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Principles of quantum mechanics 

 In order to understand the behavior of individual atoms and molecules and how they 

interact with radiation (atomic and molecular spectroscopy), one needs to know how particles 

move in response to the forces acting to them. 

 Laws of classical mechanics – Isaac Newton, 17th century – explain the motion of 

everyday objects and planets. 

 Can the motion of atomic and subatomic particles be expressed using the laws of 

classical mechanics?      NO!!! 

 By the end of 19th century – experimental evidence accumulated – classical mechanics 

failed when it was applied to very small particles. 

 1926 – appropriate concepts were discovered and equations describing the motion of 

small particles were derived – quantum mechanics. 

Equations of classical mechanics 

 E = Ek + V   total energy of a particle  Ek   kinetic energy 

 V     potential energy   Ek = 
1

2
 mv2,    E = 

1

2
 mv2 + V 

 p = mv   linear momentum   



E 
p2

2m
V  v = dx/dt, x – coordinate  

 

 Trajectory of the particle – x(t) and p(t)  
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 differential equation for coordinate as function of time 
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 The equation allows us to predict the trajectory of the particle exactly. 

 Let V a uniform constant potential independent of x and p 

 For V = 0  
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dt
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 For the constant energy E, 
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p 0 
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m
   



p t  m
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 p 0  

Newton’s second law of motion: 

 



dp

dt
 F   



m
d2x

dt2
 F  

 If we know the force acting everywhere at all times, we can solve the above equations 

and to obtain the trajectory. 

 Example: a particle is subjected to a force F for a time period , and is then allowed to 

travel freely. 

 



dp

dt
 F ,  constant for 0 < t  <   



dp

dt
 0,  for t  >    



p t  p 0 Ft     for 0 < t  <  

 



p   p 0 F     For p = 0     



E 
F22

2m
 

 

 The solution for a given total energy gives the position of the particle as a function of time. 

If we know V as a function of x, we can calculate the speed and the momentum of the particle. 

 The total energy of the accelerated particle is increased by E by the force.  Since the applied 

force and time for which it acts may take any value, the energy may be increased by any value. 
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  angular velocity, I  moment of inertia, I = mr2, T  torque 

 



dJ

dt
 T       



E 
T 22
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Harmonic oscillator 

A particle that experiences a restoring force proportional to its displacement: 

 a spring or two atoms connected with a bond, etc. 

 



F  kx,  k  force constant 

 



m
d2x

dt2
 kx  



x  Asint  



p mAcost   
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 Position of the particle varies harmonically (as 



sint ) 
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 - frequency; A - amplitude (maximal displacement) 

Total energy of harmonic oscillator 

 



F 
dV

dx
  



V 
1

2
kx2

  if V = 0 at x = 0   



E 
p2

2m
V 

p2

2m


1

2
kx2 

1

2
kA2

 

 The energy of the oscillating particle can be raised to any value by a suitably controlled 

impulse that knocks it to amplitude A. The frequency of the motion depends only on the 

structure of oscillator (force constant k and mass m) and is independent of the energy. 

 

Rotational motion 

 



J  I  angular momentum of the particle 

 The amplitude defines the energy, 



E 
1

2
kA2

, and is independent of the frequency. 
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Classical physics: 

1) predicts a precise trajectory, x(t) and p(t); 

2) allows the translational, rotational, and vibrational modes of motion to be excited to any 

energy simply by controlling the forces, torques, and impulses we apply. 

Failures of classical physics 

Classical mechanics provides only an approximate description of the motion of particles, and 

fails when small masses, small moments of inertia, and small transfers of energy are involved. 

Examples of failures: 1. Black-body radiation 

 A hot object emits light (electromagnetic radiation). At high temperatures, a significant 

portion of the radiation is in the visible region and, as the temperature is raised, a higher 

proportion of short-wavelength blue light is generated. 
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A black body – an object capable of emitting and adsorbing all frequencies of radiation 

uniformly. A pinhole in an empty container at constant temperature. Any radiation leaking out 

of the hole has been absorbed and re-emitted inside so many times that it has come to thermal 

equilibrium with the walls. 

Wien’s displacement law (1893):    



Tmax  constant 

Stefan’s law (1879):       



E  aT 4 

E – the total energy density, the total energy per unit volume in the electromagnetic field. 

