Homework 11

1. The following initial-rate data were obtained on the rate of binding of glucose with the enzyme hexokinase present at a concentration of 1.34 mmol L^{-1} . What is (a) the order of reaction with respect to glucose, (b) the rate constant?

$[C_6H_{12}O_6]/(mmol L^{-1})$	1.00	1.54	3.12	4.02
Initial rate/(mol L ⁻¹ s ⁻¹)	5.0	7.6	15.5	20.0

2. The rate constant for the first-order decomposition of N₂O₅ in the reaction $2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$ is $k = 3.38 \times 10^{-5} \text{ s}^{-1}$ at 25°C. What is the half-life of N₂O₅? What will be the total pressure, initially 500 Torr for the pure N₂O₅ vapor, (a) 10 s, (b) 10 min after initiation of the reaction?

3. In a study of the alcohol dehydrogenase catalyzed oxidation of ethanol, the molar concentration of ethanol decreased in a first-order reaction from 220 mmol L⁻¹ to 56.0 mmol L⁻¹ in 1.22×10^4 s. What is the rate constant of the reaction?

4. In the study of a second-order gas-phase reaction, it was found that the molar concentration of a reactant fell from 220 mmol L^{-1} to 56.0 mmol L^{-1} in 1.22×10^4 s. What is the rate constant of the reaction?

5. A rate constant is 1.78×10^{-4} L mol⁻¹ s⁻¹ at 19°C and 1.38×10^{-3} L mol⁻¹ s⁻¹ at 37°C. Evaluate the Arrhenius parameters of the reaction.

6. The activation energy of the first-order decomposition of dinitrogen oxide into N₂ and O is 251 kJ mol⁻¹. The half-life of the reactant is 6.5×10^6 s at 455°C. What will it be at 550°C?

7. Estimate the activation Gibbs energy for the decomposition of urea in the reaction $CO(NH_2)(aq) + 2 H_2O(l) \rightarrow 2NH_4^+(aq) + CO_3^{2-}(aq)$ for which the pseudofirst-order rate constant is $1.2 \times 10^{-7} \text{ s}^{-1}$ at 60°C and $4.6 \times 10^{-7} \text{ s}^{-1}$ at 70°C.

8. The reaction 2 H₂O₂(aq) \rightarrow 2 H₂O(l) + O₂(g) is catalyzed by Br⁻ ions. If the mechanism is

 $H_2O_2 + Br^- \rightarrow H_2O + BrO^- (slow)$ BrO⁻ + H₂O₂ \rightarrow H₂O + O₂ + Br⁻ (fast) Give the predicted order of the reaction with respect to various participants.

9. The reaction mechanism

 $A_2 \leftrightarrows A + A \text{ (fast)}$ $A + B \rightarrow P \text{ (slow)}$

involves an intermediate A. Deduce the rate law for the formation of P.

10. The condensation reaction of acetone, $(CH_3)_2CO$ (propanone), in aqueous solution is catalyzed by bases, B, which react reversibly with acetone to form the carbanion C_3H_5O . The carbanion then reacts with a molecule of acetone to give the product. A simplified version of the mechanism is

$$(1) \operatorname{AH} + \operatorname{B} \rightarrow \operatorname{BH}^{+} + \operatorname{A}^{-}$$

 $(2) A^- + BH^+ \rightarrow AH + B$

(3) $A^- + HA \rightarrow product$

where AH stands for acetone and A⁻ its carbanion. Use the steady-state approximation to find the concentration of the carbanion and derive the rate equation for the formation of the product.