
The First Law: the machinery
The power of thermodynamics – how to establish relations between different properties of a

system. The procedure is based on the experimental fact that the internal energy and the enthalpy
are state functions. We shall see that a property can be measured indirectly by measuring others
and then combining their values. We shall also discuss the liquefaction of gases and establish the
relation between Cp and CV.

State functions and exact differentials
State and path functions

The initial state of the system is i and in this state the internal
energy is Ui. Work is done by the system as it expands
adiabatically to a state f (an internal energy Uf). The work done
on the system as it changes along Path 1 from i to f is w. U – a
property of the state; w – a property of the path. Consider
another process, Path 2: the initial and final states are the same,
but the expansion is not adiabatic. Because U is a state function,
the internal energy of both the initial and the final states are the
same as before, but an energy q’ enters the system as heat and
the work w’ is not the same as w. The work and the heat are path
functions.



Exact and inexact differentials
If a system is taken along a path, U changes from Ui to Uf and the overall change is the

sum (integral) of all infinitesimal changes along the path:
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ΔU = dU
i

f
∫

ΔU depends on the initial and final states but is independent of the path between them. We say
in this case that dU – ‘exact differential’. An exact differential is an infinitesimal quantity that,
when integrated, gives a result that is independent of the path between the initial and final
states.

When a system is heated, the total energy transferred as heat is a sum of all individual
contributions as each point of the path:
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q = dq
i ,path

f
∫

We do not write Δq because q is not a state function and the energy supplied as heat cannot be
expressed as qf – qi. Also, we must specify the path of integration because q depends on the
path selected. We say that dq is an ‘inexact differential’. An inexact differential is an
infinitesimal quantity that, when integrated, gives a result that depends on the path between the
initial and final states. dw is also inexact differential because the work done on a system to
change it from one state to another depends on the path taken; in general, the work is different
if the change takes place adiabatically or non-adiabatically.



Example 1. Calculating work, heat, and internal energy.
Consider a perfect gas inside a cylinder fitted with a piston. The initial state is T, Vi and the

final state is T, Vf. Path 1: free expansion against zero external pressure. Path 2: reversible
isothermal expansion. Calculate w, q, and ΔU for each process.

Because the internal energy of a perfect gas arises only from the kinetic energy of its
molecules, it is independent of V; for any isothermal change, ΔU = 0. In general, ΔU = q + w.

ΔU = 0 for both paths ⇒ q = -w

Path 1: the work of free expansion is zero: w = 0, q = 0.

Path 2: w = -nRT ln(Vf/Vi), q = nRT ln(Vf/Vi).

Thermodynamic consequences
Changes in internal energy

We consider the consequences of dU being an exact differential – U is a function of
volume and temperature. U could be regarded as a function of V, T, and p but, because there is
an equation of state, it is possible to express p in terms of V and T, so p is not an independent
variable).



When V changes to V + dV at constant T: 
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dV

When T changes to T + dT at constant V: 
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When both V and T change: 
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 - internal pressure, a measure of the variation of the internal energy of a

substance as its volume changes at constant temperature.
The internal pressure – a measure of the
strength of the cohesive forces in the
sample. If the internal energy increases
as the volume expands isothermally,
there are attractive forces between the
particles, πT > 0.



No interactions between molecules (a perfect gas), the internal energy is independent of their

separation ⇒ 
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= 0. The statement πT = 0 can be taken as the definition of a perfect

gas; later we shall see that it implies the equation of state pV = nRT.
If repulsions are dominant, the internal energy decreases as the gas expands, πT < 0.
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dU = πTdV +CVdT
For ammonia, πT,m = 840 Pa at 300 K and 1.0 bar where 
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πT ,m = ∂Um ∂V( )T , and CV,m =
27.32 J K-1 mol-1. The change in molar internal energy of ammonia when it is heated through 2
K and compressed through 100 cm3 is
ΔUm = (840 J m-3 mol-1)×(-100×10-6 m3) + (27.32 J K-1 mol-1)×(2 K) = -0.084 J mol-1 + 55 J mol-1

The contribution from the heating term greatly dominates that of the compression term.
Changes in internal energy at constant pressure

At constant pressure, we can divide the expression for dU by dT:  
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 - the slope of the plot of volume against temperature (at constant pressure). This

property is normally tabulated as the expansion coefficient, α, of a substance:
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A large value of α - the sample responds strongly to changes in temperature.