 Rayleigh (1900): electromagnetic field is a collection of harmonic oscillators. The 

presence of light at a certain frequency  (and therefore of wavelength  = c/) is due to the 

excitation of the electromagnetic oscillator of that frequency. Rayleigh’s calculations consisted 

of two parts: 

1) He calculated the number of oscillators in an enclosure that corresponds to a wavelength . 

          



N 
8

4
 

2) According to the classical equipartition principle, each oscillator is associated with an 

energy kT. 



dE  d   



 
8kT

4
        - the energy per unit volume per unit wavelength. 

 

  
The Rayleigh-Jeans law thus predicts that oscillators of extremely small wavelengths (high frequency, 

corresponding to ultraviolet light, X-rays, and even -rays) should be strongly excited even at room 

temperature. Absurd!!! – according to classical physics, objects should glow in the dark: there should 

in fact be no darkness. 
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 Max Planck (1900) found that he could account for experimental observations by 

proposing that the energy of each electromagnetic oscillator is limited to discrete values and 

cannot be varied arbitrarily. The limitation of energy to discrete values is called the 

quantization of energy (Latin word quantum, amount). Planck proposed that the permitted 

energies of an oscillator of frequency  are integral multiplies of h. h is fundamental constant 

now known as Planck’s constant.   



E  nh    h = 6.626x10-34 J s 

 Since an oscillator of frequency  can possess only the energies 0, h, 2h, ..., a ray of 

light of that frequency can be thought of as consisting of 0, 1, 2, ... particles, where each  

 

 

particle has an energy h. These particles are called photons. If the electromagnetic field of frequency 

 has an energy E in some region, the number of photons of that frequency in the region is E/h. 
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Classical mechanics: all the oscillators of the field share equally in the energy supplied by the 

walls, and so even the highest frequencies are excited. Quantum mechanics: the oscillators are 

excited only if they can acquire an energy of at least h. This is too large for the walls to supply 

in the case of the high-frequency oscillators, and so the latter remains unexcited. The effect of 

quantization is to eliminate the contribution from high-frequency oscillators, for they cannot be 

excited with the energy available. 

 According to detailed calculations (Physical Chemistry, Chapter 19), the energy density in 

the range  to +d is given by the Planck distribution:   



dE  d      



 
8hc

5

1

ehc /kT 1









 

 The value of h was obtained as adjustable parameter in the theory, through a best fit of 

experimental data.    as    or   

 Rayleigh-Jeans law: for long wavelengths, 



hc /kT 1, 



ehc /kT 11
hc

kT
 ...1

hc

kT
, 





8kT

4
 as    or     Also, 



8kT

4
 as h  

 The Planck distribution also accounts for the Stefan and Wien laws: 

 

 

 
 



E  d  aT 4    with   



a 
4

c
    and    



 
 2k 4

60c2h3
 

 The Wien law is obtained by looking for the wavelength at which  



dE /d  0 



maxT 
hc

5k
 

 Why Planck’s hypothesis was successful? The atoms in the walls of the black body are in 

the thermal motion, and this motion excites the oscillators of the electromagnetic field. 
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Heat capacities 

 If classical physics were valid, the mean energy of vibration of each atom in one dimension 

in a solid would be kT. Since the N atoms in a block are free to vibrate in three dimensions, the 

total vibrational energy of a block is expected to be 3NkT.  Therefore, the contribution of the 

vibrational energy to the molar internal energy is     



Um  3NAkT  3RT  

 Since the heat capacity at constant volume is 



CV  Um /T 
V

, classical physics predicts 

that 



CV  3R 

 Dulong and Petit’s law: molar heat capacities of all monoatomic solids are the same (~25 

kJ K-1 mol-1). 

 All metals were found to have molar heat capacities lower than 3R at low temperatures and 

the values approach zero as the T0. Einstein assumed that each atom oscillated about its 

equilibrium position with a single frequency , and invoked Planck’s hypothesis that the energy 

of any oscillation is nh with integer n. 

 Molar vibrational energy of the metal: 



Um 
3NAh

eh / kT1
 

 

 

 

 

Einstein formula: 



CV  3R
h

kT











2
eh /2kT

eh / kT 1









2

. For 



kT  h ,   



CV  3R
h

kT











2
1h /2kT  ...

1h /kT ...1









2

 3R  

At low temperatures, 



eh /kT  implying that 



CV  0. 

