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1 Central Force Problem

1.1 Introduction to the Problem

We start with a system in which there is a force between two objects that
depends only on the distance between them and that is directed along the line
between them:
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This vector can be represented as its magnitude in a certain direction 7:
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where 7 = ﬁ The magnitude of this force, f(r), is conservative, and is
thus the change in potential energy over change in distance, leading to:
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Using Newton’s Second Law we can see that:
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These two forces are equal and opposite, meaning that:
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1.2 Converting to the Center of Mass Frame

We want to use the center of mass. This is because many problems can be
simplified using center of mass and it can be conceptualized as ”the particle
equivalent of a given object for application of Newton’s laws of motion.” At
this point, the weighted relative position of the distributed mass sums to zero
and any force can be applied to cause a linear acceleration without an angular
acceleration (Wikipedia).

So, finding the center of mass of this system:
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We can then find the velocity and acceleration of the center of mass:
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We establish initial conditions of constant velocity VCM, initial position
Re v, and nonzero angular momentum (this one will come in handy later):

T = Veu
Fonr = Vet + Rou
L#0

We can perform a change in coordinates and make the center of mass at
time = 0 be our new origin:
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The acceleration in each coordinate system is the same:

2= 2.7
d“ri  d°ry

a2~ de
&7y _ 4y,
arz T de

Now we can rewrite the center of mass in the new coordinate system:
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From there we make a system of equations and solve for these new position
vectors. These position vectors have their origin at the center of mass at ¢t = 0:
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1.3 Finding Angular Momentum

We define reduced mass as follows:

If my is small and my is big:



The force in the system (which is the same but in the opposite directions
for each of the two objects in the system) can be represented using this reduced

mass:
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Note that here %f is sometimes termed "relative acceleration” and is the
difference in acceleration of the two bodies. It is also, by definition, the accel-
eration of the distance between the two bodies.

Angular Momentum of this reduced mass system:

Change in angular momentum over time (should be zero for a closed system):
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We have proven that the magnitude and direction of the angular momentum
L don’t change over time

1.4 Angular Momentum in Cylindrical Coordinates

Now we can set the direction of the angular momentum as the z direction and
choose cylindrical coordinates. This will serve in helping us find additional
information about the system, such as angular velocity.

L=1z
Cylindrical coordinates are defined as follows:
F=x@+yj+22=pp+ 2%
p = cos ¢ + sin ¢y
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Conversions:



y = psing

Change over time:

dp dp 7¢
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Right-handed system:
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Revisiting our equation for angular momentum using cylindrical coordinates:
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All terms not in the Z direction must be zero because of the direction we
defined the angular momentum, therefore:
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The value of L is therefore:
2 d¢
L=
mp’

Since we defined our system as having a nonzero, constant angular momen-
tum, we can now infer that m, p? and % must all be nonzero.
Additionally, rearranging:
do L

dat mp?
d¢> is the change in angle over time, otherwise known as the angular velocity,
often denoted w.



1.5 Finding Total Energy Equation from Total Force

Given that the angular momentum is in the z-direction, we can infer that the
two bodies must exist on the xy plane, and thus the position and force of the

reduced mass system would be:

T=pp
f(r)=f(p)
In order to find a value for the force in cylindrical coordinates, we start by
first finding the second derivative of 7
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If we take the derivative of the angular momentum with respect to time it

can add valuable information for simplifying this equation. We use the value
for angular momentum previously found:
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Since we know p cannot be 0 (from the angular momentum equation), then:
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Therefore going back to the second derivative of ¥ we get:
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The value of the force thus becomes:
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Rearranging and multiplying by %:
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What we're left with is an equation for the total energy differentiated with

d 1 [dp\? L2

d
(Linear Kinetic Energy + Angular Kinetic Energy + Potential Energy = Total Energy) = 0

dt

respect to time:

=0

1.6 General Example
Now we can examine a general example of the Central Force Problem where k
is some force/energy constant and V' (p) is some potential energy:

—k
V(p) 5
vk
dp  p?
AV —k
T dp P2

Re-examining the total energy equation:

1 dp 2 L?
Erorar = =m | 22
total Qm (dt) + <2mp2 + V(p)

We can plot the part of this equation that corresponds to angular kinetic
energy and potential energy ((L?/2mp) + V (p)) with respect to p. Remember
p is the same as r or distance for our given initial conditions.
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This part of the equation that we have plotted is dependent on k (our
force/energy constant), on the angular momentum L, and on the mass m. The
graph shown has these values set to 1. On the other hand, the linear kinetic
energy is not dependent on L or k. Furthermore, if we rearrange we get:
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Therefore Y,in (the lowest Y-value in the graph) is the minimum total en-
ergy which we will call E,,;,

And how do we find this E,,;,? We can take the derivative of the graph and
set it to 0 to find the minimum.
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And so we end up with an expression for angular momentum L at the point
where there is a stable, circular orbit.

1.7 Earth and Sun
Lk

We are going to focus once more on the previously graphed quantity S

which corresponds physically to the sum of the angular kinetic energy and the
potential energy and can tell us about the minimum total energy. We’ll call this



value Y. We are going to set our k constant equal to Gmgmpg where G is the
gravitational constant mg and mg are the masses of the Sun and Earth.

v ( L? )_Gmng
2mp? p

We know that there should be no change in the minimum energy over dis-
tance so:

dYmin  —2L?  Gmgsmpg

= - O
dp 2mp3 + P2
1 L?
5 [GmSmE — 5 } =0
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Therefore:
L? = mppinGmsmg

L2
Pmin =
Gmgmgm

As you may remember, m is the reduced mass of the system. For a system
such as the Sun and Earth, this can be approximated as solely the mass of the
much smaller object, in this case the Earth:

m=meg
L2 ~ pminGmSm2E
L2
Pmin = Gmemz.
msmeg

Substituting L? and p,., back into our minimum energy equation we get:

LmiGmemp?  Gmsmp

2Mpmin? Pmin
Gmgsmg Gmgmg —Gmgmg
Emin - - -
B _ —Gmgsmp [Gmgm7 ]  —G*mEmi,
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In order to find the minimum energy we must go back to our equations for
angular momentum L:
2 d¢

L=mp T

L=+/kmp
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In this case our k constant is Gmgmg.
So if we substitute our values for the Earth and Sun:

p = 1.496 x 10! meters

G =6.67x 107 N % kg—2m?
mg = 1.9891 x 10%° kg
mg = 5.97219 x 10%* kg

k 2
L= /GmgmZp = 2.66 x 104029
S

We can also do the same for the angular velocity %:

d L
—qﬁ = =1.991 x 1077 sec™ !
dt  mgp?
The amount of time it takes for the Earth to go around the Sun would then
be:
d¢ 31,536,000 -1
P= d—(f * — 2860 *YAr  _ 0.999 years ~ 1 year
™

We can also go back and find the minimum energy of the system in this
circular orbit:

2,,2 3
-G mgmy,

Eopin = =265x%x1073J

1.8 Bohr Atom

Now we’ll examine a hydrogenic atom, meaning any atom with a nucleus and
1 electron orbiting it. We’ll set the k constant equal to 4?55,; where e is the
charge of an electron, Ze is the charge of the protons in the nucleus where Z
is the number of protons, and —— is the constant for the permittivity of free

4meqg
space

v _ ( L? ) _Ze
2mp dmegp

We know that there should be no change in the minimum energy over dis-
tance so:

QYin _ =202 | 2
dp 2mp3  4dmwegp?
1 [ Ze? L?
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Therefore:
L2 _ mpminZ62
- 471'60

_ L*4reg

Pmin = ZeQm

Substituting this back into the minimum energy equation we get:
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However, the minimum energy of a Bohr atom is quantized through its
angular momentum L (where n is an integer):

h

:%n

L

But where did this value for the angular momentum come from? Well,
when Niels Bohr analyzed hydrogen spectrum data, he noticed that the angular
momentum must be quantized in order to fit the data he gathered. De Broglie
expanded on this by justifying this quantization using the De Broglie relation,
p= % which basically implies that the electron has a wave-like nature and thus
a wavelength that relates to its momentum p.

If we assume the electron orbits that nucleus in a standing wave, where only
integers of that standing wave frequency can exist along the orbit, 277, then we
can justify the following:

21r = nA

Using the De Broglie relation:

2mr = n—
p

Finally, through some rearranging we arrive once more at the quantized
angular momentum:

h
gn:pr:L

For the smallest value of n, n=1, we can find the angular momentum and
minimum energy:

12
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L= 5 * 1 =1.05457 x 1073 J % sec
T

Mme— = 9.1093837 x 1073 kg

—Z2%e*m 1

_ -18 7 _
Wﬁ =-2179x 107" J = —13.607 eV

Emin =
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2 Wave Mechanics

A general solution to the one dimensional classical wave equation is:
TZJ(LE,t) _ ei(kasfwt)
kr — wt is a constant so we can see:

c=kr—wt
Focusing on the x in this equation:

o wt
TR TR
Since ¢, k (wavenumber), and w (angular frequency) are all constant, this is
an equation of the position that is dependent on %, which is the velocity of the

wave:

0 = kdr — wdt
de w 2nf
7:i:7:)\ =
ik oMY
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Particle mechanics Energy

)+ (o) + v

Py
—+V
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Etotal = im (
E

In wave mechanics, the process of finding the total energy (or extracting
other information such as average position) is different than in particle mechan-
ics. We have to perform an operation on the wave function that yields the total
energy multiplied by the original wave function:

(energy operator )y = HiY = Eiprarh

(operator)y = (information)y

14



2.1 Energy and Momentum Operators

Some operations we can perform on this wave:

. d
ih 2 (U2 1)) = h(z, )

where iﬁ% is the energy operator and Aw is the resulting value for energy.

—iho (1) = k()

where —ih% is the momentum operator and Ak is the resulting value for
momentum.
Therefore energy and momentum of a wave are:

E = hw
p = hk

This makes sense when examining some possible units of each:

E = hw = (J % sec)(sec™') = J

kg * m? 1 m
———— ) xsec)(—) =kg*x —
sec? ) )(m) 9™ sec
We can also rewrite the angular frequency and energy of a free wave using

our values for energy and momentum:

p = hk

p=hk = (J*sec)(m™*) = ((

2
E=hw=2"

2m

27.2
:>E:hk

2m
_
T 2m
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Experimental Input

Through various types of measurement, we obtain values at certain locations
that we interpret as the intensity of this wave function, and we represent them
as the square of the wave function:

P(z) = 4*(x)
*If we assume () > 0, then for all x, ¥(z) = /P(x)

Kook sk ok ok ok ok ok ok >k ok ok ok ok ok ok ok ok skook sk ok skok ok ok ok sk ok sk ok skook skok skok sk sk sk skook skok ok skok sk sk sk skok ok skok sk ok skokook ok kok skok skok ok
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2.2 Understanding Time-Independent Free Wave
Free waves must be proportional to this general solution, e*(k#—«t),
Now, for the wave at time=0 and setting the proportionality constant be-

tween ¢ and e!**=«t) equal to 1:

(w) = et

This wave function can be represented as the sum of many different wave
functions at different frequencies (Fourier Transform or visually interpreted as
an infinite vector summation). But how do we know this is true? We are going
to go through the steps to prove it:

v = [ T k)

First, we’ll set up some parameters for this free wave, and assume that the
function starts and ends at the same value (this makes it periodic, and thus we
can later represent it as a Fourier series). Although we are denoting a length
for our function, eventually this length should be extended to approach infinity:

=]
r=|—,=
272

(7))

Ly iR(E) — gk

1 .
= Z(kf)
Gik(E) €

6i(ch) - 1= ei27rn

Therefore:
kL = 2mn

;2mn

lx)=e"r"
*Note, the intensity, which we had previously described as the 1 (z)? is more
accurately ¥*(x)y(x).

Kronecker Delta for a Free Wave

Now, we are going to define a function in this bound, called g,(x), with a
constant ﬁ that will serve when normalizing the entire wave function to have
a total intensity of 1 along the entirety of L:

c21n
X2 T x

gn(z) =

-
D
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. . . . . - L
gf we multiply the function by its complex conjugate and integrate from ==
to 5:
2

L

L
2 1 [2 .ox
/;QL g;(x)gl(x)dx = Z /72 ezT(lfn)a:dm

2 2

™

:%*[Lifl:n,mfl#n}

L
- Z(snl - Snl

This symbol §,; is called the Kronecker Delta and is a representation of
the result where all values equal 0 except for when n = [. When n = [, the
Kronecker Delta denotes a value of 1.