Example 2. Using the expansion coefficient of a gas.
Derive an expression for the expansion coefficient for a perfect gas.
We use the expression defining the expansion coefficient and express V in terms of T using

the equation of state for the gas. p is treated as a constant:

pV = nRT
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The higher the temperature, the less responsive is its volume to a change in temperature.
Using the definition of α we can write
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= απTV +CV

This equation is entirely general for a closed system with constant composition. It expresses the
dependence of the internal energy on the temperature at constant pressure in terms of CV, which can
be measured in one experiment, in terms of α, which can be measured in another, and in terms of

πT. For a perfect gas, πT = 0, so 
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The constant-volume heat capacity of a perfect gas is equal to the slope of a plot of internal
energy against temperature at constant pressure as well as (by definition) to the slope at constant
volume.



The temperature dependence of the enthalpy
Changes in the enthalpy at constant volume

The variation of enthalpy with temperature – the constant pressure heat capacity, Cp. We
shall therefore regard H as a function of p and T and find an expression for the variation of H
with temperature at constant volume.
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Now, we divide the equation by dT and impose constant V:
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We then use the Euler chain relation to relate the third differential to the expansion coefficient

€ 

α =
1
V

∂V
∂T
 
 
 

 
 
 
p
:

€ 

∂y
∂x
 
 
 

 
 
 
z

∂x
∂z
 
 
 

 
 
 
y

∂z
∂y
 

 
 

 

 
 
x

= −1

€ 

∂p
∂T
 
 
 

 
 
 
V

∂T
∂V
 
 
 

 
 
 
p

∂V
∂p
 

 
 

 

 
 
T

= −1

€ 

∂p
∂T
 
 
 

 
 
 
V

= −
1

∂T ∂V( ) p ∂V ∂p( )T



Next, we use the reciprocal identity:
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where κT, the isothermal compressibility, is defined as 
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with the 
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Here, µ, the Joule-Thompson coefficient, is defined as 
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The last equation applies to any substance. All the quantities that appear in it can be measured in
suitable experiments, so we know now how H varies with T when the volume of a sample is
constant.



The isothermal compressibility
The negative sign in the definition of κT ensures that the compressibility is a positive

quantity, because an increase of pressure brings about a reduction of volume. The isothermal
compressibility is obtained from the slope of the plot of volume against pressure at constant

temperature (an isotherm). For a perfect gas,
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The higher the pressure of the gas, the lower its compressibility.

Example 3. Using the isothermal compressibility.
The isothermal compressibility of water at 20°C and 1 atm is 4.96×10-5 atm-1. What change

of volume occurs when a sample of volume 50 cm3 is subjected to an additional 1000 atm at
constant T?
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dp = −κTVdp
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dV = − κTVdppi

pf∫Vi

Vf∫
Assuming that κT and V are approximately constant over the range of pressures of interest,

€ 

ΔV = −κTV dp = −
pi

pf∫ κTVΔp ΔV = -(4.96×10-5 atm-1)×(50 cm3)×(1000 atm) = -2.5 cm3

Because the compression results in a decrease of volume of only 5%, the assumption of constant
κT and V is acceptable as a first approximation. Very high pressures are needed to bring about
significant changes of volume.



The Joule-Thompson effect
The analysis of the Joule-Thompson effect is central for understanding the liquefaction of

gases.
How to impose the constrain of constant enthalpy, so that the process is
isenthalpic?
Joule and Thompson let a gas expand through a porous barrier from one
constant pressure to another and monitored the difference of temperature that
arose from the expansion. The whole apparatus was insulated, so that the
process was adiabatic. They observed a lower temperature on the low
pressure side, the difference in T was proportional to the pressure difference.
This cooling by adiabatic expansion is called the Joule-Thompson effect.

