Experiment 3. Heat-Capacity Ratios for Gases. Adiabatic Expansion Method

Background
For the reversible adiabatic expansion of a perfect gas, the change in energy
content is related to the change in volume by

nRT

dE = ~pdV = -—"=dV = -nRTdInV (4)

Since E for a perfect gas is a function of temperature only, we can also write dE = C,dT.

Substituting this expression into Eq. (4) and integrating, we find that

~

C, nZ - _pin’2 (5)
i Vi

where CN“V and V are molar quantities (that is, C,/n, V/n). We assumed here that C, is

constant over the temperature range involved. Eq. (5) predicts the decrease in temperature
resulting from reversible adiabatic expansion of a perfect gas.

In experiment, we will use the following two-step process involving a perfect gas
denoted by A:

Step I: Allow the gas to expand adiabatically and reversibly until the pressure has
dropped from p; to pa:

Alp,. 7.1 ) alp, 7.1, (©)
Step II: At constant volume, restore the temperature of the gas to 77:
A(UzaVzaTz)_) A(PszeTl) (7)

For step I, we can use the perfect-gas law to obtain

£= pZVZ (8)
I, ph

Substituting Eq. (8) into Eq. (5) and combining terms in 172 / 171 , We can write
In—=—2—“‘In=>=-—In= 9)

since for a perfect gas

C =C +R (10)



For step I, which restores the temperature to 77,

a_p (11)
Vi  Dps
Thus
C
n 2L - 2 2 (12)
P, C, ps

This can be rewritten in the form

ln(pl/pz)
ln(pl /ps) (1

The goal of our experiment is to obtain y for two gases, N, and Ar, through

)
CV

measurements of pj, p,, and ps.

Experimental procedure

See Fig. 2 in p. 109 of Shoemaker’s textbook. The change in state (6) is carried
out by quickly removing and replacing the stopper of a large carboy containing the
desired gas at a pressure initially somewhat higher than 1 atm pressure, so that the
pressure of gas in the carboy (p;) momentarily drops to atmospheric pressure p,. The
change in state (7) consists of allowing the gas remaining in the carboy to return to its
initial temperature. The initial pressure p; and the final pressure p3 are read from an open-
tube manometer.

The apparatus should be assembled as shown in Fig. 2. The manometer is an
open-tube manometer, one side of which is open to the atmosphere; the pressure that it
measures is therefore the difference of pressure from atmospheric pressure. The
atmospheric pressure in the lab should measured using a barometer. The liquid in the
manometer is dibutyl phthalate, which has a density of 1.046 g cm™ at room temperature
(20°C). To convert manometer readings (millimeters of dibutyl phthalate) to equivalent
readings in millimeters of mercury, multiply by the ratio of this density to the density of
mercury, which is 13.55 g cm™ at 20°C. To find the total pressure in the carboy, the
converted manometer readings should be added to atmospheric pressure as given by a

barometer.
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Seat the rubber stopper firmly in the carboy and open the clumps on tubes a and
b. Clamp off the tube c. The connections shown in Fig. 2 are based on the
assumption that the gas to be studied is heavier than air (or the previous gas in the
carboy) and therefore should be introduced at the bottom in order to force the
lighter gas out at the top; in the event that the gas to be studied is lighter, the
connections a and b should be reversed.

Allow the gas to be studied to sweep through the carboy for ~15 min. The rate of
gas flow should be about 6 L min', 100 mL s™'. Measure this rate roughly in an
inverted beaker held under water in the thermostat bath. Five volumes of gas (90
L) will pass through the carboy.

Retard the gas flow to a fraction of the flushing rate by partly closing the clamp
on tube a. Carefully open the clamp ¢, and then cautiously (to avoid blowing
liquid out of the manometer) clamp off the exit the exit tube b, keeping a close
watch on the manometer. When the manometer has attained a reading of about
600 mm of oil, clamp off tube a. Allow the gas to come to the ambient
temperature (about 15 min or less), as will be indicated by a constant manometer
reading. Record this reading; when it is converted to an equivalent mercury
reading and added to the barometer reading, p; is obtained.

