
Thermodynamic Properties 
 The vast majority of chemical research involves macroscopic quantities of matter that are 
made up of very large numbers of molecules. The behavior of such ensembles of molecules is 
governed by the empirically determined laws of thermodynamics, and most chemical reactions 
and many chemical properties are defined in terms of some of the fundamental variables of 
thermodynamics, such as enthalpy, entropy, free energy, etc. In this chapter, we consider the 
most common procedures for augmenting electronic structure calculations in order to convert 
single-molecule potential energies to ensemble thermodynamics properties. 
 
Zero-point vibrational energy 
 The first step in moving from the microscopic regime to the macroscopic is to recognize 
that the Born-Oppenheimer PES is fundamentally a classical construct. When the motion of 
the nuclei on this surface is also accounted for in a quantum mechanical way, energy is tied 
up in molecular vibrations. Within the harmonic oscillator approximation, the energy of the 
lowest vibrational level is hω/2 where h is Planck’s constant  
(6.6261×10-34 J s) and ω is the vibrational frequency. The sum of all of these energies over all 
molecular vibrations – the zero-point vibrational energy (ZPVE or ZPE). The internal energy 
at 0 K: 
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Eelec – the energy for the stationary point on the Born-Oppenheimer PES. As a rule, the 
harmonic approximations does fairly well in computing ZPE (of course, if the frequencies are 
computed at a level that ensures their acceptable accuracy). 



 A key feature of ZPE – it is isotope dependent, since the vibrational frequencies 
themselves are isotope dependent; the reduced mass µ for any mode is a function of the 
atomic masses for the nuclei involved in the motion. If one is considering a large ensemble of 
molecules, it must be kept in mind that the computed ZPE refers to an ensemble of 
isotopically pure molecules, not to an ensemble composed from isotopes at natural 
abundance. Most electronic structure programs default to using the atomic isotopes of highest 
natural abundance, and permit use of other isotopes in some keyword-driven way. 
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Thus, if one uses HF theory with some basis set that is known in general to require a scaling 
factor of 0.9 to bring computed frequencies in line with experiment, the same scaling factor 
should be used to compute the ZPE (or, equivalently, the ZPE should be computed using the 
scaled frequencies). 
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 Here the ONCO molecule is calculated for the 18O14N12C18O isotope composition. 



Ensemble properties and basic statistical mechanics 
 In order to deal with collections of molecules in statistical mechanics, it is required that 
certain macroscopic conditions be held constant by external influence. The enumeration of 
these conditions defines an ‘ensemble’. ‘Canonical ensemble’ – the constants are the total 
number of particles N (identical molecules), the volume V, and the temperature T – also called 
as the (N, V, T) ensemble. The most important function that characterizes a system in 
statistical mechanics – the partition function. For the canonical ensemble it is written as 
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Q N ,V ,T( ) = e−Ei N ,V( ) /kBT
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i runs over all possible energy states of the system having energy Ei; kB – Boltzmann’s 
constant (1.3806×10-23 J K-1). Using the partition function, one can compute thermodynamic 
properties of the system, including internal energy U, enthalpy H, entropy S, and Gibbs free 
energy G: 
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G = H −TS  
Here, N and V are held constant during differentiation with respect of T, and P is pressure. 



 Thus, we need to find a way to calculate the partition function Q. We begin by assuming 
that our ensemble is an ideal gas, so that the molecules do not interact with each other. Then, 
the overall partition function of the system can be reduced to the molecular partition function 
q(V,T): 
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The factor 1/N! derives from the quantum mechanical indistinguishability of the particles, ε - 
the total energy of an individual molecule. In the second line, we express the exponential of 
all possible sums of energies as a product of all possible sums of exponentials of individual 
energies. In the third line, the sum has been changed so that it goes over discrete energy 
levels, rather than individual states, and gk is the degeneracy of level k. 
 The second consequence of the ideal gas assumption is that PV may be replaced by 
NkBT. When we are working with one mole of molecules, N = NA (Avogadro’s number), and 
we may replace PV with RT, where R is the universal gas constant (8.3145 J mol-1 K-1). 