Adiabatic process: q = 0 ⇒ ΔU = w
Consider the work done as the gas passes through the barrier.

We focus on the passage of a fixed amount of gas from the high pressure side (pi, Vi, Ti) to the
low pressure side (pf, Vf, Tf). The gas on the left is compressed isothermally by the upstream gas
acting as a piston and the volume changes from Vi to 0: w1 = -pi(0 - Vi) = piVi



The gas expands isothermally (at a different constant T) against the pressure pf provided by the
downstream gas acting as a piston to be driven out.

w2 = -pf(Vf - 0) = -pfVf
w = w1 + w2 = piVi - pfVf Uf – Ui = w = piVi - pfVf
Uf + pfVf = Ui + piVi Hf = Hi

Thus, the expansion occurs without change of enthalpy.
The property measured in the experiment is the ratio of the temperature change to the change

of pressure, ΔT/Δp. With the constraint of constant enthalpy and taking the limit of small Δp, the
quantity measured is 
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∂T ∂p( )H  - the Joule-Thompson coefficient µ. The physical interpretation of
µ - the ratio of the change in temperature to the change in pressure when a gas expands under
adiabatic conditions.

The modern method of measuring µ - measuring the isothermal

Joule-Thompson coefficient, 
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µT =
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, the slope of enthalpy

against pressure at constant temperature. The two coefficients are
related:
                µT = -Cp µ



To measure µT, the gas is pumped continuously at a steady pressure
through a heat exchanger (which brings it to the required T), and
then through a porous plug inside a thermally isolated container.
The steep pressure drop is measured, and the cooling effect is
exactly offset by an electric heater. The energy provided by the
heater is monitored. The heat can be identified with ΔH

(ΔH = qp), Δp is known, so we can find µT as ΔH/Δp at Δp→0.
Real gases have non-zero Joule-Thompson
coefficients. Depending on the identity of
the gas, the pressure, the relative
magnitudes of the attractive and repulsive
intermolecular forces, and T, the sign of µ
may be positive or negative. A positive
sign means that dT is negative when dp is
negative – the gas cools on expansion.
Gases that show a heating effect (µ < 0) at
one temperature show a cooling effect (µ >
0) when T is below their upper inversion
temperature, TI. Typically, a gas has two
inversion temperatures, upper and lower.



The ‘Linde refrigerator’ uses Joule-Thompson expansion to liquefy gases.
The gas at high pressure is allowed to expand through a throttle; it cools and
is circulated past the incoming gas. The gas is cooled, and its subsequent
expansion cools it still further. Then come a stage when the circulating gas
becomes so cold that it condenses to a liquid.
For a perfect gas µ = 0; T in a perfect gas is unchanged by Joule-Thompson
expansion.
(Remember that simple adiabatic expansion does cool a perfect gas, because
the gas does work). Clearly, intermolecular forces are involved in
determining µ. The Joule-Thompson coefficient of a real gas does not
necessarily approach zero as the pressure is reduced because µ depends on
derivatives (recall dZ/dp).

The relation between CV and Cp
Cp differs from CV by the work needed to change the volume of the system. Two types of

work: the work of driving back the atmosphere and the work of stretching the bonds of the
material including any weak intermolecular interactions. Perfect gas – the second type makes no
contribution. So, for the perfect gas:
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H = U + pV = U + nRT
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For a general case,
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We already know that
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= απTV . The factor αV gives the change in volume

when the temperature is raised and 
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πT = ∂U ∂V( )T  converts this change in volume into a change
in U.
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Cp −CV = α p+π T( )V

Using 
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V
− p (to be proven in Ch. 3), we obtain
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Cp −CV = αTV ∂p ∂T( )V
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∂p ∂T( )V = α κT  
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Cp −CV = α2TV κT