 Accounting for black body radiation involves understanding how energy is taken up by 

the electromagnetic field. On the other hand, accounting for the heat capacities of solids 

involves examining how energy is taken up by the vibrations of atoms. 
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 Physical reason: at low temperatures only a few oscillators possess enough energy to begin 

oscillating. At higher temperatures, there is enough energy available for all oscillators to become 

active: all 3N oscillators contribute, and the heat of capacity approaches its classical value.  

Quantization must be introduced in order to explain thermal properties of solids. 

 

Photoelectric effect 

 Electrons are ejected from metals when they are exposed to ultraviolet radiation: 

1) No electrons are ejected, regardless of the intensity of the radiation, unless its frequency 

exceeds a certain threshold value characteristic of the metal. 

2) The kinetic energy of the ejected electrons is linearly proportional to the frequency of the 

incident radiation but independent of its intensity. 

3) Even at low light intensity, electrons are ejected immediately if the frequency is above 

threshold. 

If the photon energy is h, the kinetic energy of the ejected electron  



1

2
mev

2  h   

where  is the work function of the metal, the energy required to remove the electron. 

 The expression predicts that the kinetic energy of an ejected electron should be proportional 

to the frequency. It therefore provides another route to measure h, since a plot of kinetic energy 

of the photoelectron should give a straight line of slope h. 

 The photoelectric effect indicates a corpuscular nature of light – the wave theory of light 

has to be modified. 
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Compton effect 
 

A. Compton (1923): when X-rays are scattered from electrons, their wavelength is slightly 

increased. According to classical physics, the electron to be accelerated by the electric field, and 

many different wavelengths are to be expected in the scattered ray. In fact, the wavelength is 

increased by a single definite amount that depends only on the angle through which the light is 

scattered and is independent of the wavelength of the incident radiation: 



  C 1 cos      



C = 2.43 pm - Compton wavelength of the electron 

 The maximum wavelength shift, 4.86 pm, occurs for 180°.  The photon theory can explain these 

observations if we suppose that, as well as having an energy, a photon of light of frequency  and 

wavelength  also has a linear momentum   



p 
h

c
   



p 
h


 

 

If the photon has a momentum, its scattering can be treated as a collision between a particle 

of momentum 



h /  and another of mass me. From conservation of energy and linear momentum, 

one obtains         



C 
h

mec
 2.246pm 
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Diffraction of electrons 

The photoelectric effect and the Compton effect both show that the light has the attributes 

of particles. On the other hand experiments carried out in 1925 forced people to think that 

matter is wavelike. 

 Davidson and Germer: diffraction of electrons by a crystal. 

Depending on whether the interference is constructive or destructive, the 

result is a region of enhanced or diminished intensity. 

Diffraction is a characteristic property of waves because it occurs when 

there is interference between their peaks and troughs. 

Since then, similar experiments have been repeated for other 

particles (including molecular hydrogen) and showed clearly that 

particles have wavelike properties. When examined on an atomic scale, 

the concepts of particle and wave melt together, particles taking on the 

characteristics of waves, and waves the characteristics of particles. 

de Broglie suggested that any particle, not only photons, traveling with a momentum p should have 

in some sense a wavelength given by the de Broglie relation: 

    



 
h

p
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Atomic and molecular spectra 
 The mostly directly compelling evidence for the quantization of 

energy comes from the observation of the frequencies of radiation 

absorbed and emitted by atoms and molecules. 

 The spectrum of light emitted by excited 

mercury atoms consists of radiation at a series 

of discrete frequencies (spectral lines). A part 

of the ultraviolet absorption spectrum of SO2. 

When a molecule changes its state, it does so 

by absorbing light at definite frequencies. This 

suggests that it can possess only discrete 

energies, not an arbitrary energy. Radiation is 

emitted and absorbed at a series of discrete 

frequencies. Therefore, the energy of the atoms 

and molecules is also confined to discrete 

values, for then energy can be discarded or 

absorbed only in discrete amounts. If the 

energy of an atom decreases by E, the energy  

  

 

 

 

is carried away as a photon of frequency  = E/h, and a line appears in 

the spectrum. Classical mechanics failed in its attempts to account for the 

appearance of spectra and other phenomena. 



13 

The basic concepts of classical mechanics are false. A new mechanics, quantum 

mechanics, had to be devised to take its place. 

 We shall take the de Broglie relation p = h/ as a starting point and abandon the classical 

concept of particles moving on trajectories. We suppose that the position of a particle is 

distributed through space like the amplitude of wave. In order to describe this distribution, we 

introduce the concept of wavefunction  in place of the trajectory, and then set up the scheme 

for calculating and interpreting . 