Finding a Specific Coefficient/Component of Our Wave Function

Since our function ¢ (z) is periodic, we can rewrite ¢ (z) as a Fourier Series,
in terms of a linear combination of ¢, g, (z):

> ngn(@)

n=—oo

Multiplying by g; (x) and integrating (and taking out the f from gj (x) for
better notation):

f/ b(@)gh (@ )d:c—f/i S Guga(@)gi (2)da

2 nN=—0o0

Z 2/}n‘/iL gn(2)g; (2 Z wn nl

n=—oo 2 n=—oo
1 -~
= z¢n=l

Therefore, when we multiply the wave function by the complex conjugate of
the function and then integrate, we end up with the that ”component” of the
wave function (and maybe also with some coefficient depending on our notation):

27r1

— di= [ @ @de= [ p@)e Eads

=L =L
2 2

Going to infinite length
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Now that we have defined the wave function in both position and wave
number domains across L, we want to extend that to infinite length.

So, once more we can examine our function as a Fourier Series (Reminder
that we can do so because we expressly had defined it as periodic by making

Y(F) =v(5)).

This time removing % for notation purposes:

W)= Y dagala) =7 3 Gt

n=-—00 n=—oo

We can rewrite this in the format of a Riemann Sum:

P(z) = % > (?) e T

n=—oo

ok sk Rk R KRR R R R Rk R R R Rk R R R R
(Riemann Sum Formula for Reference):

Jim Y af@a) = [ f

n=—oo
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Previously we said that kL = 27n. Now, denoting k = 2%, and as L approaches
oo we get 1(x) written as an inverse Fourier transform:

via) =5 [ Dt

Proving that the above is true:

v =g [ | v i

— 00

2
v = [ Z () [ N ;e““(w)dk] dy

oo 2T
o0
- / W) [z — ) dy
— 00
sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk skosk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskosk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk skoskskoskskoskoskosk sk

Dirac Delta Function: :

oz —y)=0(2) = i/OC e™dk

2r J_
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Tying back to measurements

Taking a look at our measurements (or really the measurements that some-
one, somewhere took), they appear in a Gaussian distribution so we can define
P(x) as such:

1 22
P(z) = 271_672072

To solve the integral of this across all of x we can examine this known integral

solution:
oo
2 ™
/ e dr =4 /—
oo «

Relating it back to the Gaussian Distribution:

1 1}2
/ Pz / T2:Zdy =1
27r

The wave function defined in terms of this Gaussian distribution :

Uo) = e
xT) = 76_m
(2mo2)i
We can again perform a Fourier Transform on this to find a different domain
of this function (domain k) :

- 1 o0 7)2 ,
P(k) = 7;/ e a2 kT gy

(2m02)1 J_oo
1 oo
= Gt L s

1 (o9}

— 00

_ 674%[($+202ik)2+404k2]dm
=— -
(2m0?)7 J_oo

b(k) = (2 12)16“2k2 / " e aratin g,
To4)4 s

Now a change of variables:

2 =1+ 2ic’k

2i0%k
- 1 a2 [T _ 1,2
Pk) = ———e 7" e 127 dz
—00+2i02k
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Now through Cauchy’s Theorem this becomes:

_ 1 o0 1
Y(k) = —)1 6_°2k2/ e dr = — e~ a2y
I

(2wo? —oo (2m02)%

P(k) = (4(k))? = 23 w2 ge 27K

We can look at the probability distributions in both position and wavenum-
ber domains for different standard deviations and notice that as one spreads,
the other narrows:

le14 Electron: P(x) vs. x when o=1 Electron: P(k) vs. x when o=1
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6 4
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2.3 Understanding Time-Dependent Free Wave in the Po-
sition (x) Domain

Our next goal is to find ¥ (x,t) for a free wave.
From the general solution:

. ) —ink?
ez(km—wt) — elkze St

Also, our new value of ¥(k) from the Gaussian distribution of P(z) is:
P(k) = 2igigze ok
We can take the Fourier transform of v (k,t) to find 9 (x,t):
o0 2%7‘(%0’%

oo _ ) . _ink?
P(x,t) :/ f(k)el(}’””_m)dk:/ —5 e~ K gikTomnt g
oo ™

— 00

© 2irsgs 2,2 —ink2 © 9%inso3 2,2 —ihk2, | .
_ Pt k ezkxe éan tdk _ e~ k %Hﬂkwdk
27 oo 2m

— 00

0o a3 1 1 © 63 1 1 2 ikt y\[L2 ik
iTT202 i . amT202 — ke ——E—
/ : ZL e~ (TR H gk vk g :/ SLEAF A
™

—0 —oo

1

2

27 oo 2m

1
3 1 1 1 4
2inior  m iy o? s
= ht1L 2m’ = W e S
2 [o? 4 5l 2m(0% + 57)
i 2
2 T
g T2 I
Yo, t) = | ———e | e e
7 21 (02 + )2
a —%<+m+7l'm>
P(x,t) = Y(x, )" (v,t) = ————7¢€ o2+t T o2 g

€
Vara?(1+ )

4m204
1 _ a2
P(z,t) = —————=e2®)?
2m(o(t))

h2t2
olt) = o\ 1+ 55

21

o 93 1 1 2., i 2 i 0o g3 1 1 2., i =
/ 2ir202 —(o —0—%)% _02+k% T]dk / 22202 —(o +2Z§)[k_2(a2+§h—")+4(02+3ﬂ)2
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What we’ve established so far:

For a Gaussian Distribution of Intensities:

1 _ a2
P(z) W@ 20
1 _a?
— ¢($70) = (27’(0'2)‘11 € - 1/J($>

o2 P
Pz, t) = [)4 e 42+

2m
1 a2
P(z,t) = ——————=e€2®)?
2m(o(t))?
h2t2
o(t) =oy/1+ 2o
P(e,0) = ———e 7
x, = e 202
V2mo?
1 22
= (z,0) = re 10? =1(x)
(2mo?)7

Small Review on Types of Operations Used

For x: [=£, £] we previously established:

1 2eme
Qn(@")zﬁe E

This g, (z) is defined as a complete orthonormal set.

/wﬁ@mamm:@n
0
f(.%‘) = Z fngn(x)
n=0
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IfL -

= fo=VL [ [f(@)g;(x)dx

(This is a Riemann Sum, A = 2% — integral)

f(k) = /OO f(af)efik“"dz, flx) = % /Oo f(k)eikmdk

o0 o0

o(x) ! / eF dk

:%OO

> oKk ok ok ok kR ok ok ok kook sk ok skok sk ok ook ok sk ok skok sk sk skokook koo kokook skok kokook sk kokok sk sk skokook sk okoskok sk ok skok sk sk okokok skok kokokoskokokokskok

2.4 Characteristic Time

Standard deviation over the course of time is:

h2t2
ot)=0\/[1+ —— =0ovV1+72

m20%
om ot
7m027(m7;‘2)7T

T is the characteristic time. It depends on accuracy and mass and is used for
comparison between objects/systems.
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2.5 Examples of Various Gaussian Distribution Decays

**Note, for all of the following calculations and graphs, o = 1 (¢ is o(t) at t=0)
It would take a human being (the age of the universe)? time in order to
really decay into nothingness:

Human Being (65 kg)

0.08
0.06
=
0.04 X
o
0.02
0.00
Human Being: o(t) vs. T
2.75 .
.
.
.
2.50 <’
.
.
2.25 o’
.
.
2.00 o’
.
= .
=) "
1.75 o
.
...
1.50 | .*
.
.
...
1.25 .
.
.
.
.
1.00 ....-".
T T T T T
0.0 0.5 1.0 L5 2.0 2.5
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Earth (5.97219 x 10°24 kg)

Neutron (1.674 x 10°~(-27) kg)

25

P(x,t)

1.50
125
1.00
0.75
0.50
0.25
0.00

P(x,t)



Electron (9.109 x 10~(-31) kg)

P(x.t)

OSF NWAEW®

. 2
0.002 DY
10 p.ooo (O

Characteristic Times of Different Objects

These are some of the characteristic times T of various objects:

Human
mass= 65 kg
T= 1.2e+36
Electron
mass= 9.11e-31 kg
T= 17276
Neutron
mass= 1.67492750e-27 kg
T= 31765072
Proton
mass= 1.67262192e-27 kg
T= 31721347
Earth
mass= 5.9e24 kg
T= 1.1e+59
Moon
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mass= 7.3e22 kg
T= 1.4e+57

Sun

mass= 1.9e30 kg
3.7e+64

2.6 7Extra”: Proving Constant Intensity in 3 Dimensions

Understanding Experimental Conditions:

/ P(z)dx = finite
P(x) >0
For both of these to be true, P(c0) — 0 and P(—oc0) — 0

/ dx/ dy/ dzP(z) = finite

We must simply use the same logic above and realize that the limit of P(x,y,z)
as x/y/z approaches oo for all x,y; x,z; or y,z is 0.
Potential V(x,y,z)- not time-dependent Particle mechanics

P2 + P2 + P?

5 +V(z,y,2) = E

Wave mechanics (same sorta idea)

—h? [ 0? 02 02 . d
|:27,n |:8.’172 + 67 + 9z 2:| + V(‘T Y,z ):| QZJ(I’,y,Z,t) - Zhaiﬁ({t,y?,z,t)

P(x’ y? Z’ t) = w*(z7 y7 Z? t)w(x7 y? Z’ t)

. Ed a? ra 0

Take complex conjugate

—h2 [ 02 02 0?
w{zm[aﬁmyﬁmz””w = it

Subtract these two:

02

2m

27

R (9P o P o .
[w (+ay2+az2 V)w w( 82+622+)/)w} {w vt w}



B2 [0 J ., .0 0 J ., .0 0 o ., .0 iy 0 . .0
{895 <¢8x1’/} - 87/1>+<1/J¢ - ¢>+(¢az¢ - 821/1” Zh{iﬁatﬁ) + &IZ’]

2m

o ( o ., .0 aw o o (. o . .0
m(%h¢‘¢aﬂ> z wa__mafwaﬂ x<%nw‘¢aﬁ>

We want to show that in 3 dlmensmns, the probability over all of space is a
constant that does not change over time. The integral of the probability over
all of space would be:

[ [ (vger—wrge) = [ [T wfugte—e ] <o

Looking at the other side of the wave equation, and performing this same
integral
= /OO dz/ood /00 dx ih ’L/)g1/)*+¢*g¢ =0
o Jeo 4 e ot ot |

:>2h/ dz/ dy/ dx—zpz/)
= at[/_ocdz/_oody/_oodac (1/11#*)} =0

Since Yp* = P(x,y, z,t), this means the total probability /intensity is a con-
stant. If we normalize the total intensity to 1, then it will be 1 always.

2.7 7"Extra”: Delta Dirac function as the result of the
derivation of a step function

K%f@ﬁ@—yﬂx=f@)

o)

/N
x \/




For this graph, what is %?

Limit._ oo Oz + ) 2_ Oz —c) =00
€

f(x) is some function that is continuous and we want to find:
o de >~ ld df
| @ = [~ [ L r@ew] - o L] ao

= [f(@)8(@))>s, — / - e@)%dx

0 4 0 g
= f(00)04 + f(=00)0- + 9—/_ édw - 9+/0 %dl‘

= [(00)0s + F(00)0_ + 0_[f(@))° oy — 0 [f (@)
— F(00)fs + F(00)6_ +0_(f(0) — f(=00)) — 0 (f(00) — £(0))
— floo)ty + flo)= + 0_ f(0) — 0_f==5] — 0, F5T + 0. f(0)

= f(0)[0+ + 0]

% = (04 +6_)5(x)
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1 Potential Well

1.1 Adding a Potential

So far, we have examined only a free wave, which existed either on a certain
length L or expanded through all of space and that had no potential energy
through anywhere it existed. What types of simple models can we look at
when adding a potential energy through a region of space. Well, let’s start by
rewriting our general wave equation into its time and position components.

Yla,t) = 570 = g(a)e" ) = g(a)e i
This new format makes it easier to plug this into the wave equation and ask
the question, are there solutions to this?
Wave Equation:
—d —h? d*p(x,t
R Y(z,t)

= om gz TV D

Plug in:

: . 2 72 _ .
(T ) ot = e Vit

(Notice that the potential energy is independent of time, this is easier to
solve for us).

If V() = 0, there is no solution (examine second derivative of ¢(x))

Since the typical potential, %ﬁ‘mt is hard to solve and we are merely un-
dergraduate students doing our best, let’s try a potential that looks like this:

V()

N

—0 Q

N
N
X

Briefly on Force

What happens if we look at the force of this potential, in other words the
derivative of this potential with respect to position?

Well, it will be zero for most of the potential graph, but, at the ”jumps” it
will be equal to the property shown at the end of ” Quantum Notes 17, in other
words, at each jump this function will look like:



% Q@ —a=(0y +0.)8(x) = (~Vp — 0)8(—a)

% @a= (0 +0.)5(z) = (0— (~V0))3(a)

Often, the delta dirac function is interpreted as being infinite in one location,
or at least a ”big spike” so we can kind of imagine that at the edges of the
potential the particle can be thought of as instantly ”bouncing off” the edges
and changing directions after having experienced a very large force.

