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Spectroscopy 1: rotational and vibrational spectra
Pure rotation spectra

Moments of inertia
The key molecular parameter required for treating rotational

spectra – the moment of inertia, I, of the molecule:

€ 

I = mi
i
∑ ri

2

ri – the perpendicular distance of the atom I from the axis of
rotation. The moment of inertia depends on the masses of the atoms
and the molecular geometry, therefore rotational spectroscopy gives
information about bond lengths and bond angles.

In general, the rotational properties of any molecule can be
expressed in terms of the moments of inertia about three
perpendicular axis. The convention is to label the moments of
inertia Ia, Ib, and Ic, with the axes chosen so that Ia > Ib > Ic. For the
linear molecules, the moment of inertia around the internuclear axis
is zero.

Example. Calculating the moment of inertia
of a molecule. Calculate the moment of

€ 

I = mi
i
∑ ri

2 = mHrH
2 +0+mHrH

2 = 2mHrH
2 = 2mHR

2 sin2 φ =1.91×10−47 kgm2

inertia of an H2O molecule around the axis
defined by the bisector of the HOH angle.
HOH = 104.5°, the bond length is 95.7 pm.
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Initially, we suppose that molecules are rigid rotors, bodies that do not distort under the
stress of rotation. Rigid rotors are classified into four types:
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Spherical rotors – have three equal moments of inertia (CH4, SF6).
Symmetric rotors –two equal moments of inertia (NH3, CH3Cl).
Linear rotors – have one moment of inertia (the one about the molecular axis) equal to zero
(CO2, HCl, OCS, HC≡CH).
Assymetric rotors – have three different moments of inertia (H2O, H2CO, CH3OH).

The explicit expressions for the moment of inertia of some symmetrical molecules are
given in Table 12.1 (p. 450 in Atkins).
The rotational energy levels

The rotational levels of a rigid rotor may be obtained by solving the appropriate
Schrödinger equation. Alternatively (a short cut), we consider the classical expression for the
energy of a rotating body, express it in terms of the angular momentum, and then import the
quantum mechanical properties of the angular momentum in the equation. The classical

expression for the energy:

€ 

Ea =
1
2
Iaωa

2

ωa – the angular velocity (in radians per second, rad s-1) about an axis a, Ia – the
corresponding moment of inertia. A body free to rotate about three axes has an energy

€ 

E =
1
2
Iaωa

2 +
1
2
Ibωb

2 +
1
2
Icωc

2

Because 

€ 

Ja = Iaωa , 

€ 

E =
Ja
2

2Ia
+
Jb
2

2Ib
+
Jc
2

2Ic
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Spherical rotors (there are two or more Cn axis with n > 2: Td, Oh)
When all three moments of inertia are equal to some value I, the classical expression for

the energy is 

€ 

E =
Ja
2 + Jb

2 + Jc
2

2I
=
J 2

2I
J is the magnitude of the angular momentum. For the quantum mechanical rotor:

  

€ 

J 2 → J J +1( )h2 J = 0, 1, 2, …

  

€ 

EJ = J J +1( ) h2

2I
J = 0, 1, 2, …

The resulting ladder of energy levels is shown on the figure. The energy is
normally expressed in terms of the rotational constant, B, of the molecule:

  

€ 

hcB =
h2

2I   

€ 

B =
h

4πcI

€ 

EJ = hcBJ J +1( ) J = 0, 1, …

The rotational constant is a wavenumber (units are cm-1). The energy of a rotational
state is normally reported as the rotational term, F(J), a wavenumber, by division by
hc: F(J) = BJ(J + 1)
The separation of adjacent levels is F(J) – F(J – 1) = 2BJ
Because the rotational constant decreases as I increases, large molecules have
closely spaced rotational energy levels. For example, for CCl4, I = 4.85×10-45 kg
m2, B ≈ 0.06 cm-1.
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Symmetric rotors (groups Cn, Cnv, Cnh, Sn, Dn, Dnh, Dnd; n > 2)
In symmetric rotors, two moments of inertial are equal but different from the third; the