Schrödinger equation 

 In 1926, the Austrian physicist Erwin Schrödinger proposed an equation for finding the 

wavefunction of any system. The Schrödinger equation for a particle of mass m moving in one 

dimension with energy E is     




2m

d2

dx2
V x   E  

V is the potential energy of the particle,   




h

2
1.055 1034 Js 

   



d2

dx2


2m
2

E V   0 

 For a free particle, V = 0 (or a constant), for a harmonic oscillator, 



V 
1

2
kx2

. 

 For three-dimensional systems: 




2

2m
2 V  E     where 



2 
2

x2

2

y2

2

z2
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 In the general case, the Schrödinger equation is written as  H = E 

where H is the hamiltonian operator of the system,     



H  
2

2m
2 V  

For the evolution of a system with time, we solve time-dependent Schrödinger equation: 



H  i


t
 

 

The justification of the Schrödinger equation 

 Let’s consider the case of motion in a region where the potential energy is zero. 

 Then 




2

2m

d2

dx2
 E  and a solution is 



  eikx  cos kx isin kx    



k 
2mE

2











1/2

 

cos kx (or sin kx) is a wave of wavelength  = 2/k. The energy of the particle is entirely kinetic. 

Therefore  



E  p2 /2m   and, because 



E 
k2 2

2m
,    



p  k . 

 The linear momentum is related to the wavelength of the wavefunction as 



p 
2




h

2


h


 

                de Broigle relation 
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The kinetic energy and the wavefunction 

      If the potential energy is uniform but non-zero, the Schrödinger equation is 




2

2m

d2

dx2
 E V   

The solutions are the same as before but with       



E V 
k2 2

2m
 

From the relation  = 2/k one obtains                



 
h

2m E V )  
1/2

 

The greater the difference between the total energy and the potential energy, the 

smaller the wavelength of the wavefunction. The greater the kinetic energy, the 

smaller the wavelength. A stationary particle (with zero kinetic energy) has 

infinite wavelength, meaning that its wavefunction has the same value 

everywhere. That is, for a particle at rest,  = constant.  

In terms of curvature of wavefunction, i.e. its second derivative d2/dx2, when the 

wavefunction is sharply curved (when it has a short wavelength), the kinetic 

energy is large. When the wavefunction is not sharply curved (when its 

wavelength is long), the kinetic energy is low. 

 

 

 

 



16 

The Born interpretation of the wavefunction 

 Max Born made use of an analogy with the wave theory of light, 

in which the square of the amplitude of an electromagnetic wave is 

interpreted as its intensity and therefore (in quantum terms) as the 

number of photons present. The square of the wavefunction (or 

* if  is complex) is proportional to the probability of finding 

the particle at each point in space. For a one dimensional system: 

If the amplitude of wavefunction of a particle is  at some point x, 

then the probability of finding the particle between x and x + dx is 

proportional to *dx. 

* is a probability density;  itself is called probability amplitude. 

For a particle moving in three dimensions (e.g. an electron near a nucleus 

in an atom), the wavefunction depends on the point r with coordinates x, y, 

and z, and the interpretation of (r) is: 

 If the wavefunction of a particle is  at some point r, then the 

probability of finding the particle in an infinitesimal volume d = dxdydz 

at the point r is proportional to *d. 
Normalization 
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 If  is a solution of the Schrödinger equation, then so is N, where N is any constant. 

Hence, we can always find a factor, the normalization constant, such that the proportionality of 

the Born interpretation becomes an equality. The sum over all space of the individual 

probabilities must be 1 (the probability of the particle being somewhere in the system is 1) 

 



N 2  *dx 1     



N 
1

 *dx













1/2

 

This procedure is called normalizing the wavefunction. Assuming that we always use normalized 

wavefunctions; that is, from now on we assume that  already includes the normalization factor, 

i.e.    



 *dx 1   



 *dxdydz 1   



 *d 1  

 

For spherical polar coordinates: 



x  rsin cos  



y  rsin sin  



z  rcos  

the volume element  



d  r2 sindrdd   

The radius r can range from 0 to , the 

colatitude  ranging from 0 to , and the azimuth 

 from 0 to 2. 
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Example. Normalizing a wavefunction 

 Normalize the wavefunction of an electron in the lowest energy state of a hydrogen atom, which 

is proportional to 



er / a0 , with a0 a constant and r the distance from the nucleus. 

