
Chemical equilibrium
Spontaneous chemical reactions

The direction of spontaneous change at constant temperature and pressure – towards lower
values of the Gibbs energy. We locate the equilibrium composition of the reaction mixture by
calculating its Gibbs energy and identifying the composition that corresponds to minimum G.

The reaction Gibbs energy
Consider the equilibrium AB. Suppose an infinitesimal amount dζ of A turns into B:

dnA = -dζ dnB = +dζ
ζ - the extent of reaction, has the dimensions of amount of substance and is reported in

moles. When the extent of reaction changes by a finite amount Δζ, the
amount of A present changes from nA,0 to nA,0 - Δζ and the amount of B
changes from nB,0 to nB,0 + Δζ.

The reaction Gibbs energy, ΔrG – the slope of the graph of the
Gibbs energy plotted against the extent of reaction:
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 dG = µAdnA + µBdnB = -µAdζ + µBdζ = (µB - µA)dζ

€ 

∂G
∂ζ

 

 
 

 

 
 
p,T

= µB −µA ΔrG = µB - µA

ΔrG – can be interpreted as the difference between the chemical potentials
of the reactants and products at the composition of the reaction mixture.



Because chemical potential varies with the composition, the slope of G changes as the reaction
proceeds. Because the reaction runs in the direction of decreasing G (down the slope), the
reaction A → B is spontaneous when µB < µA, whereas the reverse reaction is spontaneous µB >
µA. The slope is zero and the reaction is spontaneous in neither direction when ΔrG = 0 and µB =
µA. If we can find the composition of the reaction mixture that ensures µB = µA, then we can
identify the composition of the reaction mixture at equilibrium.
Exergonic and endergonic reactions

At constant temperature and pressure:
If ΔrG < 0, the forward reaction is spontaneous – exergonic (work-producing).
If ΔrG > 0, the reverse reaction is spontaneous – endergonic (work-consuming).
If ΔrG = 0, the reaction is at equilibrium.

The description of equilibrium
Perfect gas equilibria

When A and B are perfect gases,
ΔrG = µB - µA = (µB

∅ + RT ln pB) - (µA
∅ + RT ln pA) = = ΔrG∅ + RT ln(pB/pA)

ΔrG = ΔrG∅ + RT ln(Q) Q = pB/pA

Q – a reaction quotient. The standard reaction Gibbs energy is defined as a difference
in the standard Gibbs energies of formation, so in practice we calculate ΔrG∅ as

ΔrG∅ = ΔfG∅(B) – ΔfG∅(A)
At equilibrium, ΔrG = 0 0 = ΔrG∅ + RT ln(K)

RT ln(K) = -ΔrG∅ K = (pB/pA)equilibrium

This is a link between tables of thermodynamic data and K.



In molecular terms, the minimum in the Gibbs energy, which
corresponds to ΔrG = 0, stems from the Gibbs energy of mixing of the
two gases. Consider a hypothetical reaction in which A molecules change
into B molecules without mingling together. The Gibbs energy of the
system changes from G∅(A) to G∅(B) in proportion to the amount of B
that had been formed and the slope of the plot of G against the extent of
reaction is a constant and equal to ΔrG∅ at all stages of the reaction.
There is no minimum in the graph (except of pure B). However, in fact,
the newly produced B molecules mix with the surviving A molecules:

ΔmixG = nRT(xAlnxA + xBlnxB)
This expression makes a U-shaped contribution to the total change in Gibbs energy and there
is now a minimum in the Gibbs energy, and its position corresponds to the equilibrium
composition of the reaction mixture.

When ΔrG∅ > 0, the equilibrium constant K < 1. Therefore, at equilibrium the partial
pressure of A exceeds that of B, which means that the reactant A is favored at equilibrium.
When ΔrG∅ < 0, the equilibrium constant K > 1, so at equilibrium the partial pressure of B
exceeds that of A – the product B is favored at equilibrium.