Remove the stopper entirely (at a distance of 2 or 3 in.) from the carboy, and
replace it in the shortest possible time, making sure that it is tight. As the gas
warms back up to the ambient temperature, the pressure will increase and finally
(in about 15 min) reach a new constant value p3;, which can be determined from
the manometer reading and the barometer reading. At some point of the
procedure, a barometer reading (p») should be taken as well as an ambient
temperature reading.

Repeat the steps above to obtain two more determinations with the same gas. For
these repeated runs, long flushing is not necessary; one additional volume of gas

should suffice to check the effectiveness of the original flushing.

Measurements are to be made on argon and nitrogen.



Calculations

For each of three runs on Ar and Na, calculate C , / (,N’V using Eq. (13). Also

calculate the theoretical value of C , / (,N’V predicted by the equipartition theorem (see

below). In the case of N,, calculate the ratio both with and without a vibrational

contribution to C , of R per vibrational degree of freedom. Assuming that all the gases
can be treated as ideal and thus C b = a + R, obtain approximate values for the molar

constant-volume heat capacity C , for Ar and N».

Results expected from theory

Using classical statistical mechanics, one can derive the theorem of the
equipartition of energy. According to this theorem, £7/2 of energy is associated with each
quadratic term in the expression for the energy. Thus, there is associated with each
translational or rotational degree of freedom for a molecule a contribution to the energy
of kT/2 of kinetic energy and for each vibrational degree of freedom a contribution of
kT/2 of kinetic energy and £7/2 of potential energy. (The corresponding contributions to
the energy per mole of gas are R77/2.)

A monoatomic gas has no rotational or vibrational energy but does have a

translational energy of %RT per mole. The constant-volume heat capacity of a

monoatomic gas is thus

~ (0E
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For diatomic or polyatomic molecules, we can write
E= E(trans)+ E(rot)+ E(vib)

The equipartition theorem is based on classical mechanics. Its application to
translational motion is in accord with quantum mechanics as well. At ordinary
temperatures the rotational results are also in accord with quantum mechanics. The
vibrational energy is however highly quantized and depends strongly on temperature: the

various vibrational modes are at ordinary temperatures only partially “active” and the



degree of activity strongly depends on temperature. The lower the vibrational frequency,
the more “active” is a given degree of freedom at a given temperature and the greater is

the contribution to the heat capacity. In the case of most gaseous diatomic molecules

(where the one vibrational mode is pure stretch), the vibrational contribution to 5v is

very small: for example, N> would have its classical equipartition value for 5v only

above about 4000 K.

For polyatomic molecules, theory based on the equipartition theorem allows one
to calculate only limiting values of 5v by either completely ignoring all ~ vibrational

contributions or assuming that the vibrational contributions achieve their full classical

value. For monoatomic gases and all ordinary diatomic molecules (where the vibrational
contribution is not important at room temperature and can be ignored),* definite év
values can be calculated.

For a given C , value, the ratio C , / (,N’V for a perfect gas is given by

ﬁ
I}
Qz‘ @)
]
"
QZ| =

* According to quantum mechanics, contribution of the vibrational degree of freedom to C , of a diatomic

molecule can be calculated using its vibrational frequency V :

2 _-u
C (vib)= R~
(-c)
where u=hv/kT =hev /kT =1.4388vV /T

(See Experiment 37, p. 407 in the textbook for detail).



Experiment 6. Heats of combustion

Background: principles of calorimetry

Our goal in this experiment is to determine the enthalpy change AH or the energy
change AE accompanying a given isothermal change in state of a system, in which a
chemical reaction occurs:

A(To) + B(To) = C(To) + D(To) (1)

If n is the number of moles of the limiting reagent, the molar quantities for the reaction
are AH = AH /n and AE = AE/n.

In practice we do not actually carry out the change in state isothermally; this is
not necessary because AH and AE are independent of the path. In calorimetry it is
convenient to use a path composed of two steps:

Step 1. A change in state is carried out adiabatically in the calorimeter vessel to
yield the desired products but in general in another temperature:

A(Ty) + B(To) + S(To) = C(T) + D(Th) + S(Th) (2)
where S represents those parts of the system (e.g., inside wall of the calorimeter vessel,
stirrer, thermometer, solvent) that are always at the same temperature as the reactants or
products because of the experimental arrangement; these parts, plus the reactants or
products, constitute the system under discussion.