 
Separability of energy components 
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 The molecular energy can be expressed as a separable sum of electronic, translational, 
rotational, and vibrational terms. 
 In expressions for the thermodynamic functions, Q always appears as the argument of 
the natural logarithm. 
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Here we used Stirling’s approximation: 
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ln N!( ) = N lnN − N  

The separation of terms by the logarithm function makes evident the separation of 
components, electronic, translational, rotational, and vibrational, in the thermodynamic 
functions. 



Molecular electronic partition function 
 The electronic partition function is usually the simplest to compute. For a typical, closed-
shell singlet molecule, the degeneracy of the ground state is 1, and the various excited states 
are so high in energy that, at least at temperatures below thousands of degrees, they make no 
significant contribution to the partition function, so we might effectively write  
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If we evaluate the electronic component of U using 
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we find that it is independent of temperature, simply Eelec. In practice, it is more convenient to 
use a convention where we define the ground state for each energy component to have an 
energy of zero. 
We view Uelec as the internal energy that must be added to U0, which already includes Eelec 

(
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∑ hωi ), as the result of additional available electronic levels. If we use this 

convention, qelec = 1 and the electronic component of the entropy will be zero. 
 Now we consider a case when a ground state is of higher spin multiplicity than singlet, 
but with excited states still sufficiently high in energy that they play no role in the electronic 
partition function. Then, we still can use Eelec = 0, but the degeneracy is now 2S + 1, where S  

is the spin multiplicity (1/2 for doublet, 1 for triplet, etc.). Thus, the partition function is also 2S + 1. 
This still has no temperature dependence, so it makes no contribution to the internal energy, but it  
is no longer unity, so it does contribute to the entropy: 
  Uelec = 0    Selec = NkBln(2S + 1) 



For the molar quantity, we have 
      Selec = Rln(2S + 1) 
 This approximation is insufficiently accurate if one or more excited electronic states lie 
close in energy to the ground state. A typical example: heavy halogen atoms, where spin-
orbit coupling creates 2P1/2 and 2P3/2 states with a narrow energy separation. In such cases, 
explicit formation of the partition function cannot be avoided, but only a small number of 
terms typically need to be included. 
Molecular translational partition function  
 To evaluate qtrans, we consider the molecule as a particle in a three-dimensional cubic 
box of dimension a3 where a is the side length of the cube. The energy levels for this 
elementary quantum mechanical system (particle in the box) are given by 
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M – the molecular mass; nx, ny, nz – three unique quantum numbers. 
Because the energy levels for the particle in the box are very, very closely spaced (at least for 
a box of macroscopic dimensions), the partition function sum may be replaced by an 
indefinite integral, which can be evaluated analytically: 
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Note that it is only the translational partition function that depends on volume, because 
particle-in-a-box wave functions cannot be normalized without choice of a specific, finite, 
non-zero volume. This term dictates the necessity of choosing a ‘standard state’ volume to 
ensure comparison of thermodynamic values in a consistent fashion. We may replace V by 
RT/P and specify a standard-state pressure instead. 
 For a molar quantity of particles, we have 
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At this point, we can also consider the last two terms in the equation for the partition 
function, N – NlnN. As they have no temperature dependence, they do not change Utrans, but 
affect S: 
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Since we are working under the assumption of an ideal gas, V0/NA can be replaced by kBT/P0. 
All the equations for translational contributions to the partition function are free of the 
requirement to carry out any electronic structure calculations – an ideal gas is entirely 
independent of the molecule in question. The translational partition function is a function of 
both temperature and volume. It is convenient to eliminate the volume dependence of Strans by 
agreeing to report ‘standard state’ values. The most typical standard state used in theoretical  

calculations of entropy – the volume occupied by one mole of ideal gas at 298 K and 1 atm 
pressure: V0 = 24.5 L. 



for a linear molecule, the rotational partition function can be expressed as 
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σ is 1 for asymmetric linear molecules and 2 for symmetric ones. 
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For a non-linear molecule, the rotational partition function is 
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σ - the number of rotations that carry the molecule into itself (rotational symmetry number) – 
characteristic for symmetry point groups. 

  
 

Molecular Rotational Partition Function 
 Using rotational energy levels obtained by solving the rigid-rotor nuclear Schrödinger 

equation,      
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Evaluating the rotational components of U and S requires relatively little in the way of 
molecular information. All that is required is the principal moments of inertia, which derive 
only from the molecular structure. Thus, any methodology capable of predicting accurate 
geometries should be useful in the construction of rotational partition functions and their 
contribution to the thermodynamic variables. 