The general case of a reaction
Consider the reaction 2 A + B → 3 C + D

We can rewrite as 0 = 3 C + D – 2 A – B 
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0 = ν J J
J
∑

νJ – stoichiometric numbers: νA = -2, νB = -1, νC = 3, νD = 1
A stoichiometric number is positive for products and negative for reactants. We define ζ so
that if it changes by Δζ, then the change in the amount of any species J is νJΔζ.

To express the equation N2(g) + 3 H2(g) → 2 NH3(g)
we rearrange it to 0 = 2 NH3(g) – N2(g) – 3 H2(g)

ν(N2) = -1, ν(H2) = -3, ν(NH3) = +2
If initially there is 10 mol N2 present, then when the extent of reaction changes from ζ = 0 to ζ
=1 (Δζ = +1 mol), the amount of N2 changes from 10 mol to 9 mol. All the N2 has been
consumed when ζ = 10. When Δζ = +1 mol, the amount of H2 changes by -3×(1 mol) = -3 mol
and the amount of NH3 changes by +2×(1 mol) = +2 mol.

We will show that the Gibbs energy of reaction can always be written
ΔrG = ΔrG∅ + RT ln(Q)

with the standard Gibbs energy calculated from
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The quotient: Q = (activities of products)/( activities of reactants)
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Because reactants have negative stoichiometric numbers, they automatically appear as the
denominator. For pure solids and liquids, the activity is 1, so they make no contribution to Q
even when they appear in the chemical equation.

Consider the reaction 2 A + 3 B → C + 2 D
We can rewrite as 0 = 3 C + D – 2 A – B 
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νA = -2, νB = -3, νC = +1, νD = +2
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Justification: When the reaction advances by dζ, dnJ = νJdζ
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At equilibrium, the slope of G is zero, ΔrG = 0, 
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For K we use the values of activities at equilibrium and for Q we use their values at the specific
stage of reaction. An equilibrium constant K expressed in terms of activities (or fugacities for
gases) – a thermodynamic equilibrium constant. Because activities are dimensionless
numbers, the thermodynamic equilibrium constant is also dimensionless. In elementary
applications, the activities are often replaced by the numerical values of molalities or molar
concentrations, and fugacities are replaced by partial pressures. In either case, the resulting
expressions are only approximations. The approximation is particularly severe for electrolyte
solutions – in them the activity coefficients differ from 1 even in very dilute solutions.

ΔrG = 0: RTln K = -ΔrG∅    – an exact and highly important thermodynamic relation,
enables us to predict the equilibrium constant of any reaction from tables of thermodynamic
data and to predict the equilibrium composition of the reaction mixture.
Example 1. Calculating an equilibrium constant

Calculate the equilibrium constant for the ammonia synthesis reaction,
N2(g) + 3 H2(g) → 2 NH3(g)

at 298 K and show how K is related to the partial pressures of the species at equilibrium when
the overall pressure is low enough for the gases to be treated as perfect.

We calculate the standard Gibbs energy and convert it to the equilibrium constant. Because
the gases are perfect, we replace each fugacity by a partial pressure.
-ΔrG∅ = 2ΔfG∅(NH3,g) – {ΔfG∅(N2,g) + 3ΔfG∅(H2,g)} = 2ΔfG∅(NH3,g) = 2 × (-16.5 kJ mol-1)
ln K = -2 × (-16.5 kJ mol-1) /{(8.3145 J K-1 mol-1)×(298 K)
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K = 6.1×105

the thermodynamically exact
result



Example 2. Estimating the degree of dissociation at equilibrium
The standard Gibbs energy of reaction for the decomposition H2O(g) → H2(g) + 1/2 O2(g)

is +118.0 kJ mol-1 at 2300 K. What is the degree of dissociation of H2O at 2300 K and 1.00 bar.
The equilibrium constant is obtained from the standard Gibbs energy of reaction, so the

task is to relate the degree of dissociation, α, to K and then find its numerical value. We
proceed by expressing the equilibrium composition in terms of α and solve for α in terms of K.
As the standard Gibbs energy of reaction is large and positive, we expect K and α to be small.

ln K = (+118.0×103 J mol-1) /{(8.3145 J K-1 mol-1)×(2300 K) K = 2.08×10-3

The equilibrium composition can be expressed in terms of α by drawing up the following table:
H2O H2 O2 equilibrium table

Initial amount n 0 0 The equilibrium constant
Change to reach equilibrium -αn +αn +(1/2)αn is therefore
Amount at equilibrium (1 - α)n αn (1/2)αn

Mole fraction
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For α << 1, 
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α ≈ 21/2K( )
2 /3

= 0.0205

About 2% of water has decomposed.



