
The Second Law: the machinery
The Gibbs energy, G, is of central importance in chemistry. At constant temperature and

pressure, a system tends to adjust such as to minimize the value of G. Therefore, the
equilibrium state of a system corresponds to the state of minimum Gibbs energy. Hence, to
know how the equilibrium state responds to changes in conditions (for example, how a melting
temperature responds to changes in pressure or the equilibrium composition of a reaction
mixture responds to changes in temperature), we need to know how G varies.

Combining the First and Second Laws
The fundamental equation

The First Law: dU = dq + dw
For a reversible change in a closed system of constant composition, and in the absence of any
additional (non-expansion) work, dwrev = -pdV dqrev = TdS

Therefore, for a reversible change in a closed system
dU = TdS – pdV fundamental equation

Because dU is an exact differential, its value in independent of path and the same value of dU is
obtained whether the change is brought about irreversibly or reversibly. Consequently, the
equation applies to any change – reversible or irreversible – of a closed system that does no
additional (non-expansion) work. This combination of the First and Second Laws is called the
fundamental equation.



Each term of the equation remains equal to the heat and work, respectively, only for a reversible
change. If a process is irreversible, TdS > dq (the Clausius inequality) and -pdV < dw. However,
the sum of dq and dw remains the same, provided the composition is constant.

Properties of the internal energy
The internal energy of a closed system changes in a simple way when either S or V is

changed (dU ∝ dS and dU ∝ dV). Thus, U should be regarded as a function of S and V. We
could regard U as a function of other variables, such as S and p or T and V, because they are all
interrelated; but the simplicity of the fundamental equation suggests that U(S,V) is the best
choice.

The differential of U then can be written as
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The first equation – a purely thermodynamic definition of temperature as the ratio of the
changes in the internal energy and entropy of a constant-volume, closed, constant composition
system.



The Maxwell relations
Suppose we can write an infinitesimal change in a function f(x,y) as df = gdx + hdy

where g and h are also functions of x and y. Then, the mathematical criterion of df to be an exact

differential is
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The fundamental equation is an expression for an exact differential. Therefore, have
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a Maxwell relation

We can use the fact that H, G, and A are all state functions to derive three more Maxwell
relations.

dU = TdS – pdV
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dH = TdS + Vdp
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dA = –pdV – SdT
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The variation of internal energy with volume

The coefficient πT (internal pressure), 
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as the volume of a system is changed isothermally. We can show now that
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An expression for pressure in terms of a variety of thermodynamic properties of the system.
We can derive it now by using a Maxwell relation.
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Example 1. Deriving a thermodynamical relation.
Show thermodynamically that πT = 0 for a perfect gas and compute its value for a van der

Waals gas.
For a perfect gas, p = nRT/V (∂p/∂T)V = nR/V πT = nRT/V – p = 0



The equation of state of a van der Waals gas is
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This result implies that the internal energy of a van der Waals gas increases when it expands
isothermally ((∂U/∂V)T > 0), and the increase is related to the parameter a, which models the
attractive interactions between the particles. A larger molecular volume corresponds to a greater
separation between molecules and thus to weaker mean intermolecular attractions, so the total
energy is greater.

Properties of the Gibbs energy
General considerations
G = H – TS dG = dH – TdS – SdT
H = U + pV dH = dU + pdV + Vdp dU = TdS – pdV
dG = (TdS – pdV) + pdV + Vdp – TdS – SdT

dG = Vdp – SdT
G may be best regarded as a function of p and T: important in
chemistry because p and T are usually the variables under our
control.
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Because S is positive, G
decreases when the
temperature is raised at
constant pressure and
composition. G decreases most
sharply when S is large.

The Gibbs energy of the gaseous phase of a substance, which has a high molar entropy, is more
sensitive to T that its liquid and solid phases. Because V is positive, G always increases when the
pressure of the system is increased at constant T and composition. Vm of gases are large and G is
more sensitive to pressure for the gas phase of a substance than for its liquid and solid phases.
Example 2. Calculating the effect of pressure on the Gibbs energy.

