
Semiempirical Implementations of Molecular Orbital Theory
How one can make Hartree-Fock theory less computationally intensive without much

sacrificing its accuracy? The most demanding step – calculation of two-electron (four-index)
integrals (J and K integrals) appearing in the Fock matrix elements (N4 where N is the
number of basis functions). One way to save time – to estimate their value accurately in an a
priori fashion and thus to avoid numerical integration.

Coulomb integrals measure the repulsion between electrons in regions of space defined
by the basis functions. When the basis functions in the integral for one electron are very far
from the basis functions for the other, the value of that integral will approach zero. In a large
molecule, one might be able to avoid the calculation of a very large number of integrals
simply by assuming them to be zero.

HF theory is intrinsically inaccurate as it does not include correlation energy. Therefore,
modifications of the theory introduced in order to simplify its formalism may actually
improve it, provided the new approximations somehow introduce an accounting for
correlation energy. Most typically, such approximations involve the adoption of a parametric
form for some aspect of the calculation where the parameters involved are chosen so as best
reproduce experimental data – ‘semiempirical’.

Another motivation for introducing semiempirical approximation into HF theory was to
facilitate the computation of derivatives (gradients, Hessians) so that geometries could be
more efficiently optimized.



Extended Hückel Theory
Before considering semiempirical methods we revisit Hückel theory:
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The dimension of the secular determinant depends on the choice of the basis set. EHT
has two critical conventions: 1) all core electrons are ignored (all modern semiempirical
methods adopt this approximation); 2) if an atom has occupied d orbitals, the highest
occupied level of d orbitals is considered to contribute to the set of valence orbitals.

Each remaining valence orbital is represented by a Slater-type orbital (STO):
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ζ - an exponent, depends on the atomic number
n – the principal quantum number for the valence orbital
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m θ,φ( ) - spherical harmonic functions, depend on the angular momentum quantum numbers
l and m.



The size of the secular determinant is dictated by the total number of valence orbitals in
the molecule. Example – MnO4

- anion – 25 STO basis functions: one 2s and three 2p
functions for each oxygen (16), one 4s, three 4p, and five 3d functions for manganese.

Attractive features of STOs – the correct exponential decay with increasing r, the
angular component is hydrogenic, and the 1s orbital has, as it should a cusp at the nucleus (it
is not smooth). From a practical point of view, overlap integrals between two STOs as a
function of interatomic distance are readily computed – overlap matrix elements in EHT are
not assumed to be 0 or 1 but computed.

Resonance integrals H: diagonal Hµµ is taken as the negative of the average ionization
potential for an electron in the appropriate valence orbital: Hµµ = -13.6 eV for a hydrogen 1s
function. In many-electron atoms, the valence-shell ionization potential (VSIP) for the
ground state atomic term may not be the best choice for the atom in a molecule, so this term
is best regarded as an adjustable parameter. VSIPs have been tabulated for most of the atoms
in the periodic table. Atoms in molecular environments may develop fairly large partial
charges – schemes for adjusting the neutral atomic VSIP as a function of partial atomic
charge have been proposed – Fenske-Hall effective Hamiltonian calculations, still find
considerable use for inorganic and organometallic systems composed of atoms having widely
different electronegativities.

Off-diagonal resonance integrals:
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C – an empirical constant, S – an overlap integral. The energy associated with the matrix
element is thus proportional to the average of the VSIPs for the two orbitals µ and ν
multiplied by the extent to which two orbitals overlap in space (by symmetry, the overlap
between two different STOs on the same atom is zero).