Molecular vibrational partition function 
 In polyatomic molecule, we assume that the total vibrational energy can be expressed as 
a sum of individual energies associated with each normal mode: 
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εk – the vibrational energy levels associated with each mode k, and there are 3N – 6 such 
modes in a non-linear molecule (3N – 5 in a linear molecule) where N is the number of 
atoms. 
 We assume that the modes can be approximated as quantum mechanical harmonic 
oscillators and adopt the convention to include ZPE in the zero energy, so that each zeroth 
vibrational level has an energy of zero. 
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This sum is well-known as a convergent geometric series. 
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Evaluation of the vibrational components of the internal energy and entropy provides 
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 Thus, it is fairly straightforward to convert the potential energy determined from an 
electronic structure calculation into a wealth of thermodynamic data – all that is required is 
an optimized structure and its associated vibrational frequencies. Given the many levels of 
electronic structure theory for which analytic second derivatives are available, it is usually 
worth effort required to compute the frequencies and then the thermodynamic variables, 
especially since experimental data are typically measured in this form. For the absolute 
entropy S0, theory and experiment are directly comparable: calculated absolute entropies at 
300 K for a large number of small molecules at the MP2/6-31G(d) level show agreement 
with experiment within 0.1 e.u. Absolute heat capacities at constant volume can be also 
computed 
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However, it is more difficult to compute absolute internal energies, enthalpies, and free 
energies. 
 



element in its most stable, pure form under standard conditions (273 K, 1 atm). The 
elemental standard states for the first few elements are hydrogen gas (diatomic), helium gas 
(monoatomic), solid lithium, solid beryllium, solid carbon (graphite), nitrogen gas 
(diatomic), oxygen gas (diatomic), fluorine gas (diatomic), and neon gas (monoatomic). 
Following this convention, the meaning of an experimental heat of formation for a molecule 
is that it is the molar enthalpy change associated with removing each of the atoms in the 
molecule from its elemental standard state and assembling them into the molecule. 
 Two-step procedure: There is first an enthalpy cost to pull each atom out of its 
elemental standard state (always a non-negative quantity, since the elemental standard states 
are chosen to be the most stable forms). This is followed by the enthalpy change for 
combining them into the molecular structure, -ΔHatom. 
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Standard-state heats and free energies of formation and reaction 
 The experimental convention for assigning a zero to an enthalpy or free-energy scale 
– the value that corresponds to the heat or free energy of formation associated with every 
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                      [H298(M) – H0(M)] 
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 Unfortunately, most single levels of theory are disastrously bad for direct calculations of 
heats of formation, with the problem lying primarily in the computation of ΔE between the 
molecule and its constituent atoms (atomization energy). As there is vastly more correlation 
energy in a molecule, with its collection of bonded pairs of electrons, than there is in a 
collection of atoms, and as practically affordable correlated electronic structure methods 
capture at best ~70-90% of the correlation energy, the differential error can be very large. 
Multiple-level methods (‘model chemistries’ in Pople’s language) are developed to address 
this problem – G2-G4, and CBS methods can provide atomization energies with chemical 
accuracy of 1-2 kcal/mol and can be applied for direct computation of heats of formation. 
 
Isodesmic equations 
 An alternative method for computing heats (or free energies) of formation – 
consideration of a balanced chemical equation:  mA + nB → rC + sD 
Then,   ΔHo

rxn,298 = [rΔHo
f,298(C) + sΔHo

f,298(D)] – [mΔHo
f,298(A) + nΔHo

f,298(B)] 
This can be rewritten as   ΔHo

rxn,298 = [rH298(C) + sH298(D)] – [mH298(A) + nH298(B)] 
H298 is the quantity addressed theoretically, i.e., the enthalpy relative to all nuclei and electrons 
infinitely separated and at rest. If experimental heats of formation are known for all but one 
species, the above equations can be used to compute the unknown. 
    ΔHo

f,298(B) = (-1/n){[rH298(C) + sH298(D)] – [mH298(A) + nH298(B)]} 
         – [rΔHo

f,298(C) + sΔHo
f,298(D)] + mH298(A) 

We must compute H298 for four different species in this example, but the great advantage is 
that the difficulty in computing heats of atomization can be avoided. Computed heats of 
atomization tend to be highly inaccurate unless heroic levels of theory are employed. 