1.2 Classical Context

We know from classical mechanics that for a bound state, the total energy must
be negative (if it is positive then there is enough kinetic energy to make the
system no longer bound), meaning that:

1
FE = §m'l}2 — ‘/E) < 0
With this understanding, let’s change the sign of E for simplicity in math
and declare that:

TotalEnergy = —F

Meaning;:

1 1
.'.*E:imUZfVO<O == V()—Eziva

The value of E (which is now -(Total Energy)) has to be less than Vp. This
makes sense intuitively because the total energy HAS to larger than the potential

energy (—Vp) :

—-E<-Vy = E<V

But it can also be shown mathematically because if E is not smaller than
Vo, you would get an imaginary value for velocity. :

20— F
o=y 2B gy
m

OK, let’s change our signs for everything else we’ve already established. The
wave function and wave equation become:

b(w,t) = (x)et!

il L o) T = LD T |y (1))

Vi T 2mdr®



— —Eo(x) = 7 + V(2)9(x)
h d2¢
omd? (E+V(x))o(x)
= 0= B V@)o)
V(x)
/N
ya —nQ < ~
m.aL "
Reg:on Region
+ Ir

s

IQeg'.o\n pin

Looking at the three regions of this graph we have:

Region 1
d?¢ 2mE
il P
where ZQZE >0
Region 11
d?¢ 2mE
prch —?(Vo — E)é(z)
where 27;;’2E >0
Region III
d*¢ _ 2mE

where 27;;2]3 >0

Since we know that any measurements taken as intensities or as probabilities
of a particle being found at a certain location (P(z) = ¢*(x)) must all be positive
and finite and can be normalized so that the following condition is true:




/_O; *(z)dr =1

Then, we know that this condition implies that for any ¢(z):

¢(—00) =0

¢(o0) =0

This detail will help in finding energy value for a given finite potential well
and ultimately solving this problem.

Introducing o and finding better units for this problem

For regions I and III, What is this?:

2mE
B2
We'll look at the units to try to understand.

omE kgl 1

R (Js)2 m?

We want to have a better understanding of the general forms that these
square well problems take on through values that do not rely on the mass of
the particle or the width of the well. So we will convert to ”natural units” by
multiplying by the width of the well:

2mE
h2
This « is a way of defining the energy so that we can find the trend of energy
distributions for a set of square well potentials. As such, it is clearer to see
that they are same, but simply scaled differently by various factors, namely the
width, mass, and total energy in SI units.
For region II we do something similar but we change the sign of the region:

a=a

2m(Vo — FE
5 = ay) 2V )
72
Both « and 8 are constants dependent on the potential well width, total
energy, and in the case of beta, the potential well depth as well. In addition,
the square of each of them must be a positive value. We can add these squares

together to denote a new value, v, which is dependent on only the potential well
depth and potential well width.



2mVya?

72

This v in essence represents a set of all the possible, different combined
solutions of o and [ for a given combination of well depth, mass, and width.
When comparing it to the other terms in this equation, o and 3, it is notable
that « is dependent on Vy and not E, so it can be thought of as representing
the well depth. It is not dependent on the total energy and thus may represent
solutions for various total energies (« values) of a given well.

7220424-/82:

v and Natural Units

When setting up a particular square well potential model, the relevant in-
formation determining the state of the model includes the depth of the square
well potential, its width, and the mass of the particle or object of the model.
These values are all included in v which is in essence an identifying value for a
given problem.

In addition, v can be thought of as the potential in the given ”natural units”
of the model. Let’s elaborate on this. +2 is as follows:

2
9 9 5 a‘mVp Vo
« —i—ﬁ =" = =

h? (gmz)

Now we’ve rearranged 7y as some potential well depth value divided by a
particular denominator which is dependent on the width of the well (a) and
the mass of the particle m. Let’s examine the units of this denominator more
closely:

h? ” J? sec? J? 7
——units = ——— = ——— =
2ma? kg m?2 kg m?

sec?

Therefore this is a particular value in Joules for the given problem, and we
are dividing the well potential by it. ~ is basically measuring the well depth
(Vo) in a unit created by the model itself. It is measuring the well depth in the
"natural units” of the problem.

We can rewrite our equations for each region from before using this new
notation:

Region I
d’¢  ao?
qz2 = ﬁﬁb(x)

where a2 > 0



Region 11

Po_ —p
e

where 5% > 0

Region III

d’¢ _ a?
dz?  a?
where a2 > 0
When thinking of how to solve this problem, it might simply feel instinctual
that ¢(z) should be continuous. But instinctual is insufficient proof, so let’s
examine the wave equation (when —FE = (total energy)) to understand where
this assertion arises from:

_ —h d*¢
-~ 2m da?

By looking at this, it seems that at most, 327‘5 can be discontinuous at x = +a
because at this location, the potential’s ”discontinuousness” when added to
V(z)’s ”discontinuousness” may cancel each other out and thus it would make
sense that they could be equal to —F¢(z). But this would only happen at a
and -a.

Also, % cannot be a Dirac delta function (J, the derivative of a step in
a discontinuous function) because then it would not be possible to make the
other side of the equation also a Dirac delta function. This means that if %

—E¢(x) + V(x)¢(z)

is discontinuous at some point z = zo, then the derivative here (g%’) will be

2
0(x — xp). We already established that % cannot be a delta Dirac function so
% must be continuous everywhere.

Some educated guesses for each segment.:

r<—a: ¢(x) = Des®™ +0e * = Dea®
—a<z<a: () = (Bsm(éx) + C’cos(ém))e*a
a a
T>a: G(x) =0es™ + Ae™® = Ae = ®

For x < —a and = > a the reason the wave function must exponentially
increase and exponentially decay respectively is in order to fulfill the condition
[, ¢ (x)dx = finite

And, the reason the —a < x < a section is multiplied by the factor e~
because it makes the math simpler.

In order to find solutions to this problem (which now consists of finding
acceptable values for o and /3) we will apply the previously discussed continuity
conditions for ¢(x) and ‘;—i’

s



o(x) % :

=—a: ~% = (—Bsin cos = & écos ésin =
v=—ai D= (<Bsin(f)+ Coos(er D3 (B¢ g+l ﬁ)w

=a: ~< = (Bsin éx cos éx = _ A% = écos — gsm =
r=as A= (Bin(Za) + Coos(Laer  — A% = (B500s5 - Cuing ) e

Solving this system:

a(A+ D) = 2aCcosp = 2CpBsinf
= C(acosf — Bsinf) =0

. either C = 0or acosf = Bsinf

a(A — D) = 2aBsinf = —2Bfcosf
= B(asinf + BcosfB) =0

.. either B =0 or asinf = —Bcosf

3 potential solutions (B=0 and C=0 is a trivial solution because then there
is no wave function)

1): @ = BtanpB and B =0

2): C =0 and o = —fcotf

})/: acosf = Bsinf and asinf = —Bcosf

= asin®f +acos?’f=0 = a=0

However, this solution 3 is not allowed based on the definition of alpha,
where it is clear that o > 0. (This is because a? is -(Total Energy) when o and
Total Energy are in natural units. Therefore, since the total energy is negative
in an attractive potential, & must be positive)

To find final values for a and 3 we must take into account both their defini-
tion with respect to v and these above solutions. A graphical representation of
possible values for 5 (and thus « based on the v value of your particular setup)
is shown below for a value of v =5

avs. p

AN

31— Btanp
— fcoth

«  Solution Set 1
2 Solution Set 2

=<




In addition, looking back at the continuity conditions we had established,
these solutions tell us more information about the coefficients:

1): B=0, A= D = Ccosp, and a = Stanf

2): C =0, A= —D = Bsinf, and o = —fcotf8

However, we still have not solved the wave function equation because we have
not found all the values of the coefficients in terms of the intrinsic properties of
the well and situation (). We are missing one coefficient (C in solution 1 and B
in solution 2 are missing) and through the process of finding this, quantization
will result.

1.3 Quantization

We are learning quantum mechanics, where does the quantization come in?
In the case of the potential well, it arises due to both the intrinsic continuity
conditions as well as at the time of normalization:

The requirement that ffooo ¢?(x)dx = 1 means that ¢(z) must approach zero
at its "ends” so as to end up with a finite number for the integral. In other
words ¢(+o00) = 0.

Solution Set 1 (Wave Function is Even)

So let’s re-examine our solution 1) and rewrite ¢(x) in terms of these values:
B=0,A=D =Ccosp, and a = Stanf:

r<—a: $(z) = Dea® = Ccosfles®
—a<z<a: o(x) = Ccos(gx))e_a
r>a: ¢(x) = Ae ® = Ccosflea ©

Now, based on this wave function let’s perform the integral ffooo ¢ (x)dx = 1:

/OO ¢ (x)dx = C? {(cos%@/a 623%&:) + (620‘ /a cos%iw)dm) + (cosQB /OO eﬁﬂdm)}

cos(%x)#»l
2

B

Remember cos?(Zz) =

- —2a _
= 02[60826%6% ¢ o+ c 5 %(sinz(gx) +z)*, — 6082,8%672 1°°]
C? 2a 5, 54 200 @
bl e - =20 L in(28) + 2
5 [a cos“fe % + e (Bsm( B) + 2a)]

sin2
26

1
= CQae_QO‘[aCOSQB + +1]



sinf
cosf3

Remember for this solution o = Stan = 8

cos®B  sinfcosf

_ 2 —2«
= C%ae [Bsinﬂ 5 +1]
_ 2 —2a; COSP 2 .2
= C%ae [ﬁsin/j(cos B+ sin®B) + 1]
= C%ae™2"| ! 1] = cz’ae*%‘[l +1]=1
Btan «
2c
2 e
— 0= a(l+ a)
Therefore:
e .
r< —a: o(x) = a(1+a>cosﬁea
aea o
—a<zr<a: o(z) = o )cos(fx))e
x>a: o(z) = Lzacosﬁeﬁ“’
' ~\Val+a)

Finally, if we want to change the units of position x to natural units, we

would divide by the well width a, so y = % and we can create a new wave

function in these units:

2c
y<—1: o(y) = (féj_ a)cosﬁeay
2a
-l<y<l1: o(x) = (fi a)cos(ﬁy))e_a
0[620‘ a
y>1: o(x) = T a)cosﬁe v

Solution Set 2 (Wave Function is Odd)

This same normalization can be performed for solution 2 (where C=0, A=-
D=Bsinf) to find the following values for wave function and coefficient B:

r< —a: $(x) = —Bsinfea®

—

—a<z<a: o(x) = Bsin(gzﬁ)e

10



T>a: ¢(x) = Bsinfe™ ®

2«
9 ae

a(l+a)

Once more substituting this new value for B and in natural units of length
we get:

0162‘)‘ ) o
y<-—1: o(y) = — ) sinfBeY
Oé€2a ) a
—-l<y<l1: o(z) = ) sin(By)e
2
e>1:  ¢(z) = (f‘i 5y sinfe ™
1.4 Example: =10
LB fi =10
10 : o Vs Bi]
8 1 it
£ — Ptanp
— fcotp
= +  Solution Set 1
4 1 Solution Set 2
2 B
D T T T
o 2 4 & B 10

Below are the wave functions and probability functions for v = 10. Solution
Set 1 consists of all even wave functions below and Solution Set 2 consists of all
the odd wave functions. The graphs are ordered from lowest energy to highest
and are in natural units, where the edges of the potential well are at y=-1 and
y=1

11



Wave Function, Even Solution, a = 9.8976

Probability Function, Even Solution, a=9.8976,

Probability Function, Odd Solution, a=9.5846

i
]
U

Probability Function, Even Solution. a=19.042,

Probability Function, Odd Solution, a=8.2308

10
1 1
08 o8
06 06
o4 0.4
02 02
oo 0.0
Energy in natural units: -97.96
Probability of finding the particle outside of the well: 0.002
Wave Function, Odd Solution, @ =9.5846
100 H H H
AN
075 | H 08
i i
1 1
050 ! !
1 0.6
025 H
i
o000 H 04
-025 1
1
1
-050 H 02
1
-0.75 i
1
-100 } 001
1
Energy in natural units: -91.86
Probability of finding the particle outside of the well: 0.008
Wave Function, Even Solution, a =9.042
100 H
1
1
075 1
i
i
050 H
i
025 H
i
000 --r
'
'
-025 y
-0.50
h
-075 H
i
-100 }
1
Energy in natural units: -81.76
Probability of finding the particle outside of the well: 0.018
Wave Function, Odd Solution, @ =8.2308
100
075 e
050
06
025
000 04
=025
-050 02
-075
-1.00 00

i
h
|
i
1

Energy in natural units: -67.75
Probability of finding the particle outside of the well: 0.035
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Probability Function, Even Solution, a=7.0732,

Wave Function, Even Solution, a =70732
H

0 1

Energy in natural units: -50.03
Probability of finding the particle outside of the well: 0.062

Probability Function, Odd Solution, a=5.3898

Wave Function, Odd Solution, @ =5.3898
Y 08

06

0.4
-0.25
~0.50 02

=075

0.0 1
1 1 0

e ————

=100

Energy in natural units: -29.05
Probability of finding the particle outside of the well: 0.111

Wave Function, Even Solution, @ =2 5138 Probability Function. Even Solution, a=2.5138,

i
i
H
I
i
i
i
i
H
H
i
1
i
i
i
:
t
1

-1 0

Energy in natural units: -6.32
Probability of finding the particle outside of the well: 0.267

The graph below shows the probability of the particle or mass existing out-
side of the potential well, which classically would be 0 for a bound state since
there would not be enough energy to overcome the potential energy barrier.
However, this is no longer the case for this quantum mechanical model, and as
it turns out, for a given ~ value there is a higher probability for the lower «
(higher energy) particles to exist outside the well

13



Probability outside of well, y=10

B «  Splution Set 1
0.25 4 »  Splution Set 2
£ 020
-
(=]
=
‘w 015 A
5
(=]
E 0.10 )
=]
m
=]
o .
& 005 A
0.00 -
T T T T T T T J
3 4 5 6 7 B 9 10
o

There is a lower possible energy as the value of v increases as shown in the
graph below. This makes sense in relation to the total energy constrictions
wherein the total energy cannot be less than the potential well. For a deeper or
more significant potential well, it would make sense that the lowest total energy
could be a lower value.