Using standard linear algebra methods, the MO energies and wave functions can be
found from solution of the secular equation. The matrix elements do not depend on MOs
(unlike HF theory), so the calculation is not iterative and is very fast even for very large
molecules (the process becomes iterative if VSIPs are adjusted as a function of partial atomic
charge, since the partial atomic charge depends on occupied orbitals). EHT is insufficiently
accurate to predict geometries – the use is best restricted to systems with available
experimental geometries. EHT predicts MO qualitatively correct – now is used for very large
systems, solids, band structure.
CNDO formalism

Returning to the SCF formalism of HF theory, one can proceed in the spirit of an
effective Hamiltonian method described above by developing a recipe for replacement of
matrix elements in the HF secular equation. CNDO – complete neglect of differential
overlap, John Pople and co-workers (1965):

1. The basis set is formed from valence STOs, one STO per valence orbital. In the
original version, only atoms having s and p valence orbitals were addressed.

2. In the secular determinant, overlap matrix elements are defined by Sµν = δµν



3. All two-electron integrals are parameterized using the following scheme:
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µν |λσ( ) = δµνδλσ µµ |λλ( )                          The only non-zero integrals have µ and
ν as identical orbitals on the same atom, and λ and δ as identical orbitals on the same
atom; the second atom might be different than the first (integrals involving overlap of
different basis functions are completely neglected – CNDO).

4. For the surviving two-electron integrals: 
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µµ |λλ( ) = γ AB
A and B are the atoms on which basis functions µ and λ reside, respectively. The
term γ can be computed explicitly from s-type STOs or can be treated as a parameter.
Pariser-Parr approximation: γAA = IPA - EAA

IP and EA are the atomic ionization potential and electron affinity, respectively. For

the two-center term, Mataga-Nishimoto formalism:
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At large distances, it goes to 1/rAB, at short distances it approaches the average of the
two one-center parameters.

5. One-electron integrals for diagonal matrix elements:
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Remember that the full Fock matrix element Fµµ is the sum of the one-electron integral and a
series of two-electron integrals. If the number of valence electrons on each atom is exactly
equal to the valence nuclear charge, then the repulsive two-electron terms will exactly cancel
the attractive nuclear terms at the end of the equation and we will obtain the desired result:
the energy associated with the diagonal matrix element is the ionization potential of the
orbital.

6. One-electron integrals for off-diagonal matrix elements:
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µ and ν are centered on atom A and B, respectively; β – semi-empirical parameters; Sµν - the
overlap matrix element computed using the STO basis set. The β parameters provide a
measure of the strength of through space interactions between atoms – they were originally
adjusted to reproduce certain experimental quantities.

The CNDO method – a vast simplification of HF theory. The number of two-electron
integrals – N2, they are computed by trivial algebraic formulas, evaluation of one-electron
integrals is also entirely avoided. The simplifications of course have chemical cost. CNDO is
quite uncapable of accurately predicting molecular structures, it cannot distinguish between
different types of atomic orbitals (example – singlet and triplet states of methylene, CH2) and
between the orientation of those orbitals. Another example – if we consider the rotational
coordinate for hydrazine, N2H4, one factor influencing the energetics will be the repulsion of

the lone pairs, one on each nitrogen. However, this repulsion in CNDO is γNN, which does
not depend of the orientation, only on the N-N distance.



INDO formalism
Of the two deficiencies of CNDO, the methylene problem is atomic in nature – it

involves electronic interactions on a single center, while the hydrazine problem is molecular,
as it involves two centers. Many ultraviolet/visible (UV/Vis) spectroscopic transitions in
molecules are reasonably highly localized to a single center (transitions in mononuclear
inorganic complexes). Pople et al. – modifications to the CNDO formalism to permit a more
flexible handling of electron-electron interactions on the same center in order to model such
spectroscopic transitions: “intermediate neglect of differential overlap” (INDO). The key
change – to use different values for the unique one-center two-electron integrals:

(ss|ss) = Gss (ss|pp) = Gsp (pp|pp) = Gpp
(pp|p’p’) = Gpp’ (sp|sp) = Lsp

The G and L are free parameters, in practice they can be estimated from spectroscopic data.
When the atomic valence orbitals include d and f functions, the number of unique integrals
considerably increases and the estimation of appropriate vales from spectroscopy becomes
considerably more complicated.