However, assuming experimental data are available, we may select our balanced chemical 
equation in such a way that the various bonds on the left- and right-hand sides are essentially 
identical. That being the case, we would expect bond-by-bond errors in correlation energy to 
largely cancel in the computed heat of reaction. Such a reaction is called ‘isodesmic’. 
 Example: 
 
 
 
 
 
 
 
 
 
 
Heat of formation of 6-methylquinoline: so long as heats of formation for the common 
molecules naphthalene, quinoline, and 2-methylnaphthalene are known, we may then 
compute enthalpies for all four species and predict the heat of formation of 6-
methylquinoline. By construction, all the bonds on the l.h.s. are essentially identical to those  

N

CH3
+

N

CH3
+

 
 
 
 
 
 

on the r.h.s. As such, we might expect a much more affordable level of theory, say DFT, 
to be accurate enough to evaluate the heat of formation. 



Equilibrium populations over multiple minima 
 It is not uncommon for a single molecule to have multiple populations. At non-zero 
temperatures, the population of different conformations will be dictated by Boltzmann 
statistics: the equilibrium fraction F of any given conformer A at temperature T may be 

computed as       
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i runs over all possible conformers, each characterized by its own free energy Go. In 
measurements on systems at equilibrium, it is rarely possible to determine the free energies 
of individual components of the equilibrium. Rather, one refers to the free energy of the 
whole equilibrium population:   
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{A} emphasizes computation over the population of all conformers of A. Free-energy 
changes, then, between two species each of which exists as populations over multiple 
conformers, must be computed as the differences between their averages. This formalism 
may also be applied to determine averaged transition state free energies if multiple transition 
state structures exists all of which lead to the same product; the difference between an 
averaged reactant free energy and an averaged transition state free energy defines free energy 
of activation. 

 Sometimes, one conformer in a population has a free energy that is much lower than that 
of any of the other possibilities. It is clear that in that case, only the low-energy term 
contributes significantly to the sum – its free energy may be taken as the population free 
energy. 



 
 
 
 
 
 
 
 
 
 
Transition state theory supposes that the nature of the activated complex, A#, is such that it 
represents a population of molecules in equilibrium with one another, and also in equilibrium 
with the reactant A. That population partitions between an irreversible forward reaction to 
produce B, with an associated rate constant k#, and deactivation back to A, with a reverse rate 
constant of kdeact. The rate at which molecules of A are activated to A# is kact. The first-order 
kinetic equations for the rate at which B is produced: 
     k1[A] = k#[ A#]   k1 = k#[ A#]/[A] = k#K# 
K# - the equilibrium constant between the activated complex and the reactants. 
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Transition state theory 
 Consider the simple unimolecular reaction, where the objective is to compute the 
forward rate constant k1. 

The difference in free energy between the activated complex and the reactants is referred 
to as the activation free energy, ΔG#. 



Using the thermodynamical concepts, 
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G = H −TS  

we can write   G =U0 + PV + kBT lnQ 
 Q is the partition function. Combining the equations, we write 
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We assumed that PV changes are negligible for this case (unimolecular reaction). We can write 

then     
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k1 = k # Q#
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The zero-point-energy-including difference in internal energies between A and A# in the 
exponential term is easily computable from an electronic structure calculation (for the 
electronic energy) and a frequency calculation (to determine ZPE) for the minimum energy 
and TS structures corresponding to A and A#, respectively. In addition, the availability of 
frequencies for A permits easy computation of QA. Some attention has to be paid to the nature 
of the partition function for the activated complex Q#. 



 The TS structure is a species that is a minimum in 3N – 7 degrees of freedom – the 
missing degree of freedom is the reaction coordinate. Thus, we may readily define the 
electronic, translational, and rotational components of the partition function. 
For the vibrational component, we separate out the partition function for the reaction 
coordinate degree of freedom: 
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Q# - the reduced partition function over the 3N – 7 bound degrees of freedom and ω# - the 
‘vibrational frequency’ associated with the reaction coordinate. If we use a power series 
expansion for the exponential function of ω#, truncating after the first two terms, 
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The only unknowns remaining here are k# and ω#. In this case, the vibrational frequency ω# 
should not be thought as the imaginary frequency that derives from the standard harmonic 
oscillator analysis, but rather the real inverse time constant associated with the motion along 
the reaction coordinate – it is exactly motion along the reaction coordinate that converts the  