Energy Distribution for y=[3, 5, 15, 50, 75]

#« Splution Set 1
01 . splution Set 2
60 + i
!
50 I H
a0 1 :
[=] : :
& "
30 1 » .
. .
20 .
&
10 ! ’
oi ° ) )
T T T T T T T T
0 10 20 30 40 50 B0 70
¥

Below is a graph showing the probability of a particle existing outside of the
potential well for multiple different well depths.
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Probability outside of well, for y=[3, 5, 15, 50, 751]

= Solution 5et 1
0175 - Solution Set 2

0:200 A

0:150 1
0125 1
(U100 A
0075 1

0:050 1 * .

Probability outside of well

0.025 .o,

0,000 ' “taemy L ——
0 10 20 0 40 50 B0 0
alpha

2 Building to Multiple Attractive Centers/Wells

V(x)
/™~
e P2 b -~bta  _g o a b-q b b+o
AN i : >X
~Yo _Vo ~—-V°
A\ g

This 1-dimensional model with multiple attractive wells, often called the
Kronig-Penney model, starts to build a basic understanding of conductors and
insulators and why they work like they do. Our goal is to work towards under-
standing of this model step by step.

How do you find the changes in energy for a model like this one? We're
going to start by expanding on our understanding of a single attractive center
and working with it as a delta function confined to a single region in space as
opposed to a square well.

15



2.1 Understanding One Attractive Center

V(x)
/N

~Q Q

N
NV
X

Due to dealing with an attractive potential in a bound state, every solution
has to satisfy (where Total Energy is —F and the potential depth is —Vj):

O0<E< Wy

The area of each square well is 2Vja, meaning:

/ V(x)dx = —2C
where C' = Vja
This means that, in a sense:

"W(z) = —208(z)”

We can conceptualize this as taking the potential well and compressing its
entire area to a single point, x=0. The depth would become infinitely deep and
the width would become infinitely narrow.

Plugging this into the wave equation:

b2 _hQ d2¢ 2
om dr? 2¢6(z)p(z) = —Ed(x)
(where remember —E = Energy and ¢(z,t) = e '¢(x)
Rewriting this:

d’¢  4mc 2mFE
= g2 ?5(95%15(95) = Tﬁf)(x)
d?¢  4mVia 2mkE

— 20+ L (@)ow) = = ola)

2

d
= e +2g6(z)p(x) = a?¢(x)
where g = 272¢ > 0 and o? = 22E > 0
So, based on this, is ¢ continuous as x=07

16



Well, if ¢ is discontinuous at x=0, then % |z—0 has to be §(z) and 327? |o—0 will
be ?worse” (even harder to define) than §(x). Therefore, ¢ has to be continuous
at x=0.

Is % continuous at x=07

No, and the jump must "match” §(z) in the potential term!

What about away from x=07?

Away from x=0, the wave equation simplifies to the following (because V(0 <

z <0)=0):

d2¢ 9
PRl

Therefore the wave function will look as follows (taking into account the need
to normalize the probability function)

\'8
z <0 do(z) = Aae™®
dx
x>0 do(2) = —Aae™ "
dz
ade
/ F
£ x
Ao

17



. _ 2 _ax
rz<0: R Aa“e
2
x>0: ddq;(;) = Aa%e™ "
+Bé(x)

Since % jumps from positive to negative, B < 0.

4P

A.o(a Ki

a0 T gl
0 o) oo
Aa? / e“Cdx 4+ Ao / e~ “dr + B/ d(z)dr = —Aae™ |0
—00 0 —00
= 240+ B =0 = B =24«

Now, back to examining at x=0:

d2
r02g(x) = 220 4 25(a)(z)”

T da?

Integrate this:

0 (o) o 2 (e’
azA/ e dx + a2A/ e *dr = / %dm + 29/ 0(z)o(z)dx
0 X

—0o0 — 00 — 00

— e — ade” | =0+ 29¢(0)

= 2aA =2gA
—t a=gqg

We can thus write the probability function as:

18



z<0: P(z) = AZe29
x>0: P(x) = A% %"
And we can use to the fact that [~ P(z)dz =1 to find solve for A%

2A?

2g

:}AQZQ

Therefore we can rewrite the ¢(x) solution as:

x<0: o(z) = \/ge’®
z>0: o(z) = /ge™°

Remember that g is related to the potential of the well:

2mVpa
=5

And the bigger the g the more ”localized” the solution. This makes sense
because you are saying that the stronger the potential, the more likely that the
wave function is found there.

Summary of what we just did:

1) ¢(x) for z > 0 and z < 0

2) Make ¢(z) continuous at x=0 (because it has to be)

3L - — 22|, o+ = 29¢(0)

2.2 Multiple Wells (work in progress)

Let’s imagine we have N number of attractive centers located at x = d, 2d, ..., nd,
and at each of them there is a dirac delta function 6(z).

We set g = 2”%# = 1 and furthermore understand the potential energy to
be the following:

V(x) = —2Vha

S

Much like before, we know that away from the attractive centers the wave
equation simplifies to:

¢
dx?

And at the attractive centers:

= a2¢

2

"alp(z) = % +2

N
> o nd)l ¢(x)”
n=1

19



We know that since ¢(x) must be continuous at this delta function location
(x = nd)we can create the condition:

An_lefa% + Bn_leo‘% = Anea% + Bnefa%
We can rewrite this in a nicer way by defining v = eo%:
I) An,10+Bn,1% :An%+BnU

In addition, much like before we know that since there is a dirac delta func-

tion we know:

do do B
%'w:nd_ - %h{;:nd‘*’ = 2¢(nd)
Rewritten this becomes:
1 1 1
[—aA,_1v+aB,_1-] — [-ad,— + aByv] =24, v+ 2Bn,1i
v v
2 1
= Ap_1(—av—2v) + Bn,l(g ——)=—ad,— +aByv
v v
= II) —vA,1(1+3)+1B, 1(1-2)=-A,l+Byw

Adding I) and II):
fzv

ZBnU = TAn—l + ( 7)Bn—1

v v
Subtracting I) and IT):

2v Z

1
ZAnf = (277 + )An—l + Bn—l
v o v

Therefore:

1 1

-1
B, = 7An71 + (1 - *)anl
[0 «

02
1 1
A, = 1}2(1 + E)An_l + aBn_l

Or, written in matrix format:

)= ("2 et ) (30)

We will name this transformation matrix from A,_; and B,,_; to A4, and
B, as T(a,d). Note that this matrix has no dependence on which of the N
attractive centers we are transforming to or from. This means that we can
imagine that for each attractive center there exists this same transformation
matrix that transforms from one side of it to the other, like so:

And thus for the total scenario of N attractive centers we end up with:

20



However, looking at the image we know that at the ends of the wave function,
as it approaches co and —oo the function must approach 0. This means that
this matrix simplifies to:

AN _ (@) (TN)i2) (0
0 (TN)21 (T™)a2) \ Bo
Yielding the two equations:

A, = (TN)12B,

0= (T")22Bo
We know that By # 0 for the wave function to actually exist so (T )2 = 0.

2.3 Putting Them On a Circle

So far, we have been imagining our wells on an infinite flat line. However,
there are benefits to instead modeling these potential wells as existing on a
circle. Much like a periodic function repeats while as you move down it, a circle
repeats intrinsically due to its shape:

For this new geometry, we can now state that:

Ve+L)=V(z)
V(iz+d) =V(z)
Nd=1L

Previously, for our flat line we had the restriction that fOL YP2(x)dz =1. We
extending this flat line L out towards infinity, meaning ffooo ¥?(z)dx = 1 which
further has the consequence that the ends of our wave function must go towards
zero (¢(—00) = 1p(c0) =0).

However, with the circle, we no longer have this restriction on the ends, yet,
when making the length L go to oo, this circle turns into a flat line at any point
anyways.

Now, with the circle, this restriction on the ends of the wave function no
longer applies.

Definition of ”Bound”

Before, we had one or multiple attractive potentials, and said the wave
function was "bound” thus it didn’t exist at the edges (approaching —oco and
00). Now, with this model on a circle, "bound” refers simply to attractive
centers existing.

21



Going back to the modified wave equation we used previously but this time
looking for solutions of the type ¢ (z,t) = e%thS(x) (Notice we are no longer
changing the sign of E as we did previously):

h? d?
- 2 _ - _E
S () — V(@)é(r) = ~Eo(x)
h? d?
- 2 - _E
— o 0lw) = V(@)o(r) — Bo(a)
Where Energy = E and E;0
Our periodic boundary conditions are now:

¢(x) = d(z + L)
do . do
V)=V (z+ L)

Given the first condition, plugging x into the left hand side of the above
wave equation should give the same result as plugging in x+L, meaning:
d*¢ d?¢

In addition to these periodic boundary conditions for this circle, we have a set
of conditions for the particular problem type we want to solve:

V(z)=V(z+d)

Nd=1L
This all begs the question of whether ¢(z) = ¢(x + d)?
Comparing:
n? d?
T omde? (z) =V(2)p(z) — E¢(z)
And:
h? d?

—%@Wm +d)=V(e+d)p(x+d)— Ep(x+d) =V (x)p(x+d) — E¢(z+d)
It is apparent that ¢(x + d) = ¢(x)
So(r +2d) = Cp(x +d) = C?é(x)

o + kd) = CF(x)
bz + Nd) = CN(x) = 9(2)

22
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127 o

:>C:€N

Where k=0,1,2,...N-1
Therefore, for ¢(xz + Nd) when N=1,

27k

d(x+d)=Co(z) =e~ ¢(z)
d(a+d) e do(a)
dx dx

For this delta function potential centered at x=0, we define once more the
wave equation:

We can define two values for total energy in natural units depending on whether
the energy is negative or positive:

E<0: o?
E>0: -p?
If z # O:
E<O0: @ _ 20
dx
d
E>0: N
dz
And at = 0 we have the following J-function condition:
do do
——|p=0- — =— om0+ =2
dr ‘xfo dz ‘1:70+ ¢(O)
And:
$(z=07) = ¢(z=0")
For E;0:
Ape™ Ape™**
BLeowc BReaz

Wave function left of the potential is ¢ = Ape™** 4+ Bre®® and the wave
function right of the potential is ¢ = Are™** + Bre®®. Using this we can
apply the previously established conditions to our wave function:

w(f) e (3)
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. .. . . d
We rewrite this in a nicer notation such that v = e®2

A A
1) TR + Bpv = C(TL + Bro)

Similarly for the rest of our conditions:

do, . do
7, @) = (@ +d)
A B
— U”Q/+ Bt = C(—ed v +06-2)
= 2) —

r B
+BR1}:C’(—ALU—&——L)

v v
Pz =0")=¢(z=07)

= 3) Ap+Bp=Ar+ Bgr

do do _

o = 2y = 2000

[-Ara+ Bra] — [-Ara+ Bra] = 2[AL + By
Now we can add 1) and 2):

= 4)

B C
QBRUZQC—L = Br= 5B
v v
And Subtract 1) and 2):
2AR

v
Substitution these values for B and Ag into 3):

=20Av — Agr = C’UQAL

1
Ap + B, = O(U2AL + U?BL)

— (Cv2—1)AL = (1 - U%)BL
Converting 4) and substituting values for B and Ag thus becomes:

1
AROz — Bra = (2 + a)AL + (2 — a)BL e O(U205AL — 1)720[8]4)

P 2 1
= (S + DAL+ (S = 1)By = C[v* AL — 5By

02
2 2 C
2
= (C’U 7175)AL:(a71+’U72)BL
Using 3):
9 2 C 2 C 9
= (Cv —1—5)(1—1}—2):(&—1—&——2)(00 —1)



2
= 002—1/—7—02+£2+£=2CU —Cv2+02/—7+1—£
« v « «

ov? v?2

2C 2C 2Cv?
:>2(12+2=20v2+v—2+ _

av? o

C C Cv?