Valence bond angles in INDO are predicted with much greater accuracy then in CNDO,
but nevertheless, overall molecular geometries predicted from INDO tend to be rather poor.
If a good molecular geometry is available, the INDO method has considerable potential for
modeling the UV/Vis spectroscopy. Ridley and Zerner (1973): INDO/S – careful
parameterization of INDO for spectroscopy. The INDO/S model is very successful for d → d
transitions within transition metal complexes (within 2000 cm-1), but less robust for
transitions that are not well localized to a single center (metal-to-ligand , etc.) and is not good
for Rydberg states. INDO/S has a good accuracy for ionization potentials and oscillator
strengths for weak transitions.



MINDO/3 and SINDO1
Michael Dewar established, as a goal, the development of a parameter set that would as

robust as possible across the widest possible set of molecules (at the time, he has chosen
organic chemistry, with a few inorganic compounds comprised of second- and third-row
elements). A truly thorough test of a general model – efforts of more than one research group
are needed – a computer code available to a general chemistry public. Dewar’s code included
geometry optimization routines, which made it particularly attractive to non-developers
interested in using the code for chemical purposes.

The first general parameterization reported by Dewar and co-workers – MINDO/3
(1975). Modifications of the INDO framework: the use of different ζ exponents in s and p
type STOs on the same atom, the definition of pair parameters βAB between two atoms A and
B were not averages of atomic parameters (four such parameters were introduced per pair of
atoms: sA, sB; sA, pB; pA, sB; and pA, pB), adoption of a slightly different form for γAB, and
some empirical modifications of the nuclear repulsion energy.

Every parameter was treated as a free variable subject to ‘chemical common sense’
restraints. To optimize parameter values, Dewar initially took a set of 138 small molecules
containing C, H, N, and O, and constructed a penalty function depending on bond distances,
valence angles, torsional angles, dipole moments, ionization potentials, and heats of
formation. The performance of the MINDO/3 model was impressive overall. The mean
absolute error in predicted heats of formation was 11 kcal/mol (all molecules), the

corresponding error for IPs was 0.7 eV (46 molecules), for heavy-atom bond lengths 0.022
Å (81 molecules), and for dipole moments 0.45 D (31 molecules). Such mean errors would
not be tolerated today but are very small for 1975.



Dewar’s subsequent work on other semiempirical models rendered MINDO/3 effectively
obsolete, but its historical importance remains unchanged. A modified INDO model that is not
entirely obsolete – symmetric orthonogalized INDO (SINDO1) by Jug and co-workers (1980).
SINDO1 includes d functions for atoms of the second row. This inclusion proves critical for
handling hypervalent molecules; SINDO1 performs considerably better for phosphorus-
containing compounds than do other semiempirical models that lack d functions.

Basic NDDO formalism
The INDO model extends the CNDO model by adding flexibility to the description of

the one-center two-electron integrals. However, in INDO there continues to be only a single
two-center two-electron integral γAB irrespective of which orbitals on atoms A and B are
considered. The neglect of diatomic differential overlap (NDDO) method relaxes the
constraints on two-center two-electron integrals: all integrals (µν|λσ) are retained provided µ
and ν are on the same atomic center and λ and σ are on the same atomic center, but not
necessarily the center of µ and ν. The order of µ and ν does not affect the value of the
integral, we need to worry only about combinations – 10 unique combinations of s, px, py,
and pz. With 10 unique combinations on each atom, there 100 possible combinations of
combinations for the integral. If we include d functions, the number of unique integrals
increases to 2025. Although these numbers seem large, this is still a considerable

improvement over evaluating every possible integral. Most modern semiempirical models
are NDDO models.



MNDO – a modified neglect of differential overlap (Dewar and Thiel, 1977). Initially
developed for C, H, O, and N.