unique axis of the molecule is its principal axis. The unique moment of inertia (about the
principal axis) is denoted as I|| and the other two as I⊥. If I|| > I⊥, the rotor is oblate (like a
pancake or C6H6); If I|| < I⊥, the rotor is prolate (like a cigar or CH3Cl). The classical

expression for the energy becomes

€ 

E =
Jb
2 + Jc

2

2I⊥
+
Ja
2

2I||
With 

€ 

J 2 = Ja
2 + Jb

2 + Jc
2,

€ 

E =
J 2 − Ja

2

2I⊥
+
Ja
2

2I||
=
J 2

2I⊥
+

1
2I||

−
1
2I⊥

 

 
 

 

 
 Ja

2

The quantum expression is generated by replacing J2 by   

€ 

J J +1( )h2, where J is the angular
momentum quantum number. The component of angular momentum about any axis is

restricted to the values   

€ 

Kh, with K = 0, +1,…,+J. K is the quantum number
for a component on the principal axis. Therefore, we replace Ja

2 by   

€ 

K 2h2.
Then, the rotational terms are

€ 

F J ,K( ) = BJ J +1( ) + A− B( )K 2 J = 0, 1, 2, … K = 0, +1,…,+J

  

€ 

A =
h

4πcI||   

€ 

B =
h

4πcI⊥
The equation shows the dependence of the energy levels on the two distinct
moments of inertia of the molecule. When K = 0, there is no component of

angular momentum about the principal axis, and the energy levels will
depend only on I⊥.
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When K = +J, almost all the angular momentum arises from rotation around the principal
axis, and the energy levels are determined largely by I||. The sign of K does not affect the
energy because opposite values of K correspond to opposite senses of rotation, and the energy
does not depend on the sense of rotation.

Example. Calculating the rotational energy levels of a molecule. A 14NH3 molecule is a
symmetric rotor with bond length 101.2 pm and HNH bond angle 106.7°. Calculate
rotational terms.

For a symmetric rotor, like NH3

€ 

I|| = 2maR
2 1− cosθ( )

€ 

I⊥ = maR
2 1− cosθ( ) +

mAmB

m
R2 1+2cosθ( )

Using mA = 1.0078 u, mB = 14.0031 u, R = 101.2 pm, θ = 106.7°, we obtain I|| = 4.4128×10-47

kg m2 I⊥ = 2.8059×10-47 kg m2

A = 6.344 cm-1 B = 9.977 cm-1

F(J,K)/cm-1 = 9.977J(J + 1) – 3.633K2

F(J,K)/GHz = 299.1J(J + 1) – 108.9K2

For J = 1, the energy needed for the molecule to rotate mainly about its principal axis (K =
+J) is 16.32 cm-1 (489.3 GHz), but end-over end rotation (K = 0) corresponds to 19.95 cm-1

(598.1 GHz).
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Linear rotors
For a linear rotor the rotation occurs only about an axis perpendicular to the line of

atoms; there is zero angular momentum around the internuclear line. Therefore, the
component of angular momentum around the principal axis of a linear rotor is zero
and K = 0. The rotational terms of linear molecule are therefore

F(J) = BJ(J + 1) J = 0, 1, 2, …

Degeneracies and the Stark effect
The energy of a symmetric rotor depends on J and K and each level except those

with K = 0 is doubly degenerate: the states with K and –K have the same energy.
Meanwhile, the angular momentum of the molecule has a component on an external,
laboratory-fixed axis. This component is quantized, with permitted values   

€ 

MJh, MJ =
0, +1, …, +J, giving 2J + 1 values in all. The quantum number MJ does not appear in
the expression for the energy, but it is necessary for a complete specification of the
rotor. All 2J + 1 orientations of the rotating molecule have the same energy and it
follows that a symmetric rotor level is 2(2J + 1)-fold degenerate for K ≠ 0 and (2J +
1)-fold degenerate for K = 0. A linear rotor always has K = 0, but the angular
momentum may still have 2J + 1 components on the laboratory axis, so its
degeneracy is 2J + 1.
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A spherical rotor – a version of a symmetric rotor with A = B: the quantum number K may
still take any of 2J + 1 values, but the energy is independent of K. Therefore, in addition to a
(2J + 1)-fold degeneracy arising from its orientation in space, the rotor also has a (2J + 1)-
fold degeneracy with respect to an arbitrary axis in the molecule. The overall degeneracy is
then (2J + 1)2. The degeneracy due to MJ (the orientation of the rotation in space) is partly
removed when an electric field is applied to a polar molecule. The splitting of states by an
electric field is called the Stark effect. For a linear rotor in an electric field E, the energy of