— 02+2:Cv2+—2+—2——v
v av «

— } |:612]’\']’° + e—i% _ ead —|—€_ad _ l(ead _ e—ad):|
2 o

Finally, by converting this through identities we arrive at the equation for

the solutions: )
COS(Q%) = cosh(ad) — ésinh(ad)

Let’s examine this equation a bit further by trying to plot both the left-
hand-side (LHS) and the right-hand-side (RHS) with respect to alpha.

The LHS is just going to be a straight line, since it does not depend on alpha
but rather just on which k we are examining.

The RHS can be understood better by taking the derivative with respect to
alpha:

d _ 1 ad —ad 1 ad —alphad d ad —alphad
da(RHS)_Qd(e —e )+2a2(e —e )—2a(e +e )
1, . dcosh(ad
1 a3d3 d a2d?
=(d+ —<)(ad )= —(1
(+a2)(a+ +...) a(+ 5 T )

If d< 1, we only have < N solutions.

If d> 2, we will have > N solutions.

As N— oo, more lines from the LHS, meaning more continuous.

Extending this to bound and unbound states (so far we’ve just looked at
alpha not beta):

Bound States ("valence e-”):

—d
> <zx<0: ¢(x) = Ape™® + Bre™**

d
0<z< 5 : o(x) = Are®® + Bre ¥
Unbound States (”conduction band e-”):

—d
— <

5 <z<0: o(x) = Ay 4 Bre

25



d ) _
0<w<S:  oa)=Ape™ + Bre
By defining this § term, where if we wanted to write it instead still as «
would be @ = i3, we can solve for the "unbound” states as well. This means
that for any given d and N, we should be able to solve for all ay, and all By.
So, to understand the unbound states better, we’ll examine solutions where

B is 7large”. Looking at our solution equation one more in terms of (:

cos(%) = cosh(fd) — %sinh(ﬁd)

In this case:

Additionally:
1.
IBSln(ﬂdﬂ < |cos(Bd)|

= cos(fd) — %sin(ﬁd) ~ cos(Bd)

cos(% = cos(Bd)

21k
= pl=5
g2k _2mh
" Nd L

Since the wave function for f is defined as e**#* this becomes ¢ = et

which is called the " free particle/wave limit” and whether it is more particle-like
or wave-like (aka whether it will disperse or not) is dependent on its mass.

Going back to analyzing the derivative of the RHS for bound states. We
already established:

I d
0= (d+ ﬁ)smh(ad) - acosh(ad)

g _ ad
d+ L a?d+1

= tanh(ad) =

We will call this f(«):

a4 202d?
da a2d+1  (a2d+1)!
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We'll set this equal to 0 to find our maximum location:

df
=0

— d(a?d+1) =2a°d?

— =

Sl-

Plug this maximum location back into f(«):

Vd

tanh(—=d) = v

Vd

This shows that for small d the RHS of the bound state is monotonic (mean-
ing it keeps on increasing or keeps on decreasing. Alternatively, it has one
minimum for large d’s.
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1 Building to Multiple Attractive Centers/Wells

V(x)
™
e ~PT -b -bta _g 0 a b-q b bto
N ! j >X
1 1
~Vo -Vo "‘Vo
\\'d

This 1-dimensional model with multiple attractive wells, often called the
Kronig-Penney model, starts to build a basic understanding of conductors and
insulators and why they work like they do. Our goal is to work towards under-
standing of this model step by step.

How do you find the changes in energy for a model like this one? We're
going to start by expanding on our understanding of a single attractive center
and working with it as a delta function confined to a single region in space as
opposed to a square well.

1.1 TUnderstanding One Attractive Center

V(x)
/N

Due to dealing with an attractive potential in a bound state, every solution
has to satisfy (where Total Energy is —F and the potential depth is —Vjp):

O0<E< Wy

The area of each square well is 2Vja, meaning:

/a V(z)dz = —2C

—a

where C' = Vya



This means that, in a sense:

"W(z) = —208(x)”

We can conceptualize this as taking the potential well and compressing its
entire area to a single point, x=0. The depth would become infinitely deep and
the width would become infinitely narrow:

V() V()

Plugging this into the wave equation:
., —h2 d2¢
2m dx?

(where remember —E = Energy and ¢(z,t) = et Lé(z)
Rewriting this:

—2¢d(x)p(x) = —E¢p(x)”

d’¢  4mc 2mFE
= g2 ?5(95)(75(33) = (2)
d?¢  4mVia 2mkE
= gz 75(95)(/)(37) = T¢($)
d*¢ 2
— C5 +200(2)6(r) = a?(a)
Whereg:%>0anda2:¥>0

So, based on this, is ¢ continuous as x=07

Well, if ¢ is discontinuous at x=0, then % |z=0 has to be §(z) and Z%f |a=0 will
be ”"worse” (even harder to define) than d(x). Therefore, ¢ has to be continuous
at x=0.

Is Z—i continuous at x=07

No, and the jump must "match” §(z) in the potential term!

What about away from x=07

Away from x=0, the wave equation simplifies to the following (because V(0 <
z<0)=0:

d%¢ 9
i



Therefore the wave function will look as follows (taking into account the need
to normalize the probability function)

x<0: d(z) = Ae™®

x>0: ¢(z) = Ae™ "
Therefore at x = 0, ¢(x) = A

$ ()
A

v
And the derivative would look like this:

rz<0: .
z>0: M = —Aae "
dzx
A dP
/ -
< x
Aot

The second derivative would thus look like this:

d2¢(£) — A 2 _ax

z<0: = a‘e
2
z>0: %x(f) = Aa%e "
+Bé(x)

**Note: This added delta function exists through all of the 1-D space.



n-ﬂ
<

|

0,
X
»

Aot

Vv

Since % jumps from positive to negative, this can be conceptualized as a

very, very negative slope at this point, meaning that there is a negative area at
x=0, a delta function where B < 0. Another way to conceptualize this is that

2
since Z—i’ represents the integral of % then there must be some negative area

at x=0 to see that % changes from positive to negative after x=0.
Let’s understand the integral of this second derivative:

/°° d2¢d _ d¢ dg

L = T lz=00 — 7 |lxr=—00
oo d? dx dx

0 oo oo

Aa? / e“®dx 4+ Ao / e~ “dx + B/ d(z)dr = —Aae™ |0
—0o0 0 —0o0
= 24Aa+B=0

With this result, we go back to examining the wave function at x=0 to see
if we can discern more about the problem:

d2
"0%0(e) = T8 + 206()p(a)"

Integrate this:

0 o) e8] d2¢ o)
aZA/ e“dr + a2A/ e~ dx = / —dx + 29/ 0(z)p(x)dx
PSS 0 —o0

2
o dz

= ade™|®  — ade |3 =0+ 29¢(0)

= 2aA =2gA
—— a=g

We can thus write the probability function as:

x<0: P(x) = A%e?9"



x>0: P(z) = A%e 297
And we can use to the fact that [~ P(z)dz =1 to find solve for A%
242
29

=1

:}A2:g

Therefore we can rewrite the ¢(x) solution as:

x<0: o(z) = \/ge’®
z>0: o(z) = /ge™°

Remember that g is related to the potential of the well:

2mVya
=7

And the bigger the g the more ”localized” the solution. This makes sense
because you are saying that the stronger the potential, the more likely that the
wave function is found there.

So, a summary of how we solved this single Dirac Delta function potential
well:

1) ¢(x) for z > 0 and z < 0

2) Make ¢(z) continuous at x=0 (because it has to be)

3L - — 22|, o+ = 29¢(0)

1.2 Multiple Wells Along a Line

Let’s now imagine we have N number of attractive centers located at z =
d,2d, ...,nd, and at each of them there is a dirac delta function ((x)) potential
energy well.

V(x)

= d = —d e al—-)u—-ﬁ’—-.\
— 7

We set g = 2mv°“ = 1 and furthermore understand the potential energy to
be the following sum of different delta potentials:

ST

V(z) = —2Vha




Much like before, we know that away from the attractive centers the wave
equation simplifies to:

d*¢ 2
@ =Y
And at the attractive centers:
) d* [«
Tal(n) = o5 +2 > 6z —nd)| ¢(x)”
n=1

Why is it quotations marks? Because delta potentials are weird.

First we will look more in depth at what happens away from the attractive
centers. On either side of these attractive centers there will be some term of
the wave function that corresponds to decay in one direction and another that
corresponds to decay in the other direction. Zooming into one of these attractive
centers:

(- d (nedd

N l'_’—v—) } —— 4) X
Tn +his region: In s region:

PR =A e—:*(x—[hd - 2]) ol ‘A“é“(x-[mlh g])

+B 2“("[“”'th + Bne.“(" d-2)

n-

v v

We know that since ¢(z) must be continuous at this delta function location
(z = nd) (just like before with a single delta function potential) we can create
the condition:

4
2

vl

—al —al
An_le @32 —|—Bn_1€a :Ane @32 +Bn€a

. . . . _ad
We can rewrite this in a nicer way by defining v = e™“2:

I) Ap-1w+Bn1t =A,1 + B

In addition, much like before, we know that since there is a dirac delta
function we know:

o _
dz z=nd—

Rewritten this becomes:

d
£|z:nd+ = 2¢(nd)

1 1 1
—aA, v+ aBn_l] - [aAn +aByv| =2A4,_1v+ 2Bn_11
v v

2 1
= A,_1(—av—2v) 4+ Bn,1(g — =)= —-ad,~ +aByv
v v



= II) —vA,1(1+2)+1B, 1(1-2)=-A,l+B.w
Adding I) and I1):

—2v
IBv=—"L—A,_1+ (= -
o v

Subtracting I) and II):

1
ZAnf = (:Zﬂ_ + @)An—l + an—l
v « v
Therefore:

1 1
(1 - E)Bn—l

1 1
A, = U2(1 + E)An_l + aBn_l

-1
Bn = 7An—1 + 3
(0% v

Or, written in matrix format:

()= ("5 wat) ()

We will name this transformation matrix from A,_;1 and B,_1 to A, and
B, as T(«a,d). Note that this matrix has no dependence on which of the N
attractive centers we are transforming to or from. This means that we can
imagine that for each attractive center there exists this same transformation
matrix that transforms from one side of it to the other, like so:

| 2 3 y---N
C— 19>
The same (D wmatrix

Transforms wave Gmchon
between each pc:-’rey.‘i‘r'a}

And thus for the total scenario of N attractive centers we end up with:

However, looking at the image we know that at the ends of the wave function,
as it approaches oo and —oo the function must approach 0. This means that

this matrix simplifies to:
AN\ _ (TV)11 (TY)12 0
0 (TN)o1 (TN)22) \Bo



Yielding the two equations:

A, = (TM)12By

0 = (TN)22.30
We know that By # 0 for the wave function to actually exist so (T ) = 0.

1.3 Examples of Graphing the Solutions for Evenly Spaced
Delta Function Potentials on a Circle

This Transformation matrix was coded in Python and examples of some of the
resulting plots are shown below:

a vs d, N=20, For Multiple Delta Potentials on a Line
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1.4 Putting Them On a Circle

So far, we have been imagining our wells on an infinite flat line. However,
there are benefits to instead modeling these potential wells as existing on a
circle. A circle, due to its geometry, additionally repeats after a certain length
intrinsically due to its shape:

V(x)
| d— A —e— d—sy e d _

Move this onto a circle:

This circle has circumference L, divided into N segments of d length.

Nd=1L
We go back to this position after this length:

r=x+L=x+ Nd



Since there are potential wells of the same depth every d, we can also state
that:

V(ix+ L) =V(x)
V(z+d)=V(x)

Previously, for our flat line we had the restriction that fOL YP2(x)dz =1. We
extending this flat line L out towards infinity, meaning ffooo ¥?(z)dx = 1 which
further has the consequence that the ends of our wave function must go towards
zero (1h(—o00) =1p(c0) =0 ).

However, with the circle, we no longer have this restriction on the ends, yet,
when making the length L go to oo, this circle turns into a flat line at any point
anyways.

Definition of ”Bound”

Before, we had one or multiple attractive potentials, and said the wave
function was "bound” thus it didn’t exist at the edges (approaching —oco and
00). Now, with this model on a circle, "bound” refers simply to attractive
centers existing.