activated complex into product B. That is, k# = ω#. This results in the canonical TST 

expression:    
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For the bimolecular reaction involving reactants A and B, 
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Let us consider the units for this particular case. All portions in the equations are unitless 
except for kBT/h, which has units of s-1, consistent with the units expected for a unimolecular 
rate constant. However, a bimolecular rate constant has units of concentration-1 s-1. 
At this point, one must pay close attention to standard-state conventions. The magnitude of 
the translational partition function depends on specification of a standard-state volume (or 
pressure, under ideal gas conditions). Thus, a more complete way to write the bimolecular 
rate equation is  
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The various Qo terms have values of 1 and carry the standard-state volume units used for the 
translational partition function. Care must be taken that if the molecular translational 
partition function is computed for a volume of 24.5 L (the volume occupied by one mole of 
an ideal gas at 298 K and 1 atm pressure), and the rate constant is in molecules cm-3 s-1, the 
appropriate conversion in standard states is made. 
 In a general form, then, we have the canonical expression 
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R refers generically to either unimolecular or bimolecular reactants, and ΔU# is the difference 
in zero-point-including potential energies of the reactants and TS structure. When working in 
molar quantities, the equation becomes 
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We can absorb the standard-state partition functions back into the exponential and write 
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o,# /RT ,         ΔGo,# - the free energy of activation. 

We may also write   
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If we include units in the equation, we get the most general form: 
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Here, Vo is the standard volume and Δn# is the change of the number of moles from reactants 
to the transition state. 
 
Relation between theory and experiment 
 In the theoretical computation of a rate constant using TST, one locates all necessary 
stationary points – one TS structure and one or two minima – and evaluates their energies 

and their partition functions under the rigid-rotor-harmonic-oscillator approximation. On the 
other hand, experiment measures rate constants typically with the goal of deriving such 
quantities as the free energy of activation. 



One analysis of experimental data involves carrying out rate constant measurements at a 
series of temperatures, and then plotting ln(k/T) against 1/T. We may rearrange the rate 
equation as 
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Therefore, the slope of such a plot should be -ΔHo,#/R and the intercept is a function of 
ΔSo,#/R. From these quantities, the activation free energy may be easily computed for any 
temperature within the range of the data points and compared directly to a theoretical value. 
 An alternative analysis has a long history – it is simply to plot ln k vs. 1/T, this 
procedure is motivated by the empirically derived Arrhenius expression 
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k = Ae−Ea /RT  
A – the pre-exponential factor, Ea – the Arrhenius activation energy. 
A plot of ln k vs. 1/T will have slope - Ea/R and intercept ln A. We can express the 
relationship between the Arrhenius quantities and the thermodynamic quantities as 

    Ea = ΔHo,# + RT    
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kBT
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 One point of interest deriving from the equations of TST (and Arrhenius theory) is that 
the upper limit for the 298 K rate constant of a unimolecular reaction that takes place with 
zero activation energy is roughly 1013 s-1. In some sense, this is conceptually obvious because  

that is on the order of a molecular vibrational frequency, which is thought of as the 
mechanism by which a transition state goes to its products. 



Kinetic isotope effects 
 The zero-point energy, and the translational, rotational, and vibrational partition 
functions all depend on the isotopic masses of the atoms – so too does the rate constant for a 
given reaction. A difference in rates for two different isotopically substituted reactants is 
referred to as a kinetic isotope effect (KIE), usually expressed as a ratio of rates. Isotope 
effects are divided into two classes: primary isotope effects refer to situations where the 
isotopic substitution involves one of the two atoms involved in a breaking (or making) bond, 
while secondary isotope effects cover all other possibilities. In general, a KIE may be 
computed as 
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From a theoretical point of view, isotope effects are fairly trivially computed. The stationary 
points on the PES and their electronic energies are independent of atomic mass, as are 
molecular force constants. Thus, one simply needs to compute the isotopically dependent 
zero-point energies and translational, rotational, and vibrational partition functions. 
 Primary isotope effects are dominated by the difference in zero-point energies. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because the reaction coordinate is the breaking bond, and because there is little or no ZPE 
associated with this mode in the TS structure, the full difference in reactant ZPEs enters the 
difference in zero-point-including potential energy barriers. Then KIE can be computed as
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