The relation between equilibrium constants
We need to express the thermodynamic equilibrium constant in terms of the mole

fractions, xJ, or molalities, bJ, of the species. For that, we need to know the activity coefficients
and then use aJ = γjxJ or aJ = γjbJ/b∅

For an equilibrium A + B  C + D
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bCbD
bAbB

= KγKb

The activity coefficients must be evaluated at the equilibrium composition, which may involve
a complicated calculation, because the latter is known only if the equilibrium composition is
already known.

In elementary applications, and to begin the iterative calculation of the concentrations in a
real example, we can assume that the activity coefficients are all close to 1, Kγ = 1. Then K ≈ Kb

and equilibria are discussed in terms of molalities (or molar concentrations).
Equilibria in biological systems

For biological systems it is appropriate the biological standard state, pH = 7. The relation
between the thermodynamic and biological standard Gibbs energies of reaction for the reaction

A + ν H+(aq) → P is ΔrG⊕ = ΔrG∅ + 7νRT ln 10
There is no difference between the two standard values if hydrogen ions are not involved in the
reaction.

Consider the reaction NADH(aq) + H+(aq) → NAD+(aq) + H2(g) at 37°C, for which ΔrG∅ = -21.8 kJ
mol-1. NADH is the reduced form of nicotinamide adenine dinucleotide and NAD+ is its oxidized form;
the molecules play an important role in the later stages of the respiratory process.
7 ln 10 = 16.1    ΔrG⊕ = -21.8 kJ mol-1+16.1×(8.3145×10-3 kJ K-1 mol-1)(310 K) = +19.7 kJ mol-1

Here, the biological standard value is opposite in sign to the thermodynamic standard value.



The response of equilibria to the conditions
Equilibria respond to changes in pressure, temperature, and concentrations of reactants and

products. The equilibrium constant is not affected by the presence of a catalyst or an enzyme.
Catalysts increase the rate at which equilibrium is attained but do not affect its position.

How equilibria respond to pressure
The equilibrium constant depends on the value of ΔrG∅, which is defined at a single,

standard pressure. Therefore, the value of ΔrG∅ and hence K is independent of the pressure at
which the equilibrium is actually established:
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∂K ∂p( )T = 0
This does not necessarily mean that the equilibrium composition is independent of pressure.

We distinguish between two ways to apply pressure:
1) The pressure within a reaction vessel can be increased by injecting an inert gas into it.
However, so long as the gases are perfect, the addition of gas leaves all the partial pressures of
the reacting gases unchanged. The addition of an inert gas leaves the molar concentrations of the
original gases unchanged, as they continue to occupy the same volume – no effect on the
equilibrium composition of the system.
2) The pressure may be increased by confining the gases to a smaller volume. Then the partial
pressures are changed. The equilibrium constant itself is independent of pressure. However,
compression can adjust the individual partial pressures of the reactants and products in such a

way that, although each one changes, their ratio (as it appears in the equilibrium constant)
remains the same.



Consider the perfect gas equilibrium A  2 B, 
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constant only if an increase in pA cancels and increase in the square of pB. This
relative steep increase in pA compared to pB will occur if the equilibrium
composition shifts in favor of A at the expense of B. The number of A molecules
will increase as the volume of the container decreases.

The increase in the number of molecules A and the corresponding decrease in
the number of B molecules due to compression – a special case of the

Le Chatelier’s principle:
When a system at equilibrium is subjected to a disturbance, the composition of the system

adjusts so as to minimize the effect of the disturbance.
If a system at equilibrium is compressed, then the reaction will adjust so

as to minimize the increase in pressure. This it can do by a reduction in the
number of molecules in the gas phase, which implies a shift A  2 B. The
quantitative treatment of this effect shows that the extent of dissociation, α,

of A into B is
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Here p is to be understood as p/p∅.