Going back to the modified wave equation we used previously but this time

looking for solutions of the type ¢ (x,t) = elhthS(x) (Notice we are no longer
changing the sign of E as we did previously):

h? d?
—%EQS@) = V(z)p(x) = —E¢(x)
n? d?
 2m da?
Where Energy = E and E > 0
Our periodic boundary conditions due to the geometry of the circle are:

p(x) = V(z)p(x) — E¢(x)

¢(z) = ¢(z + L)
do d¢
—(z) = — L
7y %) =5 @+ L)
V(z)=V(z+ L)
Given the first condition, plugging x into the left hand side of the above
Schrodinger wave equation should give the same result as plugging in x+L,
meaning:

226 A2
@(37) = @(5’3 + L)

10



In addition to these periodic boundary conditions for this circle, we have a
set of conditions for the particular problem type we want to solve:

V(z)=V(x+d)

Nd=1L

This all begs the question of whether ¢(x) = ¢(z + d)?
Comparing:

h? d?

=2 = - E

W 6(w) = V()ole) — Bo)
And:
h? d?

—5 7 dletd) =V(z+d)g(e+d) — B¢z +d) = V(2)d(x +d) - Ed(z+d)

It is apparent that ¢(x + d) = ¢(x)

So(x +2d) = Cp(x +d) = C*é(x)
¢z + kd) = C*¢()
¢(x + Nd) = CNo(z) = ¢(x)

ON — 1 — pi2nk

i27 k

— C —=e N
Where k=0,1,2,..,N-1
Therefore, for ¢(x + Nd) when N=1,

27k

8o+ d) = Co(a) = ¢ o(a)
Ao +d) _ _gs dd(a)

dx dx
Looking once more at the wave equation:

¢ 2 —2mE
=~V (@)ele) = —5—(a)

We can define two values for total energy in natural units depending on
whether the energy is negative or positive:

—2mE

. 2 _
E<0: 06—7
—2mE

. 2 _
E>0:  -f=—3

If x # O:

11



& _

E<0:
dr ¢
d
E>0: dé = 3%
dz
And at z = 0 we have the following §-function condition:
d¢ d¢

— |e=0- — = |a=0+ = 2¢(0
dz'*=07 7 dg =07 ¢(0)
And:
Pz =0") =gz =0")
For E < 0, to the left of a given delta potential we have (just like before):
ALe—az + BLeocw
And on the right:

ARefowc + BReaz

Using this we can apply the previously established conditions to our wave

function:
d —d
on(3) = o (5)

. .. . . d
We rewrite this in a nicer notation such that v = e“2

A A
1) TR—FBRU:C(TL +BL’U)

Similarly for the rest of our conditions:

do . do
— _Ar/a/
v

B
+ Braw = C(—aArv +.o-7)

_A, B
— 2) " —‘rBR’U:C(—AL’U—‘rTL)

$(z=07) = ¢(z =07)
:>3) Ar + B, = Ar + Bp

d d
O oo = 9210 = 20(0)

= 4) [-Ara+ Bra]—[-Ara+ Bra] =2[AL + By

12



Now we can add 1) and 2):

B
2BRrv = 20— = Bp = %BL
v v
And Subtract 1) and 2):

2A
TR =20Av — AR = C’UQAL

Substitution these values for B and Ay into 3):
Ap + Bp = C(v?Ap + U%BL)
— (Cv2—1)AL = (1 - U%)BL
Converting 4) and substituting values for Bg and Ag thus becomes:
Apa — Bra = (24 )Ay + (2 — a) By, = C(v*aA — vigaBL)

2 2 1
—— (E + 1)AL + (E — 1)BL = C[UQAL — 7BL]

02
2 2 C
= (Cv*—-1- A, =(= -1+ —=)B
(Cw a) L (oz +1)2) L
Using 3):
2 C 2 C
2 _ 2
= (Cwv 7175)(17172)7(571+v72)(0v -1
C 20 20v? C
:>C’0271/z/*c2+*2+72: ! —Cv2+02/—7+17—2
« v av @ @ v
20 2C  2Cv?
— 20%+2=200" + o 4+ — -
v av @
C C Cv?
:>02+2 CU2+72+72—7U
v av @
1 i2zk —ilzk ad —ad 1 ad —ad
:>26N+6 No=e* 4 e — —(e e

Finally, by converting this through identities we arrive at the equation for
the solutions:

N

Let’s examine this equation a bit further by trying to plot both the left-
hand-side (LHS) and the right-hand-side (RHS) with respect to alpha.

The LHS is just going to be a straight line, since it does not depend on alpha
but rather just on which k we are examining.

An example of this solution plotted looks as follows:

2 1
cos (Wk> = cosh(ad) — Esinh(ozd)

13



Solutions at Varying a Values,d=2,N=20

104
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|

~-1.5
LHS

® RHS

-2.0

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
o

The RHS can be understood better by taking the derivative with respect to
alpha:

d 1 1 d
— (RH _ - ad _ —ad ad _  —alphady _ % (_ad —alphad
o (RHS) 2d(e e Y + 302 (e e ) 2a(e +e )
1., . dcosh(ad
=(d+ E)smh(ad) R
1 a3d3 d a?d?
=(d+ E)(acH— 5 +...)—a(1+ 5 +...)

If d< 1, we only have < N solutions.
If d> 2, we will have > N solutions.
As N— oo, more lines from the LHS, meaning more continuous.

Extending to Unbound States

We can also extend this same idea to the unbound states (so far we’ve just
looked at alpha not beta). Both of our wave functions look like this:

Bound States :

Can be conceptualized as "valence e-” for a metal:

—d - .
5 <z<0: ¢(x) = Ape™® + Bre "

0<z<-: ¢(x) = Age®” + Bre™ **

N

Equation of Solutions:

14



2nk 1
cos (;\;) = cosh(ad) — asinh(ad)

Solutions at Varying a Values,d=2,N=20

104

0.5

0.0 4

Functions
|
(=]
w
|

~1.54
LHS

® RHS

-2.0

a

Unbound States :

Can be conceptualized as ”conduction band e-” for a metal

—d , ,
S EeS0: o) = A+ Bre

0<z<

|

: $(z) = Ape'* + Bre= P

Equation of Solutions:

cos <2;:;§) = cos(fd) — %sin(ﬁd)

15
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Solutions at Varying g Values,d=2,N=20
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0.0
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By defining this 8 term, where if we wanted to write it instead still as «
would be a = i, we can solve for the "unbound” states. This means that for
any given d and N, we should be able to solve for all a and all Fy.

Understanding the trajectory of bound equation better

So, to understand the slope of our bound state RHS solution better, we’ll
examine solutions where [ is ”large”. Looking at our solution equation one
more in terms of 3:

27k

cos <N) = cosh(Bd) — %sinh(ﬁd)

In this case:

Additionally:
1
|Bsm(ﬂd)| < |eos(Bd)]

= cos(Bd) — lsin(ﬂal) ~ cos(Sd)

B
.. cos (T) = cos(Bd)
— fd= %

16



] 2k 27k
o B= Nd L
Since the wave function for 3 is defined as e**#* this becomes ¢ = e
which is called the " free particle/wave limit” and whether it is more particle-like
or wave-like (aka whether it will disperse or not) is dependent on its mass.
Going back to analyzing the derivative of the RHS for bound states. We
already established:

2k
+ L

1. . d
0= (d+ ;)smh(ad) - acosh(ad)

g ad
d+ L%  a2d+1

«

= tanh(ad) =

We will call this f(«):
df d 202d?

da a?d+1 (a2d+1)!

We'll set this equal to 0 to find our maximum location:

daf
R ap—
da
= d(a?d+1) = 2a°d?
1
—= a=—
d

Plug this maximum location back into f(«):

vd

tanh(—=d) = 4

Vd

This shows that for small d the RHS of the bound state is monotonic (mean-

ing it keeps on increasing or keeps on decreasing. Alternatively, it has one
minimum for large d’s:

P +on(nd)

17



Rewriting functions as Taylor’s series

Even:

+ +

9 1 2 12 4.4 1 373 5 45
cos (Wk> = cosh(ad)—asinh(ad) = [1 +2 @7 od + .}— {ad—F od” | od + }

N 2 24 6 120
a?d? a*d?
=(1-d)+ G (3—d)+ 120(5—d)+...
Odd:
2k 1 2d2 4d4 1 3d3 5d5
cos (;) = cos(Bd)—5sinh(Bd) = {1B2 +524 '}6 {BdBG +5120 ]
7 62d2 64d4
=(1-d)— G (37d)+120(57d)+...

Rewriting these equations in terms of these Taylor’s series shows a few things.
First it shows what happens when alpha or beta are 0. The function starts at
1-d. Furthermore, comparing even and odd states shows more clearly why the
odd states’ RHS fluctuates from top to bottom as we increase f3.

1.5 Examples of Graphing the Solutions for Evenly Spaced
Delta Function Potentials on a Circle

Solutions to the resulting solution equations for bound and unbound states were
coded and examples of some of the resulting plots are shown below:

Bound Energies v N = 100, For Delta Potentials on a Circle
0.00

s. d,

.
—0.25 1

.
—0.50 4

—0.75 4
e

E (natural units)
|
,_.
o
o
|

Pl
0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
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E (natural units)

E (natural units)

Unbound Energies vs. d, N = 100, For Delta Potentials on a Circle

0.0 4

—-0.2 1

—0.4 1

—0.6 1

—0.8 -

—1.0 1

1.2

—1.4 4

T
100
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E (natural units)

E (natural units)

Unbound Energies vs. N, d = 2, For Delta Potentials on a Circle
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1 Quantum Harmonic Oscillator

1.1 Review of Newton’s Harmonic Oscillator

The harmonic oscillator in classical mechanics has this potential energy related
to the spring constant k:

1
Viz) = 5]6172
And some force:
F(z) = —kax
This k is defined as:
k>0
k units : S’:gZ
% units: selcz

From the force we find the equation of motion:

d’z
m—s = —kzx
dt?
. d?z k
i
dt? m
We define angular frequency or ”"natural frequency” of the harmonic oscilla-
tor as w = /£ or k = mw?
Thus the acceleration becomes:
d*x 5
— = —w
dt?

A known solution to this spring equation is:

x(t) = Asin(wt) + Bceos(wt)

We can take the derivative of this with respect to time to get velocity:

v(t) = Awcos(wt) — Bwsin(wt)

Typically we set 2(0) = xo and V(0) = V.
Therefore:



Therefore the position and velocity equations simplify to:

z(t) = xgcos(wt)
v(t) = —zowsin(wt)

Thus we can rewrite the potential energy of this harmonic oscillator with
respect to time instead of position:

1 1
V)= Qka(t) = ikx%cos2(wt)
The kinetic energy will therefore also change in time as:

1 1 1
KE(t) = §mv2(t) = §mmgw23in2(wt) = §kajgsin2(wt)

The total energy is thus:

1 1
TE(t) = ikwg [cos®(wt) + sin®(wt)] = ikx% = constant > 0

1.2 Quantum Harmonic Oscillator

Now, in quantum mechanics, instead of directly finding the value of the total
energy, we use an operator (the Hamiltonian) that when operating on a given
wave function yields a value for the energy of that state. The potential energy
of the harmonic oscillator is nonetheless the same:
—h? d? 1
S da? §k$2(x) ¢(z) = E¢(x)
We switch this over to natural units by setting y = ¥ = x = by
This b is chosen as the length in x units at which the kinetic energy and
potential energy are the same, and is dictated by the mass and spring constant
of the particular model: 21:‘;2 = %ka.
The units of b should indeed be length, in this case meters, as shown:

1
2mb? = imwzb2

2

2 'm?
= bt = h :>b2:i2um'ts:@
m2w? mw }CZ

The wave equation using a different wave function, which we will call Y,
which is natural units of y thus becomes:

h? d*x(y)
2mb?  dy?