 A useful integral for calculations: 



xn

0



 eaxdx 
n!

an1
 

 



 *d  N 2 r2

0



 e
2r / a0

dr sind d
0

2


0



  N 2 
1

4
a0

3 22  a0

3N 2
 

      



N 
1

a0

3











1/2

   



 
1

a0

3
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er / a0  

Quantization 

 The Born interpretation puts severe restriction on wavefunctions: 

1) to be continuous; 

2) to have a continuous slope; 

3) to be single-valued; 

4) to be finite almost everywhere. 

 These are such severe restrictions that acceptable solutions of the Schrödinger 

equation do not in general exist for arbitrary values of energy E. A particle may possess 

only certain energies, for otherwise its wavefunction would be physically unacceptable. 

That is, the energy of a particle is quantized. The acceptable energies can be found by  

 

solving the Schrödinger equation for motion of various kinds, and selecting the 

solutions that conform to the above restrictions. 
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H  E   



H  
2

2m

d2

dx2
V  

H is an operator, something that operates on the function . It takes the second derivative of , 

multiplies it by 



 2 /2m  and adds the result to the result of multiplying  by V. H is hamiltonian 

operator playing a special role in quantum mechanics. 

The Schrödinger equation is an eigenvalue equation, an equation of the form 

(Operator)(function) = (Numerical factor) x (same function)       



ˆ f  f  

The numerical factor  is called the eigenvalue of the operator 



ˆ . In the Schrödinger equation, the 

eigenvalue is the energy. The function f (which must be the same on each side in an eigenvalue 

equation) is the eigenfunction corresponding to that eigenvalue. In the Schrödinger equation, the 

eigenfunction is the wavefunction corresponding to the energy E. 

(Energy operator)(wavefunction) = (energy)(wavefunction) 

The importance of eigenvalue equations is that the above pattern exemplified by the Schrödinger 

equation itself is repeated for other properties, which in quantum mechanics are called observables. In 

general: 

(Operator)(wavefunction) = (observable)(wavefunction)      



ˆ     

where 



ˆ  is the operator (e.g. the hamiltonian H) corresponding to the observable  (e.g. the energy E). 

Therefore, if we know both the wavefunction  and the operator corresponding to the observable of 

Quantum mechanical principles 

Operators and observables 

interest, we can predict the outcome of an observation of that property (e.g. an atom’s energy) by 

picking out the factor  in the corresponding eigenvalue equation. 
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 Quantum mechanical calculations are often simplified by using the orthogonality property. Two 

functions are called orthogonal if   



i * jd  0  

 Eigenfunctions corresponding to different eigenvalues of the same operator are orthogonal. 

 For example, if 1 corresponds to one energy and 2 corresponds to a different energy, then the 

two functions should be orthogonal and the integral of their product is zero. 

 Consider sin x and sin 2x, both eigenfunctions of the operator d2/dx2, with eigenvalues –1 and –4, 

respectively. 



sin ax sin bxdx 
sin a b x

2 a b 


sin ab x

2 a b 
 const  

For a = 1and b = 2, 



sin ax sin bxdx  0 

 

Operators 

Linear momentum   



ˆ p 
i

d

dx
  



i

d

dx
 p  

The operator for position  



ˆ x  x  

Example: a general solution for free translational motion: 

 



  Ae ikx Beikx
   



E 
k2 2

2m
 

 Let’s select B = 0, then 



  Ae ikx
 and 

 



i

d

dx


i
A

deikx

dx


i
A ikeikx  kAeikx  k   
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Hence, 



p  k , as we already knew. Now suppose instead that we chose the wavefunction with A = 0, 

then by the same reasoning 



p  k , which shows that a particle described by the wavefunction 



eikx 

has the same magnitude of momentum (and the same kinetic energy) but directed towards –x (the 

momentum is a vector quantity, and the sign gives the direction). 

 

Superpositions and expectation values 

 Suppose now that that the wavefunction of the free particle has A = B. What is the linear 

momentum of the particle? The wavefunction is 

   



  A eikx eikx  2Acoskx  

However, when we apply the linear momentum operator, we find 

   



i

d

dx


2A

i

d

dx
cos x  

2kA

i
sin kx  

This is not an eigenvalue equation because the function on the right differs from that on the left. 