A diagonal element of the Fock matrix:
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µ is located on atom A. The first term is the atomic orbital ionization potential, the second
term the attraction to the other nuclei where each term is proportional to the repulsion with
the valence s electron on the nucleus, the third term reflects the Coulomb and exchange
interactions with the other electrons, and the fourth term reflects Coulomb repulsion with
electrons on other atoms B.

An off-diagonal matrix element for two basis functions µ and ν on the same atom A:
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When µ is on atom A and ν on atom B:  
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the orbitals involved. The second term includes favorable exchange interactions. How to
evaluate all the necessary two-electron integrals? Unlike one-center two-electron integrals, it
is not easy to analyze spectroscopic data to determine universal values. Dewar and co-
workers – replaced continuous clouds with classical multipoles.
An ss product was replaced with a point charge, and sp product was replaced with a classical
dipole, and a pp product was replaced with a classical quadrupole – the evaluation is simple
and evaluation of their analytical derivatives with respect to nuclear motion is simple.

The nuclear repulsion energy is added to the SCF energy:
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Z – the valence atomic number, α - a parameter specific for each atom type, r – interatomic
distance, τ - 1 unless the two nuclei k and l are an O/H or N/H pair, in which case it is rXH.
Internuclear repulsion is proportional to the repulsion between s electrons on the same center
and is empirically increased slightly at short bond lengths to make up for imbalances in the
electronic part.
As with MINDO/3, Dewar and Thiel optimized the parameters of the MNDO model against
a large test set of molecular properties. Within the assumption of a valence orbital set
comprised only of s and p orbitals, MNDO parameters are now available for H, He, Li, Be,
AM1B, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, Sn, I, Hg, and Pb. MNDO now is mostly replaced
by the later NDDO models (AM1 and PM3), but MNDO calculations still appear in the
literature. MNDO forms the foundation for MNDO/d. A modified MNDO model explicitly
adding electron correlation effects (MNDOC) was described by Thiel in 1981.

The first term is the resonance integral that describes the one-electron kinetic energy and
nuclear attraction terms; it is an average of atomic resonance integrals β times the overlap of



One critical flaw in MNDO is that it does very poorly in the prediction of hydrogen
bonding geometries and energies. Modification – Austin Model 1 (AM1, Dewar, 1985). The
nuclear repulsion energy between any two nuclei A and B is computed as
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Every atom has up to 4 each parameters a, b, and c describing Gaussian functions centered at
various distances c that modify the potential of mean force between the two atoms.
Simultaneous optimization of the original MNDO parameters with the Gaussian parameters
markedly improved performance.

Now AM1 parameters are available for H, C, N, and O, as well as B, F, Al, Si, P, S, Cl,
Zn, Ge, Br, I, and Hg. AM1 calculations are fast and the model is reasonably robust over a
large range of chemical functionality – AM1 is included in many molecular modeling
packages and AM1 results continue to be reported in the chemical literature for a wide
variety of applications.
PM3

J.J.P. Stewart: the development of AM1 had been potentially non-optimal, from a
statistical point of view because (i) the optimization of parameters was carried out
stepwisely; (ii) the search of parameter space had not been completely exhaustive; (iii)
human intervention based on perceived ‘reasonableness’ of parameters occurred in many
instances.



Stewart had a somewhat more mathematical philosophy – a sophisticated search of parameter
space using complex optimization algorithms might be more successful in producing a best
possible parameter set within Dewar’s NDDO framework. Stewart optimized simultaneously
parameters for H, C, N, O, F, Al, Si, P, S, Cl, Br, and I. He employed a significantly larger
data set in evaluating his penalty function – Parametrization Model 3 (PM3; Stewart 1989).
PM3 will not necessarily be better than MNDO or AM1 for any particular problem but is
likely to be optimal for systems closely resembling molecules found in the training set. PM3
parameters are also available for Li, Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl,
Pb, Bi, Po, and At. PM3 is a very robust NDDO model and continues to be used as widely as
AM1.
General Performance Overview of Basic NDDO Methods
Energetics
Mean unsigned errors (kcal/mol) in predicted heats of formation
Elements Subset MNDO AM1 PM3 MNDO/d
____________________________________________________
Lighter (181) 7.35 5.80 4.71