1
- §kb2y2x(y) = Ex(y)



) I }W‘*’¢)§wy2><(y) = Ex(y)

2}’{% dy2 2
-1 d®x 1,
_ =F
= 5 hwdy2+2ﬁwy x(y) = Ex(y)

Therefore E is proportional to Aw, which is also in units of Joules. We can
therefore define the energies in terms of the unitless aw where £ = chw — a =
%. Furthermore, we know that this wave equation has n solutions of different
functions x,, with different energies therefore:

-1 dQXn 1 2
2y T3V Xn = QnXn

This can also be written in the format of an operator as previously shown:

-1d* 1,

[QdyQ +5Y } Xn(¥) = [on] Xn (y)
If a, # iy, then for two different functions:
/ X (Y) X (y)dy = 0

— 00

In order to solve this equation we’ll define some operator a:

4o

Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok skook ok ok skok sk ok sk sk ok skook sk ok sk sk ok sk ok skook skok skok sk sk sk skok ok skok sk ok sk kok skok kok skok skokskokok

Before continuing let’s take a small detour to understand a common property
taught in linear algebra classes, namely:
(AB)' = (B Al

In Dirac notation, it is clear to see where this comes from:

(w] AB |v) = (AB)T|w |v) = (w|(A(B))) = (ATw|Bv) = (BT ATw|u)

Kk 3k >k ok ok sk ok ok ok ok ok sk ok sk sk skook ok ok skok ok sk sk sk sk sk sk ok ok sk skosk skosk sk sk sk skosk sk ok sk sk skok skskoskoskosk sk skokskoskokoskok ko kokskokskk

Now, returning to the operator above, we will try to understand it better by

¥

first examining just the % part of it. We can show that (%) = ;—f based on

the following proof:

[ o |fvw] e [ L@@ - e w

— 00



— st [ | w| v |

—00

[e%e} _d *

—o(x x)dx

2o v

This shows that % acting on the unconjugated wave function is the same
as conjugated ;—ﬁ acting on the conjugated wave function. In other words, this
is an example of a complex conjugate that is Hermitian. If you apply ' on this

operator twice, you end up where you started.
Therefore, based on the above proof we thus know that:

ORI

Let’s apply both af and a to a function and see what happens:
1 [—d 1 [d
T _
dla)f(y)=—= | +y| —= |+
(a'a) f(y) 7 [dy y] 7 [dy y] f(y)
1 1, 1
= {2dy2+2y 2} f()

As you can tell, this is quite similar to the wave equation and the operator
we are looking for. In fact, we can define « as:

oz—aTa—f—1
N 2

Additionally we’ll define:

N=d'a = N =N

With this definition, we can rewrite the wave equation as:

1
Nx = (a— i)X
Now let’s look at aa':
-1d*> 1 1
aa’ = -— + fyz + =

In other words aa’ —afa = I (where I is the Identity Matrix) if a is a matrix.
We haven’t really defined what a is but we can look at how it works if we

define it as a 2x2 matrix:
a1 a2
a =
a1 a2

aat —ata=1T

Therefore:



a1l a2 aikl aTg - afl afg ailr a2\ _ I
az1 a2 ) \a3 az az a3 ) \a21 a2
a12aiy — A31021 11031 + Q1203 — 11012 ~ 31022\ _ g
aglah + a22aT2 - CLTQG,H - a§2a12 a21a§1 — a>{2a12
Since this has to equal the identity matrix, the diagonal values must be
equal to 1. This means that the implication if we make a a 2x2 matrix is that
a12a79 — a3ya01 = 1 and agiad; — ajsaie = 1.
Additionally, based on the fact that aat —ata = 1, the following commutators
simplify as follows:

[N,a'] = Na' — a'N = ataaa’ — a’ala = af(aa’ — a'a) = af
[N,a] = Na — aN = a'aaa — aa’a = (a'a — aa")a = —a
la,a'] = aa’ —afa=1
We're going to use these properties of a to try to solve for the set of solutions

to our wave equation:
Starting once more with:

1
NX:(a—i)X

We apply the operator/matrix a to this function to get:

1
aNx = (a = 5)ax

Using the previous properties discussed we know that Na — aN = —a =
aN = a+ Na. So the wave function becomes:

(a+ Na)x = (a = 5)ax

= Nlax] = (a = 3)[ax]

What this is really showing us is that we have found a new solution to this
wave equation, where the wave function is ax and the eigenvalue that represents
the energy is o — %
Alternatively, if we apply the hermitian conjugate of a (a') to the wave

function we obtain:
a'Nxy=(a—>)alx
(~a+ Nat)y = (a = 3)alx

— Nla'x] = (a+ )la']



Thus, we have found a new solution where the wave function is afy and the
eigenvalue that represents the energy is a + %

This process of applying either a or a' can be repeated meaning there is
some set of solutions such that as you apply a, the next solution is 1 less than
the previous and as you apply a' the next solution is 1 more than the previous.

Now we have a continuum of solutions to the wave equation and the corre-
sponding energies of these solutions. We know that there should be an infinite
number of solutions because we are dealing with energy, however it is still pos-
sible that there are restrictions in either of the two directions.

. Wav
Energ-es Fu?\c?hon
+ .+
%3 4 AR ok

o240 d ¥

+
il Restrictions
x TYX on this?
x-t ¥ X
A-2¥% aoX
-3 ¥aank

For this we can look at what happens when we normalize the function.
Our normalization condition is that [ fooo X" xdr must equal some finite, positive
value because it represents the total probability of the particle existing (which we
typically normalize to be 1). We will use this our advantage to better understand
the limits on the possible solutions and energies by taking the following integral:

oo (oo}
/ (ax)"(ax)dz = / X" a*axdx
— 00 — 00

(o) 1 o0
= / X*Nxdr = (o — 5)/ X xdz >0

1
o _
-2

This has the implication that the last non-zero energy value/wave function,
Xo has the property that axo = 0. If this weren’t the case, o > % would not be
upheld because it would still be possible to find new « values that are negative.

This means that the ”eigenvector” x( and its ”eigenvalue” « are the stopping
point (lowest energy state) for our solution set. The overall solution set would
look like this:



Wave

Energies, Function
a5, q+0l?o‘ Xo
3, aq'x,
*x=2 rofX,

The implication of this restriction on X is that we can solve for it as follows:

1 d
= — _ :0
axo \/§<dy+y)X0

d
= dfxOerxO:O
Y

x) 4 Yy
— axo _ —/ ydy
x(0)  Xo 0

2

— In(xo(y)) = Infc) = —-
= xo(y) = coeE

We find the value for xg at y = 0 as follows:

/ Xedy =1 = 0(2)/ e*y2dy =1

oo
1
E cgﬁ: 1l = co=—
Ta
IR
= e
X0 5
1
X0 o= B}
at o= §
X0 =3
5
aTaTXO a= 3
7
aTaTaTXO o= 3

Now we will find the relationship between one solution (energy state) of the
wave equation and the next state that is higher in energy.

We start with the premise that a given solution y,, there will be some value
eigenvalue n that corresponds to the operator H (where n = o — 3

2)



NXn =nxn

Xn can be rewritten as a'...aTyo (with n number of a):

N(a'...a"xo) = n(a'...a’xo)

We also know that when we apply a' to one solution/eigenvector, the result
is the eigenvector that is one step higher in energy multiplied by some constant:

a'xn = Cxni1

Using these facts we can perform the normalization integral for x,4+1 (we
presume that X, is already normalized)

c? / Cosady = / (a"xn) (@ )y = / Xolaatxn)

— 00 o0

- / xn((alat1)yn) = / xn[a*axn1dy+/ Cdy = (n+1) / Cdy = nt1

0o 0o — 00 o

— [ Wady=+1) [ dy — ¢ =nt1

—0o0

= C=vn+1

So we arrive at (repeating the same process for a operator as well:

a'xn =V + Ixnp
aXn = VNXn-1
Therefore, the normalized x,4+1 becomes:
__ 1
Xn+1 = \/ma Xn

Now, looking once more at our solution for the lowest energy state xo:

We know the following is true:

d, 1 - 1 =2
ay m TR

If we think of this as a polynomial ﬁ multiplying e%ﬂ, then what happens
upon taking the derivative is we end up with a new polynomial of +1 higher
order multiplying e%ﬁ.

We can generalize this for any polynomial as follows:



= [dley(y) —yHn(y)] e

Now we have our previous definition of y, and our new definition for nor-
malized Xp41- :

n = ez
X V2T

() e [ ]
Xn+1 = /7TL+]. \/E dy Yl Xn = 2(n+1) dy YXn

1 d —y2 —y?
Xn+1 = W [_dy(H”(y)e ) +yHp(y)e 2 ]

. H
From here we can substitute x,+; = —2=**

Hnin(y) = : [—Z,Wn(y)wf )+ yHL )7+ yHMWéﬂ

NN TRV

What we’re left with is a relationship from one ”Hermite polynomial” to the
next:

Hyiq (y) =

1 [_ dH,(y)
2(n+1) dy

Let’s examine what these polynomials are when Hy = 1 (even function):
n=0:

+ 2yHn(y)}

—dH,
V2H, = Ty0+2yH0:O+2y

— le\/ﬁy

(H; is odd function)
n=1:

—dH
2, = dH,

+2yH,
—d
= 2H, = d—y(\/ﬁy) + 2v2yy = 2v2y* — V2

1
— H=Va' -



(Hz is even function)
n=2:

—dH
V6H; = &y = yHo

V6H; = V2R — —=)+ V2t — L

1
V2 V2
= H3= %y3— (2\/5"‘

—d
E7
Y

1 ) 1
v2) V6!
(Hj is an odd function)
As you can tell, these Hermite polynomials alternate between being odd and
even functions and increase order each time.

Another interesting thing to note is that the wave functions are orthonormal,
meaning that given our chosen inner product:

/ N Xn(Y)Xm (Y)dy = Onm

If we rewrite this in terms of the Hermite polynomials:
[
% eV Hn(y)Him(y)dy = 6nm

Therefore we can state that the Hermite polynomials are orthonormal poly-
nomials under a Gaussian weight.

1.3 2-D Classical Harmonic Oscillator

We can expand the harmonic oscillator to 2 dimensions by defining a potential
energy that depends on the radius from a point:
12 =2 4 y?

1 1 1 1
V(z,y) = §k$2 + §ky2 = 5]{:(1‘2 +9%) = 5kr2

Therefore the total energy (refer to central force chapter) becomes:

1 (dr\®> L2 1
E=-m(Z) + = 4 k2
Qm(dt) T o T2

The first two terms are our radial kinetic energy and rotational kinetic energy
respectively and L is angular momentum.

dr 2 L? 1
= == - B
dt \/m (E 2mir? 2kr )

10




By defining k = mw? where m is mass and w is angular frequency we arrive
at:

rdr 2F L2 4

rar_ r2 _
w dt mw? m2w?

Now we define 7> = u and k = mw? where m is mass and w is angular

frequency such that % = 27“%. Through some manipulation and by defining

r? = u we arrive at:

dr 1 E
27“E = \/m2w4 (E?2 — L?w?) — (u— mw2)2

From here, we just notice that everything under the square root must be
greater than or equal to zero, which therefore implies that:

1 2 2 2
— FE > Lw
Well, what happens if £ = Lw? If E = Lw then that necessitates that
u — mIiZ = 0, meaning that u = "5)2 and ‘é—’; = 0 but this is only in this

particular case, the lowest energy poséible.
To simplify this problem it is useful to perform a change of variables for
energy and time:

This « defined for energy has a range of a > 1 because of the restriction we
just demonstrated above where F > Lw.

Furthermore, since we already established that u > %, we will rewrite u
as follows where 8 > 1 and where 3 is a function of time:

E :5aLw :/J’aL

mw? mw

u=p

So, having defined all this we rewrite our energy equation once more:

mw?

1 du 1 E
i B — 202 — (4 — ——=)2
T \/ ( w?) — (u )

m2wi mw

alL 1dB L2w? a2L?
= [a271] - 22 [571]2

mw2dr  V m2wt
1d 1
— i

11




1d3 1
g =V (A— )= (B-1)

This is now solvable by converting this 8(7) function into a function r(t):

dg 1
o fu- Ly -y

We can set u = 8 — 1, meaning du = dj:

. 3/¢ud§ﬁ:/”

1. _1< u )
= ssin”' | —— ) =71
2 1+ 5

— 1 f% = sin(27)
-1
= 164_ T = sin(27)

B(1) = sin(27)(1 + %) +1

Now, we also set our angular momentum to be in the z direction, mean-
ing that based on the definition of angular momentum as a cross product (in
cylindrical coordinates) we can see that:

do do L dé do
L=mr=t = g = P — apL=
mrtgp T Mgy = mel gy = ebbg
. 6 _ m2w7”2% _ mQ(UT2
d
aLd—‘f al
do 1 1

dt — af(r)  asin(2r)(1+ L)+1

And we can use this to solve for the function ¢(t).

1.4 2-D Quantum Harmonic Oscillator

Once more defining our 2-D harmonic oscillator:

1 1 1 1
Vi(z,y) = ikxz + 5Icy2 = 5k(x2 +y?) = ikr2

We will define k = mw? just as before. From our potential energy we can
also define a field of the force:

12



F=-VV = —kaz — kyj = —kr?