the state 

€ 

J,MJ  is given by E(J,MJ) = hcBJ(J + 1) + a(J,MJ)µ2E2

€ 

a J ,MJ( ) =
J J +1( )− 3MJ

2

2hcBJ J +1( ) 2J −1( ) 2J + 3( )
The energy of a state with quantum number MJ depends on the square of the permanent
electric dipole moment, µ. Therefore, the observation of the Stark effect can be used to
measure this property. The technique is limited to molecules that are sufficiently volatile to
be studied by microwave spectroscopy.

Centrifugal distortion
We have treated molecules as rigid rotors. However, the atoms in

rotating molecules are subject to centrifugal forces that tend to distort the
molecular geometry and change the moments of inertia. For example,

centrifugal distortion stretches the bond in a diatomic molecule and
hence increases the moment of inertia.
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As a result, centrifugal distortion reduces the rotational constant and the energy levels are
slightly closer than the rigid-rotor expressions predict:

€ 

F J( ) = BJ J +1( )−DJJ
2 J +1( )2

DJ – the centrifugal distortion constant. It is large when the bond is easily stretched. For a

diatomic molecule, 

€ 

DJ ≈
4B3

˜ ν 2

Hence the observation of the convergence of the rotational levels can be interpreted in terms
of the flexibility of the bond.
Rotational transitions

Typical values of B for small molecules are in the range of 0.1-10 cm-1, so rotational
transitions lie in the microwave region of the spectrum. The transitions are detected by
monitoring the net absorption of microwave radiation.
Rotational selection rules

For a molecule to give a pure rotational spectrum, it must be polar. The
classical basis: a polar molecules appears to possess a fluctuating dipole
moment when rotating, a nonpolar molecule does not. Homonuclear diatomic
molecules and symmetrical linear molecules (CO2) are rotationally inactive.
Spherical rotors cannot have electric dipole moments unless they become
distorted by rotation, so they also inactive except in special cases. An example
of a spherical rotor that does become sufficiently distorted for it to acquire a
dipole moment – SiH4. Of the molecules N2, CO2, OCS, H2O, CH2=CH2, C6H6,
only OCS and H2O are polar, so only these two molecules have microwave
spectra.
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The specific rotational selection rules are found by evaluating the
transition dipole moment between rotational states. For example, for a linear
molecule, the transition moment vanishes unless

€ 

ΔJ = ±1

€ 

ΔMJ = 0,±1
The transition 

€ 

ΔJ = +1 corresponds to absorption and the transition

€ 

ΔJ = −1 corresponds to emission. The allowed change in J in each case arises
from the conservation of angular momentum when a photon, a spin-1 particle,
is emitted or absorbed.

When the transition moment is evaluated for all possible relative orientations of the molecule
to the line of flight of the photon, the total J +1 ↔ J transition intensity is proportional to

€ 

µJ+1,J
2

=
J +1
2J +1
 
 
 

 
 
 µ0

2 →
1
2

µ0
2 for J >> 1

µ0 – the permanent electric dipole moment of the molecule. The intensity is proportional to
the square of the permanent electric dipole moment – strongly polar molecules give rise to
much more intense rotational lines than less polar molecules.