Linear superposition of wavefunctions 
 When the wavefunction of a particle is not an eigenfunction of an operator, the property 

(observable) corresponding to this operator is indefinite. However, in the current example the 

momentum is not completely indefinite because the cosine wavefunction is a linear superposition, or 

sum, of 



eikx and 



eikx, and these individually correspond to definite momentum states. We can write the 

superposition as   
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The interpretation of this wavefunction is that if the momentum of the particle is measured, its 

magnitude will be found to be 



k , but half the measurements will show that it is moving to the right, 

and half the measurements will show that it is moving to the left. 

 The same interpretation applies to any wavefunction written as a superposition. Suppose the 

wavefunction is a sum of many different linear momentum eigenfunctions:      

     



  c11  c22  ... cnn

n

  

where cn are numerical coefficients and the various n correspond to different momentum states. Then 

quantum mechanics tells us: 

1) When the momentum is measured, one of the values corresponding to the n that contribute to the 

superposition will be found. 

2) Which of these possible values will be found is unpredictable, but the probability of measuring a 

particular value in a series of observations is proportional to the square of its coefficient in the 

superposition. 

3) The average value of a large number of observations is given by the expectation value 



  of the 

observable 



: 



   * ˆ d  
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The uncertainty principle 

 If the particle’s wavefunction is Aeikx, it corresponds to a definite state of linear momentum 



k . 

But what is the position of the particle? 

 



 *  Aeikx * Aeikx  A2 eikx  eikx  A2 

The probability density is a constant independent of x. Therefore, the particle has an equal probability 

to be found anywhere. If the moment is specified precisely, it is impossible to predict the location of the 

particle. 

 Heisenberg uncertainty principle: It is impossible to specify simultaneously, with 

arbitrary precision, both the momentum and the position of a particle. 

 Werner Heisenberg at a quantitative version of this result by considering 

expectation values of position and momentum:  



pq 
1

2
 

p is the uncertainty in the linear momentum (the root mean square deviation of the 

momentum from its mean value) and q is the uncertainty in position (the r.m.s. 

deviation of the position from the mean position). 

If we know that the particle is at a definite location, its wavefunction must be large 

there and zero everywhere else. Such a wavefunction can be created by 

superimposing a large number of harmonic (sine and cosine, or eikx) functions to a 

wave packet – a linear combination of wavefunctions that correspond to many  

 
different linear momenta. When an infinite number of components is used, the wave 

packet is a sharp, infinitely narrow spike – perfect localization of the particle. 
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Example. Using the uncertainty principle 

 The speed of a projectile of mass 1.0 g is known to within 1 m s-1. Calculate the minimum 

uncertainty in its position. 

 We estimate p from mv, where v is the uncertainty in the speed and then use the Heisenberg 

relation to estimate the minimum uncertainty in its position, q. 

   



q 
2mv


1.0551034 Js

2 1.0103kg  1106 ms1 
 51026 m 

The uncertainty is completely negligible for all practical purposes concerning macroscopic objects. 

 The Heisenberg uncertainty relation applies to a number of pairs of observables called 

complementary observables, which are defined by the properties of their operators. Other than 

position and momentum, they include properties related to angular momentum. 

 The heart of the difference between classical and quantum mechanics – some observables are 

complementary. Quantum mechanics shows that position and moment are complementary, and that we 

would have to make a choice: we can specify position at the expense of momentum, or momentum at 

the expense of position. 

 Two observables 1 and 2 are complementary when their corresponding operators do not 

commute, i.e., the effect of the two operators depends on their order: 

   



ˆ 1
ˆ 2  ˆ 2

ˆ 1  
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We can illustrate this property for position and momentum: 

 



ˆ x ̂  p x  x 
i

d

dx
  



ˆ p x ˆ x  
i

d

dx
x 

i
  x

d

dx









 

The different outcomes of the effect of applying 



ˆ 1 and 



ˆ 2 in a different order are expressed by 

introducing the commutator of the two operators:   



ˆ 1, ˆ 2  ˆ 1
ˆ 2 

ˆ 2
ˆ 1 

The commutator of the operators for position and linear momentum is 



ˆ x , ˆ p x   /i  i  

This commutator is of such vital significance for quantum mechanics that it is taken as a fundamental 

distinction between classical mechanics and quantum mechanics. Actually, this commutator is taken as 

a postulate of quantum mechanics and is used to justify the choice of operators for position and linear 

momentum. 

 Now, we can give the Heisenberg uncertainty principle in its most general form. For any two pairs 

of observables, 1 and 2, the uncertainties (the root mean square deviations of their values from the 

mean) in simultaneous determination are related by   



12 
1

2
ˆ 1, ˆ 2    