Suppose that there is an amount n of A present initially (and no B). At equilibrium the amount of
A is (1 - α)n and the amount of B is 2αn. The mole fractions present at equilibrium are
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The result shows that, even though K is independent of pressure, the amount of A and B do
depend on pressure. As p is increased, α decreases, in accord with Le Chatelier’s principle.

To predict the effect of an increase in pressure on the composition of the ammonia
synthesis at equilibrium, note that the number of gas molecules decreases from 4 to 2 – an

increase in pressure will favor the product.
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Kx – the part of the equilibrium constant that contains the equili-brium mole fractions of
reactants and products. Doubling the pressure must increase Kx by a factor of 4 to preserve the
value of K.
The effect of temperature

The equilibrium constant of a reaction changes when the temperature is changed.
According to Le Chatelier’s principle, we can expect a reaction to respond to a lowering of
temperature by releasing heat and to respond to an increase of temperature by absorbing heat.

The equilibrium constant of an endothermic reaction increases with temperature:
increased temperature favors the products.

The equilibrium constant of an exothermic reaction decreases with temperature:
increased temperature favors the reactants.



The van’t Hoff equation (the van’t Hoff isochore)
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Derivation: (a):
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We differentiated ln K and use the Gibbs-Helmholtz equation here.

(b):
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The equation shows that d lnK / dT < 0 (and dK/dT < 0) for exothermic reaction under

standard conditions (ΔrH∅ < 0).
A negative slope means that ln K (and K itself) decreases as T rises – the equilibrium shifts away
from products. The opposite occurs in the case of endothermic reactions.

ΔrG∅ = ΔrH∅ - TΔrS∅ -ΔrG∅/T = -ΔrH∅/T + ΔrS∅

When the reaction is exothermic, -ΔrH∅/T corresponds to a positive change of entropy in the
surroundings and favors the formation of products. When the temperature is raised, -ΔrH∅/T
decreases, and the increasing entropy of the surroundings has a less important role – the

equilibrium lies less to the right. When the reaction is endothermic, the principal factor is the
increasing entropy of the reaction system. The importance of the unfavorable change of
entropy of the surroundings is reduced if the temperature is raised and the reaction is able to
shift towards products.



Example 3. Measuring a reaction enthalpy
The data below show the temperature dependence of the equilibrium constant of the reaction

Ag2CO3(s)  Ag2O(s) + CO3(g)
Calculate the standard reaction enthalpy of decomposition.

T/K 350    400 450    500
K 3.98×10-4    1.41×10-2 1.86×10-1    1.48

Provided the reaction enthalpy can be assumed to be independent of
temperature, a plot of –ln K against 1/T should be a straight line of slope
ΔrH∅/R.
T/K 350 400 450 500
(103 K)/T 2.86 2.50 2.22 2.0
-ln K 7.83 4.26 1.68      -0.39

The slope of the graph is +9.6×103, so
ΔrH∅ = 9.6×103 × R = +80 kJ mol-1

This is a noncalometric method to get ΔrH∅.



The value of K at different temperatures

To find the value of the equilibrium constant at a temperature T2 in terms of its value K1

at another temperature T1, we integrate the equation between these two temperatures:
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If we suppose that ΔrH∅ varies only slightly with temperature,
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To estimate the equilibrium constant for the synthesis of ammonia at 500 K from its
value at 298 K (6.1×105) we use the standard reaction enthalpy: ΔrH∅ =2ΔfH∅(NH3,g) and
assume that its value is constant over the range of temperatures:

ln K2 = ln(6.1×105) – (-92.2×103 J mol-1 / 8.3145 J K-1 mol-1) ×{1/(500 K) – 1/(298 K)}
= -1.71 K2 = 0.18

Knowledge of the temperature dependence of the equilibrium constant for a reaction can
be useful in the design of laboratory and industrial processes: synthetic chemists can improve
the yield of a reaction by changing the temperature of the reaction mixture, etc.