Step II. The products of step I are brought to the initial temperature 7 by adding
heat to (or taking it from) the system:

C(Th) + D(Th) + S(Th) = C(To) + D(To) + S(Tv) 3)

It is often unnecessary to carry out this step in actuality, since the associated change in
energy or enthalpy can be calculated from the known temperature difference.

By adding Egs. (2) and (3), we obtain Eq. (1) and verify that these two steps
describe a complete path connecting the desired initial and final states. Accordingly, AH
or AE for the change in state (1) is the sum of values of this quantity pertaining to the two
steps:

AH = AH, + AHy (4a)

AE = AE; + AEy (4b)



The particular convenience of the path described is that the heat g for step I is
zero, while the heat g for step II can be either measured or calculated. It can be measured
directly by carrying out step II (or its inverse) through the addition to the system of a
measurable quantity of heat or electrical energy, or it can be calculated from the
temperature change (77 — 7)) resulting from adiabatic step I if the heat capacity of the
product system is known. For step I,

AH;=¢g,=0 constant pressure (5a)

AEi=¢,=0 constant volume (5a)
Thus, if both steps are carried out at constant pressure,

AH = AHy (62)
and if both steps are carried out at constant volume,

AE = AEy (6b)
The determination of a heat of combustion is conveniently carried out at constant volume
in a “bomb calorimeter”. We can easily calculate AH from AE as determined from a
constant-volume process by use of the equation

AH=AE + A(pV) (7)
When gases are involved, as in the gase of combustion, the A(pV) term is likely to be
significant in magnitude, though still small in comparison with AH or AE. Since it is
small, we can employ the perfect gas law and rewrite Eq. (7) in the form

AH = AE + RTAng, )
where Ang,s 1S the increase in the number of moles of gas in the system.

It is often not necessary to actually carry out step II. If we know or can determine
the heat capacity of the system, the temperature change (71 — 7)) resulting from step I

provides all the additional information we need:

AH, =jT]°Cp(C+D+S)dT (11a)
AE, =j;T°Cv(C+D+S)fIT (11b)

The heat capacities vary only slightly over the small temperature ranges involved:
accordingly we can simplify Egs. (11) and combine them with Egs. (6) to obtain
AH = -C,(C+D+S)T, -T,) (12a)



AE=-C,(C+D+S)\T,-T,) (12b)

where C, and C, are average values over the temperature range.

The heat capacity must be determined if it is not known. An indirect method of
determining the heat capacity is to carry out another reaction all together, for which the
heat of reaction is known, in the same calorimeter under the same conditions. This
method depends on the fact that in most calorimetric measurements on chemical reactions
the heat capacity contributions of the actual product species (C and D) are very small, and
often negligible, in comparison with the contribution due to the parts of the system
denoted by the symbol S. In a bomb-calorimeter experiment the reactants or products
amount to a gram or two, while the rest of the system is the thermal equivalent of about

2.5 kg of water. Thus, we may write, in place of Egs. (12a) and (12b),
AH
= C6)n-T) (14)

The value of C(S) can be calculated from the heat of the known reaction and the adiabatic

temperature change (7, — 7') produced by it, as follows:

- AH
e constant pressure (15a)
T, 27 Tl
ae®) =
- AE
— oy constant volume (15b)
T, 27 Tl

Now we consider step I, the adiabatic step, and the measurement of the
temperature difference (7} — Ty), which is the fundamental measurement of calorimetry.
If this step could be carried out in an ideal adiabatic calorimeter, the temperature
variation would look like Fig. 1a (see p. 148 of your textbook). In this case there would
be no difficulty in determining the temperature change AT = T — T\, since (d1/dt) =0
before the time of mixing the reactants and after the products achieve thermal
equilibrium. The only cause of the temperature change here is the chemical reaction.
However, it is unrealistic idealization to assume that step I is truly adiabatic; as no
thermal insulation is perfect, some heat will in general leak into or out the system during
the time required for the change in state to occur and for the thermometer to come into