CH (58)   5.81 4.89 3.79
CHN (32) 6.24 4.65 5.02
CHNO (48) 7.12 6.79 4.04
CHNOF (43) 10.50 6.76 6.45



Radicals (14) 9.3 8.0 7.4
Heavier (488) 29.2 15.3 10.0 4.9

Al (29) 22.1 10.4 16.4 4.9
Si (84) 12.0 8.5 6.0 6.3
P (43) 38.7 14.5 17.1 7.6
S (99) 48.4 10.3 7.5 5.6
Cl (85) 39.4 29.1 10.4 3.9
Br (51) 16.2 15.2 8.1 3.4
I (42) 25.4 21.7 13.4 4.0
Hg (37) 13.7 9.0 7.7 2.2

  Normal (421)  11.0 8.0 8.4 4.8
 Hypervalent (67) 143.2 61.3 19.9 5.4
Cations (34) 9.55 7.62 9.46
Anions (13) 11.36 7.11 8.81
____________________________________________________

AM1 and PM3 are always more accurate than MNDO. PM3 offers a slight advantage
over AM1 for molecules composed of lighter elements (C, H, N, O, F) and a clear advantage
for heavier elements. In the latter case, the difference is essentially entirely for hypervalent
molecules. Errors for ions and radicals are larger than for neutral closed-shell molecules.



Another interesting energetic property – IP. In HF theory, the eigenvalue associated
with each MO is the energy of an electron in that MO. Thus, a good estimate of the negative
of the IP is the energy of the highest occupied MO – Koopmans’ theorem. Employing this
approximation, all of the semiempirical methods do reasonably well in predicting IPs for
organic molecules. On a test set of 207 molecules containing H, C, N, O, F, Al, S, P, Cl, Br,
and I, the average errors in predicted IP are 0.7 eV (MNDO), 0.6 eV (AM1), and 0.5 eV
(PM3). For purely inorganic compounds PM3 gives as good results, the errors of MNDO and
AM1 increase by a few tenths of eV.

Energetics of conformational changes and reactions – MNDO: steric crowding tends to
be strongly disfavored and small ring compounds are predicted to be too stable. For the most
part, these problems are corrected in AM1 and PM3. Activation enthalpies are still more
likely to be overestimated because electron correlation energy tends to be more important in
TS structures than in minima. Since correlation energy is introduced in only an average way
by parametrization of the semiempirical HF equations, it cannot distinguish well between the
two kinds of structures.

For weak intermolecular interactions (van der Waals or dispersion forces) or hydrogen
bonding, semiempirical methods are in general unreliable. Hydrogen bonding is better
described by AM1 and PM3 than by MNDO, still in most instances the interaction energies
are systematically underestimated by up to 50% - basic NNDO methods are not well suited to
the characterization of hydrogen bonded systems.



Energetic barriers to rotation about bonds with partial double bond character –
significantly underestimated (by ~15 kcal/mol for the C-N bond). Conformational analysis –
the NDDO methods are not quantitatively very accurate. For 8 different sets of conformer
pairs, predictions from MNDO, AM1, and PM3 gave mean unsigned errors of 1.4, 1.3, and
1.8 kcal/mol, respectively.
Geometries

Correct molecular structures are dependent on the proper location of wells in the PES –
they are intimately related to the energetics of conformational analysis. For organic
molecules, most gross structural details are modeled with a reasonable degree of accuracy.
Dewar et al. evaluated AM1 and PM3 for 344 bond lengtrhs and 146 valence angles in
primarily organic molecules composed of H, C, N, O, F, Cl, Br, and I; the average unsigned
errors were 0.027 and 0.022 Å, respectively, for the bond lengths, and 2.3 and 2.8°,
respectively, for the angles. For PM3, Stewart performed a similar analysis for a larger set of
molecules, some of them including Al, Si, P, and S. For 460 bond lengths, the mean unsigned
errors wer 0.054, 0.050, and 0.036 Å for MNDO, AM1, and PM3, respectively. For 196
valence angles, the errors were 4.3, 3.3, and 3.9°.

