquid – has a similar density 
and can act as a solvent – supercritical fluid.



                                                The van der Waals equation of state
    Proposed in 1873 – and approximate equation of state – shows how the intermolecular
interactions contribute to the deviations of a gas from the perfect gas law. The repulsive
interaction implies that the molecules cannot come closer than a certain distance. Instead of being
free to travel anywhere in a volume V, the actual volume is reduced to an extent proportional to
the number of molecules present and the volume they each exclude – change V with V-nb, b – the
proportionality constant.

p = nRT/(V-nb)
When the pressure is low, the volume is large compared
with the excluded volume – nb can be ignored – perfect
gas equation of state.
Attractive interactions – the attraction experienced by a
given molecule is proportional to the concentration, n/V.
The attractions slow the molecules down – the
molecules strike the walls less frequently and with a
weaker impact – the reduction of pressure is
proportional to the square of the molar concentration,
one factor of n/V reflecting the reduction in frequency of
collision and the other factor the reduction in the
strength of their impulse.
Reduction in pressure = a  (n/V)2

van der Waals equation of state:
van der Waals parameters a and b are known for many
gases (independent of T).
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The reliability of the van der Waals equation
We can judge the reliability of the equation by

comparing the isotherms it predicts with the
experimental isotherms. At T > Tc the calculated
isotherms resemble experimental ones. But below Tc

they show unrealistic oscillations.

The oscillations (van der Waals loops) are
unrealistic because they suggest that under some
conditions an increase of pressure results in an
increase of volume. Therefore, they are replaced by
horizontal lines drawn so the loops define equal
areas above and below the lines: the Maxwell
construction.

The van der Waals coefficients are found by fitting the calculated curves to
experimental ones.

Equal areas



The features of the equation
(1) Perfect gas isotherms are obtained at high temperatures and large molar volumes.

When the temperature is high, RT may be so large that the first term in 

€ 

p =
RT

Vm − b
−
a
Vm
2

greatly exceeds the second. If the molar volume is large, Vm >> b, then Vm – b  ≈ Vm.
Under these conditions, the equation reduces to the perfect gas equation.
(2) Liquids and gases coexist when cohesive and dispersing effects are in balance.

The van der Waals loops occur when both terms in the equation have similar
magnitudes. The first term arises from the kinetic energy of the molecules and their
repulsive interactions; the second represents the effect of the attractive interactions.
(3) The critical constants are related to the van der Waals coefficients.

For T < Tc, the calculated isotherms oscillate and pass through a minimum followed
by a maximum. These extrema converge and coincide at T = Tc; at the critical point the
curve has a flat inflexion:

Mathematically, such inflexion occurs when the first and
second derivatives are zero:
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−
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4 = 0

Vc = 3b pc = a / 27b2 Tc = 8a / 27Rb
Zc = pcVc/RTc = 3/8 for all gases: the critical compression factor



The principle of corresponding states
The critical constants are characteristic properties of real gases ⇒ a scale can be set up by

using these constants. We introduce the reduced variables: pr = p/pc  Vr = Vm/Vc  Tr = T/Tc

Hope: gases confined to the same reduced volume, Vr, at the same reduced temperature, Tr,
would exert the same reduced pressure, pr. The hope was largely fulfilled:

The principle of corresponding states: real gases at the
same reduced volume and reduced temperature exert the
same reduced pressure. Works best for gases composed of
spherical molecules; fails when the molecules are non-
spherical or polar.
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   a and b disappear
If isotherms are plotted in terms of the reduced variables, the same curves are obtained whatever
the gas: the van der Waals equation is compatible with the principle of corresponding states.

Other equations of state also accommodate the principle; all we need are two parameters
playing the roles of a and b and then the equations can be always manipulated into reduced form.
This means that the effects of the attractive and repulsive interactions can each be approximated
in terms of a single parameter.