equilibrium with the product system. In addition, we have a stirrer present in the



calorimeter to hasten thermal equilibration. The mechanical work done on the system by
the stirrer results in the continuous addition of the energy to the system at a small,
approximately constant rate. During the time period required for the change in state and
thermal equilibration to occur, the amount of energy introduced can be significant. A
typical temperature-time variation is shown in Fig. 1b (p. 148) and a more detailed
analysis is needed to extract the adiabatic AT value from the observed data points. The
initial temperature 7; is taken to be the value at time # when the reaction is initiated
following a period of essentially linear 7', ¢ readings that serve to establish the initial
(prereaction) drift rate (d7/df);. The temperature is followed after the reaction for a period
long enough to achieve a roughly linear variation and to establish the drift rate (d7/dt), at
an arbitrary point Tyt The effect of heat leakage is evaluated using Newton’s law of
cooling,

4 _
= Hr-1) (16)

where T is the temperature of the surroundings (air temperature in the laboratory) and &
is a thermal rate constant that depends on thermal conductivity of the calorimeter
insulation. The mechanical power input to the system (dw/dt) is denoted by P and

assumed to be a constant independent of ¢. Thus

dT dE
& T _p k(-1 17
dtdt r-7.) (17
dT 1
= =—|P-k(T-T 18
or ( dt )leak+stir Cv [ ( ’ )] ( )

The temperature difference 7y— 7; shown in Fig. 2 (p. 149) is given by

T, -T, =AT+f"(d—T) dt (19)

t\ dt 4
leak +stir

where AT =T — Ty is the change to an adiabatic chemical reaction and the integral is the

net change due to the heat leak and stirrer power input. Thus it follows that

1-1,=a7- @, -1 )2 [ P-irO-1 ] o

The calorimeter is built in such a way as to minimize heat conduction into or out
of the system. We may assume that the rate of gain or loss of energy by the system

resulting from heat leakage and stirrer work is reasonably constant with time at any given



temperature and therefore the temperature variation as a function of time should be
initially and finally almost linear. One simple possibility would be &(7— 75) = 0 and P =
constant, in which case (d7/dt) = P/C has the same value at all # < ¢ and ¢ > #,and

AT=Tf—ﬂ—ii—fo.—ti) if k(T -7 )=0 1)

As shown in Fig. 3a (p. 150), AT in this case is just the vertical distance between two
parallel 7-¢ lines and this distance can be evaluated at any z.

A more realistic possibility is that k(7 — T;) is small but not negligible and P =
constant. In this case, the 7-¢ plot looks like Fig. 3b (p. 150), where the initial leak + stir
rate (d7/dt); at t; differs from the final rate (d7/dt)rat t. It can be shown (see p. 151) that

AT =, -1, )- (%)(r _1)- (d—T)f ¢ -) 22)

dt

where #; is chosen so that the two shaded regions in Fig. 3b are of equal area.

In summary, on should follow the temperature variation before and after the
reaction for a period long enough to allow a good evaluation of (d7/dt); and (d7/dt). Then
make a plot like Fig. 3b, choose the point (7¢), determine the best value for #,, and
calculate AT from Eq. (22). In practice ¢ should be chosen as close to ¢ as is consistent
with a well characterized final drift rate. Note that #; will lie much closer to # that to ¢ for

reactions that go to completion quickly.

Experimental procedure
In this experiment a bomb calorimeter is employed in the determination of the

heat of combustion of naphthalene, CioHs. The heat of combustion of naphthalene is

— AH for the reaction at constant temperature and pressure:
CioHs(s) + 120,(g) = 10CO,(g) +4H,0(/)

Following the procedure given below, three runs should be made with benzoic
acid to determine the heat capacity of the calorimeter, and three runs should be maid with
naphthalene.

Condition of apparatus. The bomb must be clean and dry, with no bits of iron

left on the terminals. It is recommended to polish lightly those electric terminals with

10



emery paper. Make sure that the jacket is completely empty and that all switches on the

control box are off. Check to see that the inside of the calorimeter is dry.

Y

2)

3)

4)

1y

2)

3)

Filling the bomb.

Cut the iron wire, free from sharp bends or kinks, to the correct length and weigh
it accurately.