An additional selection rule for symmetric rotors: ΔK = 0.
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The appearance of rotational spectra
When these selection rules are applied to the expressions for the energy

levels of a rigid symmetric or linear rotor, it follows that the
wavenumbers of the allowed J + 1 ← J absorptions are

€ 

˜ ν J +1← J( ) = 2B J +1( ) J = 0, 1, 2, …
When centrifugal distortion is taken into account

€ 

˜ ν J +1← J( ) = 2B J +1( )− 4DJ J +1( )3

The second term is typically very small and the spectrum appears
with nearly equally spaced peaks. The spectrum consists of a series of
lines with wavenumbers 2B, 4B, 6B, … and of separation 2B. The
measurement of the line spacing gives B, and hence the moment of

inertia perpendicular to the principal axis of the molecule. The masses of atoms are known –
it is simple to deduce the bond length of a diatomic molecule. In the case of a polyatomic
molecule (OCS, NH3) the analysis gives only a single quantity I⊥ and it is not possible to
infer both bond lengths (OCS) or the bond length and bond angle (NH3). The use of
isotopically substituted molecules can overcome this difficulty. Rotational spectrum is then
measured for ABC and A’BC and it is assumed that R(A-B) = R(A’-B). Then two moments
of inertia are obtained (for ABC and A’BC), which gives two equations with two unknowns,
R(A-B) and R(B-C). The assumption that bond lengths are unchanged by isotopic
substitution is only an approximation, but a very good one in most cases.
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Example. Predicting the appearance of a rotational spectrum.
Predict the form of the rotational spectrum of NH3.

We calculated the energy levels in the previous example. The NH3 molecule is a polar
symmetric rotor, so the selection rules are ΔJ = +1, ΔK = 0. For absorption, ΔJ = +1; B =
9.977 cm-1:

J 0 1 2 3 …

€ 

˜ ν /cm−1 19.95 39.91 59.86 79.82 …

€ 

ν /GHz 598.1 1197 1795 2393 …
The line spacing is 19.95 cm-1 (598.1 GHz).

The intensities of spectral lines increase with increasing J and pass through a maximum.
The most important reason – the existence of a maximum in the population of rotational
levels. The Boltzmann distribution implies that the population of each state decays
exponentially with decreasing J, but the degeneracy of the levels increases

€ 

NJ ∝ NgJe
−EJ /kT

N – the total number of molecules in the sample J, gJ – the degeneracy of the level J. The
value of J corresponding to a maximum of this expression is found by treating J as a
continuous variable, differentiating with respect to J, and setting the result equal to zero.

€ 

Jmax ≈
kT
2hcB
 
 
 

 
 
 
1/2

−
1
2

For a typical molecule (OCS, B = 0.2 cm-1) at room temperature kT ≈ 1000hcB and Jmax ≈ 22.
However, it must be taken into account that the intensity of each transition also depends on J.
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The distortion of a molecule in an electric field is determined by its
polarizability α. If the strength of the field is E, the molecule acquires an induced

dipole moment: µ = αE
An atom is isotropically polarizable – the same distortion is induced whatever

the direction of the applied field. The polarizability of a spherical rotor is also
isotropic. However, non-spherical rotors have polarizabilities that do depend on
the direction of the field relative to the molecule – these molecules are
anisotropically polarizable. All linear molecules and diatomics (including

homonuclear) are therefore rotationally Raman active and the technique can
be used to study many of the molecules that are inaccessible to microwave
spectro-scopy. However, spherical rotors (CH4, SF6) are rotationally Raman
inactive as well as microwave inactive. The specific rotational Raman
selection rules are: Linear rotors: ΔJ = 0, +2

Symmetric rotors: ΔJ = 0, +1, +2 ΔK = 0
We can predict the form of the Raman spectrum of a linear rotor by applying
the selection rule ΔJ = +2. For ΔJ = +2, the scattered radiation leaves the
molecule in a higher rotational state, so the wavenumber of the incident
radiation, 

€ 

˜ ν i , is decreased: Stokes lines:

€ 

˜ ν J + 2← J( ) = ˜ ν i − F J + 2( )− F J( ){ } = ˜ ν i − 2B 2J + 3( )

Rotational Raman spectra
The gross selection rule: the molecule must be anisotropically polarizable.

For ΔJ = -2, anti-Stokes lines are observed:

€ 

˜ ν J − 2← J( ) = ˜ ν i + F J( )− F J − 2( ){ } = ˜ ν i + 2B 2J −1( )
The separation of adjacent lines is 4B in both regions.