The geometries for the molecules containing second-row elements are more difficult to
predict than for simpler organics. MNDO and AM1 are less successful than PM3. For
dihedral angles the errors were 21.6, 12.5 and 14.9°, respectively, for MNDO, AM1, and
PM3. Heteroatom-heteroatom linkages are often problematic (for example, O-O, N-N, P-P,
and Si-X). The energetics of hydrogen bonding is not handled well and geometries are similarly
problematic.



Charge Distributions
One of the most useful features of a QM model is its ability to provide information

about the molecular charge distribution. Normally, even very low quality QM methods tend
to give reasonable charge distribution. For a 125-molecule test set including H, C, N, O, F,
Al, Si, P, S, Cl, Br, and I, Stewart found mean unsigned errors in dipole moments of 0.45,
0.35, and 0.38 D, respectively, for MNDO, AM1, and PM3. PM3 works better for
compounds containing phosphorus. For partitioning into partial atomic charges, all three
methods give reasonable results, except PM3 tends to predict nitrogen atoms to be too
weakly electronegative.

Ongoing developments in semiempirical MO theory
d orbitals in NDDO methods

Thiel and Voityuk (1992, 1996) described the first NDDO model with d orbitals
included, MNDO/d. It has high utility for thermochemical applications. MNDO/d parameters
have been determined for Na, Mg, Zn, Zr, and Cd. However, since the model is based on
MNDO and is identical to MNDO for light elements, it still performs rather poorly for
intermolecular interactions and for hydrogen bonding.

Hehre and co-workers extended the PM3 Hamiltonian to include d orbitals. PM3(tm) is
available in SPARTAN. Only geometrical data (from X-ray crystallography) were included
in the penalty function for parameterization. The model may be regarded as an efficient way
to generate reasonable molecular geometries whose energies may then be evaluated using more
sophisticated levels of theory.



Dewar and co-workers (1993, 1994) – semi-ab initio model 1 (SAM1 or SAM1D with d
orbitals). Somewhat different from the NDDO formalism, some two-electron integrals are
calculated analytically. Parameters exist for H, Li, C, N, O, F, Si, P, S, Cl, Fe, Cu, Br, and I.
For molecules of light elements, SAM1 performs better than AM1 and very slightly better
than PM3. The same is true for non-hypervalent molecules of heavier elements, but large
improvements are observed for molecules containing hypervalent heavy atoms – across 404
compounds containing Si, P, S, Cl, Br, and I, the mean unsigned errors in heats of formation
for AM1, PM3, SAM1, and MNDO/d are 16.2, 9.5, 0.3, and 5.1 kcal/mol.
Linear scaling

The developments of methods that scale linearly with respect to system size opens the
door to the modeling of very large systems with maximal computational efficiency. NDDO
approximation is already rather efficient in forming the Fock matrix, so it serves as an
excellent basis on which to build a linear scaling QM model and such models have been
reported. The motivation for developing linear scaling methods – to permit QM calculations
of biomolecules. However, because of the relative poor performance of semiempirical
models for non-bonded interactions, one can expect that such models would be bad at
predicting biomolecular geometries – inferior to the far more efficient force fields developed
and optimized for this purpose. But QM calculations provide rather accurate charge
distribution, so they are more sensitive to charge-charge interactions and functional group
interactions. In addition, one may be also interested in the modeling of a bond-making/bond
breaking reactions within a very large molecular framework, in which case the availability of
appropriate force-field models is extremely limited. QM and MM models have complementary
strengths – QM/MM models are being developed.