Press pellets of the substance concerned, of mass 0.5 + 0.1 g for naphthalene and
0.8 + 0.1 g for benzoic acid. Shave them to the desired mass with a knife or
spatula if necessary.

Install the pellet and wire in the bomb. The pellet should be on the wire, and the
wire should touch only the terminals. Carefully assemble the bomb and screw
down the cap hand-tight.

Attach the bomb to the oxygen-filling apparatus. Carefully open the main supply
valve on the oxygen cylinder and slowly fill the bomb to 380 psi. Do not exceed
450 psi. Release the pressure to flush out most of the atmospheric nitrogen
originally present in the bomb. Refill the bomb to 380 psi. Check the bomb for
leaks by immersing it in water. If a leak does exist, vent the bomb, loosen and
rotate the head slightly, and then retighten the screw cap. An occasional bubble —
one every 5 or 10 s — is inconsequential.

Assembly of calorimeter.

Dry the bomb and set it in the dry pail. Then set the pail in the calorimeter,
making sure it is centered and does not touch the inner wall of the jacket. Make
the electrical connection to the top of the bomb and be sure it is tight.

Fill a 2-L volumetric flask with water at 25°C (use both hot and cold water; add
the two as required, swirling and checking with a thermometer until the flask is
almost full, then make up to the mark. Pour the water from the flask into the pail;
avoid splashing. Allow the flask to drain for about 30 s.

Put the calorimeter lid in place and clamp the precision thermometer in place as
low as it will go without obscuring the scale. The temperature of the pail should

be within half a degree of 25°C.

11
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With all switches off, plug the stirrer and ignition cords into the control box.
Recheck the wiring and then plug the control box into a 110-V outlet. Turn on the
stirrer and make sure it runs smoothly.

Making the run.

Begin time-temperature readings, reading the precision thermometer every 30 s
and recording both the time and temperature. Estimate the temperature to
thousandths of a degree if feasible. Tap the thermometer gently before each
reading. Do not interrupt the time-temperature readings until the run is over. The
calorimeter pail temperature should change at avery slow linear rate (of the order
of 0.001 K min™"). After this steady rate has persisted for at least 5 min, the bomd
may be ignited.

To ignite, turn the ignition switch on and then immediately off. Record the exact
time. The burning wire will ignite the pellet, and after a period of 10 or 15 s the
temperature will begin to rise. After a few minutes the pail temperature should
again show a slow, steady rate of change. Do not discontinue readings; continue
them until the time since ignition has been at least four times the period required
for attainment of this steady rate. The purpose of this is to provide a valid basis
for extrapolation. When readings are completed, turn all switches off.
Disassemble the apparatus, release the bomb pressure, and open the bomb.
Remove and weigh any unburned iron wire. Subtract the weight of unburned iron
wire from the initial iron-wire weight to obtain the net weight of iron burned. If
the inside of the bomb is found to be coated with soot, the amount of oxygen
present at the time of ignition was presumably insufficient to give complete

combustion and the run should be discarded. Wipe dry all bomb parts.

Calculations

For each run, plot temperature versus time using an expanded, interrupted

temperature scale as shown in Fig. 1b (p. 148) and determine the initial and final drift
rates (d1/dt); and (d1/dt);. Then make and overall T versus ¢ plot like Fig. 3b (p. 150),
choose #; and determine ¢ and #;. The “adiabatic” temperature change AT = T} — T can be

calculated from Eq. (22).

12



The heat capacity C(S) is found by determining the adiabatic temperature rise
(T o Tl’) obtained in the combustion of a known mass of benzoic acid (and a known mass
of iron wire) using Eq. (15b). For calculating the energy change produced, the specific
(i.e., per gram) energies of combustion of benzoic acid and iron wire given below can be
used:

AE,, =-2641k] g’ AE,, =-6.68k] g’

Then, AE for the combustion of a weighted specimen of naphthalene is
determined from the rise in temperature (77 — 7o) and the heat capacity C(S) by use of Eq.
(14). The value of AE obtained includes a contribution for the combustion of iron wire;
this must be subtracted to yield the contribution from the naphthalene alone. The molar
energy change AE is then obtained by dividing the number of moles of the reactant that
is present in the least equivalent amount (in this case, naphthalene). The molar enthalpy
change AH can be then obtained by use of Eq. (8).