Calculate the change in the molar Gibss energy of (a) liquid water treated as an
incompressible fluid and (b) water vapor treated as a perfect gas, when the pressure is increased
isothermally from 1.0 bar to 2.0 bar at 298 K.

We obtain the change in molar Gibbs energy by integrating the equation for dG at constant
temperature (dT = 0):
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(a) for the incompressible liquid, Vm is constant, 180.0 cm3 mol-1:
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pf∫ dp =Vm pf − pi( )  = +1.8 J mol-1

(b) For a perfect gas, 
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 = +1.7 kJ mol-1. G increases in

both cases, but for the gas the increase is ~1000 times greater.
The variation of the Gibbs energy with temperature
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G/T is related to the total entropy change in a process and the variation of this quantity with
temperature appears to be simpler than the temperature variation of G alone:
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Gibbs-Helmholtz equation

If we know the enthalpy of the system, then we know how G/T varies with temperature.
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We can also use the chain rule: for a function f = f(g), where g = g(t),
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An alternative form of the Gibbs-Helmholtz equation
The Gibbs-Helmholtz equation is most useful when applied to changes. Because ΔG = Gf – Gi, 
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The variation of Gibbs energy with pressure
To find the Gibbs energy at one pressure from its value at another pressure at constant T, we

set dT = 0 and integrate:

€ 

G pf( ) =G pi( ) + Vdp
pi

pf∫



Liquids and solids
For a liquid or solid, the volume changes only slightly with pressure and we
can treat V as a constant. For molar quantities:
Gm(pf) = Gm(pi) + Vm(pf – pi) = Gm(pi) + VmΔp
Under normal laboratory conditions VmΔp is very small and may be
neglected. Therefore, we usually may suppose that the Gibbs energies of
solids and liquids are independent of pressure. Geophysical processes:
pressures in the Earth’s interior are huge – their effect on the Gibbs energies
cannot be ignored.

Gases
The molar volumes of gases are large and the Gibbs energy of gas depends
strongly on the pressure:
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When the pressure is increased tenfold at room temperature, the molar Gibbs
energy increases by ~6 kJ mol-1. If we set pi = p∅ (the standard pressure of 1
bar, then the Gibbs energy of a perfect gas at a pressure p is related to its
standard value as G = G∅ + nRTln(p/p∅)



Now we consider the pressure
dependence of a real gas. We replace
the true pressure p by an effective
pressure called the fugacity, f:

Gm = Gm
∅ + RT ln(f/p∅)

The fugacity is a function of the
pressure and temperature and is
defined so that this equation is
exactly true. Later, we will derive
thermodynamically exact
expressions in terms of the Gibbs
energy and in terms of fugacities.

The expressions in terms of fugacities are exact but they are useful only if we know how to relate
fugacities to actual pressures:

f = φp
φ - the fugacity coefficient (dimensionless) – related to the compression factor, Z, of the gas
between p = 0 and the pressure of interest:
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Derivation:
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When p' → 0, the gas behaves perfectly and f' = p': f'/p' → 1 as p' → 0.
We take the limit f'/p' = 1 on the left and p' = 0 on the right:
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For most gases, Z < 1 up to moderate pressures but Z > 1 at higher
pressures. If Z < 1 throughout the range of integration, the integrand is
negative and φ < 1 ⇒ f < p – the molecules tend to stick together and
the molar Gibbs energy of the gas is less than that of a perfect gas. At
higher pressures, the range over which Z > 1 may dominate the range
over which Z < 1. The integral is then positive: φ > 1 ⇒ f > p – the
repulsive interactions are dominant and tend to drive the particles apart
– the molar Gibbs energy of the gas is greater than that of a perfect gas.

The figures (calculated using the van der Waals equation of state) show
how the fugacity coefficient depends on the pressure in terms of the
reduced variables. The curves are labeled with the reduced temperature
Tr = T/Tc.