Report the individual and average values of the heat capacity C(S) and the
individual and average values of the molar enthalpy change AH for the combustion of

naphthalene, calculated using the average C(S).
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Experiment 13. Vapor pressure of a pure liquid

Background

When a pure liquid is placed in an evacuated bulb, molecules will leave the liquid
phase and enter the gas phase until the pressure of vapor in the bulb reaches a definite
value, which is determined by the nature of the liquid and its temperature. This pressure
is called the vapor pressure of the liquid at a given temperature. The equilibrium vapor
pressure is independent of the quantity of liquid and vapor present, as long as both phases
exist in equilibrium with each other at the specified temperature. As themperature is
increased, the vapor pressure also increases up to the critical point, at which the two-
phase system becomes a homogeneous, one-phase fluid.

If the pressure above the liquid is maintained at a fixed value, then the liquid may
be heated up to a temperature at which the vapor pressure is equal to the external
pressure. At this point vaporization will occur by the formation of bubbles in the interior
of the liquid as well as at the surface; this is the boiling point of the liquid at the specified
external pressure. Clearly, the temperature of the boiling point is a function of the
external pressure; in fact, about a given 7,p point, the variation of the boiling point with
external pressure is the inverse of the variation of the vapor pressure with temperature.

In this experiment the variation of vapor pressure for water with temperature will
be measured and used to determine the molar heat of vaporization.

We deal here with the equilibrium between a pure liquid and its vapor:

X() =X(g) »,7) (1)
A definite relationship exists between the values of p and T at equilibrium, as given by
d, AS
£ 2
dT AV

for an equilibrium system composed of a pure substance with both phases always present.
AS and AV refer to the change in entropy and volume when one phase transforms to the
other at constant p and 7. Since the change in state (1) is isothermal and AG is zero, AS
may be replaced by AH/T. The results is

d AH
£ 3)
dT TAV
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Equation (2) or (3) is known as the Clapeyron equation. It is an exact equation that may
be applied to phase equilibria of all kinds. Since the heat of vaporization AH, is positive
and AV is positive for vaporization, the vapor pressure must increase with increasing
temperature.

For the case of vapor-liquid equilibria in the range of vapor pressures less than 1

atm, one may assume that the molar volume of the liquid 171 is negligible in comparison
with that of the gas I7g ,sothat AV = Vg. This assumption is very good in the low-

pressure region, since 171 is usually only a few tenths of a percent of I7g . Thus we obtain

d A, @)
dr TV,

Since d In p = dp/p and d(1/T) = -dT/T?, we can rewrite Eq. (4) in the form

dlnp AH, RT  AH,
e 5)
dl/T) R pV, RZ

where we have introduced the compressibility factor Z for the vapor:

Z= PV
RT

(6)

Eq. (5) is a convenient form of the Clapeyron equation. We can see that, if the vapor were

perfect gas (Z= 1) and AH , were independent of temperature, then a plot of In p versus
1/T would be a straight line, the slope of which would determine AH , . Indeed, for many

liquids, In p is almost a linear function of 1/7, which implies at least that AH I Z s

almost constant.
Considering the question of gas imperfections, in general, Z decreases as the
temperature increases. However, water, owing to its high critical temperature, is a

reasonably ideal gas even at 100°C, where Z equals 0.986. Next we must consider the

variation of AH , with temperature. For a change of state such as in Eq. (1),

2 2 aAH
AH, = AH, +]r]1 AC,dT +j: (?)po 7)
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Since (aH < / op )T is zero for a perfect gas and very small for most real gases and

(aH ./ op )T is always very small for liquids, we can neglect the final term and
approximate Eq. (7) by
AH, = AH, +AC (T, -T)) (8)

where AC, is the average value over the temperature interval. For AH , tobe

independent of temperature, the average value of AC , must be very close to zero, which
is generally not true (see Table 1 in p. 202). In general the value of AH , will decrease as
the temperature increases. Since both AH , and Z decrease with increasing temperature, it

is possible to see why AH ./ Z might be almost constant, yielding a nearly linear plot of

In p versus 1/T.

Experimental procedure: Boiling point method

A common method of measuring the vapor pressure as a function of temperature
is one in which the variation of the boiling point with external applied pressure is
measured. The total pressure above the liquid can be varied and maintained at a given
value by use of a large volume ballast bulb; this pressure is then measured with a mercury
manometer. The liquid to be studied (water) is heated until boiling occurs, and the
temperature of the refluxing vapor is measured in order to avoid any effects of
superheating. The apparatus is assembled as shown in Fig. 2 (see p. 203).

1) Use pressure tubing to connect the condenser and the manometer to the ballast
bulb. Fill the flask about one-third full with water. A few carborundum boiling
chips should be added to reduce “bumping”. Be sure that the thermometer scale is
visible over a range of at least 50°C below the boiling point at 1 atm. Also, make
sure that the thermometer bulb is positioned carefully so that the temperature of
coexisting vapor and liquid is measured. Heating should be accomplished with an
electrical heating mantle. Turn on the circulating water to the condenser before
heating the liquid, and turn it off at the end of the experiment.

2) Use the manometer with the greatest care; be careful not to allow liquid to

condense in it. Stopcock X should be open only when the manometer is to be read
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3)

4)

5)

and closed immediately after each reading. Stopcock X should not be open at the
same time as stopcock S is open, either to vacuum or to the air.

To make a reading, adjust the heating so as to attain steady boiling of the liquid,
but avoid heating it too strongly. When conditions appear to be steady, open
stopcock X carefully and watch the manometer. When manometer and
thermometer appear to be steady as they can be maintained, read them as nearly
simultaneously as possible. The thermometer should be read to the nearest 0.1°C,
and vapor should be condensing on and dripping from the thermometer bulb to
ensure that the equilibrium temperature is obtained. In reading the manometer,
record the position of each meniscus (4; and 4,), keeping your line of sight level
with the meniscus to avoid parallax error. Estimate your readings to the nearest
0.1 mm. Record the ambient air temperature at the manometer several times
during the run.

To change the pressure in the system between the measurements, first remove the
heating mantle, then check to make sure that stopcock X is closed. After a short
time, admit some air or remove some air by opening stopcock S for a few
seconds. Be especially careful in removing air from the ballast bulb to avoid
strong bumping. Then open stopcock X carefully to measure the pressure with the
manometer. Repeat as often as necessary to attain the desired pressure. Close
stopcock X and restore the heating mantle to its position under the flask.

Take readings at approximately the following pressures:

Pressure descending: 90, 110, 140, 180, 230, 300, 400, 520, 670 Torr

Pressure ascending: 760, 600, 450, 350, 260, 200, 160, 130, 100, 80 Torr

Calculations

Correct all manometer pressure readings (42 — h;) for the fact that mercury is not

at 0°C by multiplying by (1 — 1.8x10™f), where ¢ is the Celsius temperature of the
manometer. If # has been reasonably constant during experiment, use an average value

and apply the same correction factor to all pressures.

Convert all Celsius temperature readings to absolute temperatures 7" and plot In p

versus 1/7. If there is no systematic curvature, draw the best straight line through the
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points. If there is noticeable curvature, draw a smooth curve through the points and also

draw a straight line tangent to the curve at about the midpoint. Determine the slope of the
straight line of tangent. From Eq. (5) it follows that this slope is AH L/ RZ .

In addition to this graphical analysis, carry out a least-squares fit to your p-versus-
T data. If visual inspection of your In p-versus-1/7 plot does not indicate any systematic
curvature, make a direct line fit of In p as a function of 1/7. If systematic curvature is

observed, make a least squares fit of In p with the empirical power-series form a + b/T +

¢/T*. Then differentiate the resulting expression to obtain AH L/ RZ .

Report both the graphical and the least-squares values of AH ./ Z . Estimate the
value of Z for the saturated vapor at the appropriate temperature from Fig. 1 (p. 201) and
calculate AH , inJ mol "I Report the value of the heat of vaporization and the vapor

pressure for the liquid at the applicable temperature (corresponding to the midpoint of the

range studied).
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