Now, we will write the wave equation using this established set-up:

—h? [92¢(x, 0%¢(x, 1
2m 82;582 2 df;; 24 gmw?(2® +y)e(z,y) = Bo(w,y)

To convert to natural units of the problem we’ll perform a change of variable
where:

We will also have to convert the wave function to be in these new units:

o(bu, bv) — x(u,v)

With all these changes our wave equation becomes:

—h? [0%x(u,v ?x(u,v 1
S [ 8512 ) + diﬂ )} + gmw2b2(u2 +v3)x(u,v) = Ex(u,v)

To define our natural units we choose b> = -2 Additionally, energy is

mw ’
proportional to fw, thus we can change to natural energy units where o = £ .

hw
Once more rewriting the wave equation:

2

Ou2 d02 + = (u® + v?)x(u,v) = ah@x(u,v)

b [82x(u,v) L X, v)] h;ﬁ

-1 82)((“’”) 32x(u, ’U) 1 2 2 —
2{ BN + 102 ]+2(u +v7)x = ax

-10%x 1, -10%x 1,
[gw*zu X[ 290 TV X =X
We will assume that this wave function is separable in this way even though

this is not always true, but we will operate under this assumption and then
prove it later:

x(u,v) = x1(u)x2(v)

Based on this assumption we thus know that:
Ix _ (2
Ju au ) X2
Ix _ (9x2
v v )X

13



32X 52)(1
2\ ou? X2
32)( 32X2
o2 Ov? X1

What this means is that we can rewrite the wave equation in the following
way;

1 —1 d2X 1 -1 d2X 1
X1 H2 7t 2u2X1} et [2 s 2"’2’(2} Xl] -

Now we can separate this into two terms where one involves only u and x
and one involves only v and xo:

1 [-1d> 1, 1 [-1d*a. 1,

M[2M2+2“M ol @ e e

Therefore, this problem in essence simplifies into two separate problems:
1 -1 (92)(1 2
m[zmz+um -

1 [-18°x 2
= — | — =
X2 { 2 dv? T “

We can solve these two above just as we solved for the 1-D harmonic Oscil-
lator

a= a1+ Qo

:i/’M/ v 3 (u)Ew) = 1

[ [ ]

(If each of the integrals in the bracket is 1, the total is also 1)

Using the same logic and math as in the 1-D Harmonic Oscillator, the solu-
tions would thus look like this:

1

061:7114-5, ny=0,1,2,...
1

a2:n2+§, ne =0,1,2,...

a=o1tay=1+n1 +no

The energy levels for the 2-D Harmonic Oscillator would thus look like this:

niy no «

14



W = N O N R O = O
o N~ N O = R O O
R R W W W N N

o
w
N

AR ARk SRR Rk KRk K
Side Note: Using the same idea, the energy levels for 3-D Harmonic Oscillator

would be:

3
a:a1+a2+a3=§+n1+n2+n3

ny na ns @
3
0 0 0 3
5
1 0 0 5
5
0 1 0 3
5
0 0 1 g
1 1 0 3
7
0 1 1 3
7
1 0 1 3
7
2 0 0 g
0 2 0 g
0 0 2 3

This demonstrates how degeneracy increases the more dimensions you go
into. Heat will also affect the particle or object less because there are more
energy states than can be occupied at lower energies before reaching higher
ones. In other words, ”If you want to be cool go to higher dimensions!”

15
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Now let’s look at the solutions for these separated wave functions y; and x2
when we change the energy level in a given dimension. As we might recall from
the 1-D harmonic oscillator solution, the two lowest Hermite polynomials are
Hy =1 and H,(y) = 2y

m=0
1 _a2
x1(u) = me 2
no =0
1 _p2
x2(v) = me 2
ny =1
1 2
i () = ——=(V3u)e
27
ng =1
1 _ 2

x2(v) = Tw( 2v)e 2

We could continue this pattern using the same relationship derived for the
1-D harmonic oscillator:

1 _dH,(y)
2(n+1) dy

Now, combining these separate n; and no values leads to many degenerate
states (wave functions for each value of n. Looking back at our table of states
and including the wave function now:

Hn+1(y) = =+ QyHn(y)

ny ) « X
2
0 0 1 i
.2
1 0o 2 %\@rsinﬁeT
2
0 1 2 %\/?rcosﬁeT
1 1 3 2“7:6%2
2 0 3 ﬁ?ﬂsinzﬂe”
0 2 3

2
ﬁr%os%e‘r

These graphs can then be plotted, demonstrating the radial symmetry of
some solutions and not others.

16



10,0> 01> |1,0>

Let’s now try to understand the 2-D harmonic oscillator in the language
of eigenvectors and eigenvalues. We are already familiar with the operator H
that extracts the energy of the wave function/eigenvector. But how about an
operator that allows us to find eigenvectors of higher energy states? And how
about finding higher energy states in both the u direction and the v direction?

Well, since we already showed how the 2D harmonic oscillator in essence
simplifies into two 1D problems, it may not be surprising that the operators
work in the same way, and are as follows:

a —i £+u
Y2 0w
a —L 2_’_”
Y V2 o
v 2 | Ou
vV2 [ ov

By looking at these operators we know that similar to the 1D operators:

[au, au =1

[av,a:ﬂ] =1

17



Any other commutators between u operators and v operators are zero, so in
this way also the problem splits into two separate problems:

Just like in the 1-D harmonic oscillaotr, we will also define N operators for
each dimension:

And again like the 1-D harmonic oscillator, we can prove the following in
the same exact way:

[N'um au] = —Qy

[Nu, au = aL

[Nvaav] = —Qy
[Nmau = al

And once more, when we try to find the commutators for crossed operators
between u and v, the result is zero. For example:

[Ny,a,] =0
[Nf,a,] =0

The total wave equation is thus:

(Nu + Ny)x = (@ —1)x

Now, (just like in the 1-D H.O.!!) we will use our operators a,, a,,a}, al to
uncover all the different energy states. Applying af:

(Nu + Ny)(alx) = [al Ny + al] x = al(a =1+ 1)x = a(alx)
(Nu + Nv)(aLX) = a(alx)

Therefore the energy of this new eigenvector a x is o compared to the energy
of x which was o — 1. The operator a], thus changes from one eigenvector to a

18



higher energy one. The same is true for a!, the only difference being that the
energy of the state is increased in a different dimension.
To discover a lower energy state, we can apply either a, or a,. For example:

(N + No)(avx) = (@ =1 = 1)(aux)

So with these operators we can uncover all the different energy eigenvectors.
In order to not have eigenvectors with negative eigenvalues (just like in 1D
H.O.!") we know that there must be some yog where:
(G’Tua+a:£av)x00(u’v) =0

CLUX()O(U7'U) =0 and a’UXOO(u7 U) =0

0
<8u+u)X00=0

1
+ul =0 = Xoog Inxoo + =u?| =0
ou 2

Let’s find this xqo:

This implies that Inygg + %ug is a function of v which we will call f(v),
meaning Inxoo = f(v) — 3u?. We will substitute this below:

0 0 1
( + U) x00 =0 = Xoo- [ZNXOO + UQ] =0

ov ov 2
0 1, 1,]
= Xoog~ [f(v)—2u +2U]—0

0 1,

Finally we end up with a solution for the lowest energy wave function:

2

1, 1
Inxoo + =u” 4+ =v*° = constant

2 2

1 1 2 2
— ez
— — e 2
X00 N
From this lowest energy state what we end up with is branches in each of
the two dimensions for moving to a higher energy state using these operators:
So, let’s try to find some of these wave functions. Starting with y1o:
a=1:

= —ue

—(u2402) 2 —w?4e?)
2 2
s

1
n1o X10 = @l Xxo0 = Ton {21!6

19



In this equation nig is the normalization constant for x19 which we can solve

for as follows:
2 e o0 2 2
niy = ;/ du/ dvu?e™ (W +v7)

We set u = rsinf and v = rcosf and then solve:

o) 27 o) 2
n%o = z/ rdr/ dOr?sin®fe " = 1 [/ 7”36_T2d7"] [/ (251'”29)‘19}
™ Jo 0 m 0 0

11
71'27T

- n’{onlo =1

Therefore, if we repeat the process for xg1 we would find that the constant
is the same, 1. This also makes sense in that our decision to decide u = rsinf
and v = rcosf is arbitrary and we could have easily done vice versa. The final

result for these two is thus:
\/? —(u24v?)
X10 =/ —ue 2
T

2 —?4e?)
Xo01 = \/ —ve 2
Y

Experimentalist’s Perspective

We have been so far talking about discrete quantum states, but an experi-
mentalist’s quantum states may be linear combinations of what we have.

So, an experimentalist will see a linear combination and measure the energy
such as:

H(cixi0 + c2x01) = ¢c1(Hx0,0) + c2(Hx1,0)

This means that c1x0,0 +2c2x1,0 is not proportional to ¢1x0,0 + c2x1,0 which
means that the sum of two eigenvectors does not give you another eigenvector!

In order to solve for what the experimentalist really measured we first can
normalize like this:

/ [(c1x1,0 + c2x0,1)(c1X1,0 + c2X0,1)] dudv = 1

— 00
2, 2 _ ./ 2
= ci+tcs=1= c1=4/1—-c]

We will use this relationship between coefficients to solve later. First though
let’s look back at a proof from earlier:

20



Hyi=aixi = X1H=aix}

Hxz = asx2 = XoH = aax}
XiHxa = aaxixe = caxixe = (01— a2)(x{x2) =0
XbHx1 = aaxbxa = enxbxas = (01 — a2)(xdx1) = 0
If a1 # o, then in order for this to be 0, XIXQ =0
Now let’s assume the experimentalist knows the coefficients:

2
Z[Eu? + 2¢icouv + 0202]6_(“2'“’2)
7r

2 . . 2
= Z[c?5in?0 + 2cicasinfeosh + cicos?Orie "
™

211
=2 |-+ ate 0520 + c1co81n20
T |2 2

From here the experimentalists can use ”partial wave decomposition” to find
the coefficients of each of the terms. Different combinations of the coefficients
will lead to different types of waves.

Now we will Solve this problem once more but in polar coordinates!

This is the change of variables we will make:

u = cosd

v = rsind

du = drcosf — rsinfdo
dv = drsinf + rcosfdf

= dr = ducosf + dvsinf

e —dusind  dvcos

r

Now we want to change the entire wave equation to be in terms of 6 and r
and their partial derivatives. So, we’ll start by taking the partial derivatives of

each of these:
Xwv)| _ o] 90 ,
[X(r,e)} (69 U x(r,0)

= [_sm@@ + 00598] x(r,0)

9
ou

L0
or

v

o
ou
6

v

lol7} or
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9 veal = (228 L2 971N i)
ov |, X0\ au|, T ar|,0v ], ) X"
_ COSQQ_F ,92
rooo T gr | X0

Then we can take the second partial derivatives and sum the two together,
notice that many of the terms cancel out, and then end up with the wave
function:

auz " avE ) X0 =g T gy T o

This means that the Hamiltonian operator thus becomes:

(82 a2> Lox |, 10x , 9%

% 1 (02 10 1 02 14
2 (8r2 + r(“)r+r2892) + 2"

Looking at this new Hamiltonian operator, we can presume that the first
two terms are probably linear kinetic terms (they only derive with respect to r
thus depend on r), the third term is probably angular kinetic energy, and the
last is our potential energy.

We define the operator L, = % and thus the Hamiltonian can be rearranged:

1/ 9% 10 1
H=—-(Z 429 4 12 42
2<8r2+r8r+r2 z T>

Now, let’s check that this new operator we defined commutes with the Hamil-

tonian:
1[0 1 d? 5| [dx
(HL:)x = =3 [8+d€_} []
18{8%( 1oy | 19 2]

(L= =556 o v or " 12 002

These two are the same so we know that:

(HL,—L,H)x =0=[H,L,]

If x is an eigenvector with eigenvalue «, then L,y is also an eigenvector with
an eigenvalue . This means L, can help with finding degenerate states. So,
states will need to be defined in terms of the H and L, exam.

We want to find these degenerate states through:

0
LX(r,0) = 55x(1,0)

We know that 6 and 6 + 27 must label the same point so we need a function
such that f(0) = f(0 + 27). The functions cos(nf) and sin(nf) do not work
because the are not valid eigenvectors. So instead we will use:

22



e? = cos(nh) + isin(0)

e~ = cos(nf) — isin(f)

Instead of calling this integer n we will instead call it m, using the operator:

9
00
Therefore the result of the operator, which we were previously just calling

[, is ¥m. Furthermore we might have some function that does not depend on 6
such that:

(eime) — imeim@

x(r,0) = R(r)e'™?

Now we have fixed energy and angular momentum, just like in classical
mechanics but instead it is now like:

Hx = xx
L.x =1imy
**Note: it can be useful to instead define L, = z‘a% so that it is hermitian

and we get values of m instead of im but we’re not doing that.
Therefore H becomes:

1/d> 1d m?
H=-(—+-2—-— 2
2<dr2+rdr 72 T)

The wave function thus becomes HR = aR where R is some function that
depends on r.
We can therefore rewrite the wave equation:
Z? 1d m? 9
— - - — = 2a| R(r) =0
[dr2 rdr 2 + 20| R(r)

This R function can be written as:

N

r

R(r) = P(r)e” =

Now let’s rewrite the wave equation in these terms and it becomes:

2P 1 dP m?
— - —2r ) — 20—2— — | P=0
dr2+(r T)dr+(a r2>

Also with this new definition of R, the wave function becomes:

x(r,0) = R(r)P(r)e# etm?

We can normalize this wave function as follows:
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[e%S) 27
/ rdr/ dox*(r,0)x(r,0) =1
0 0

In order to perform this normalization, we require P(r) to be a finite poly-
nomial.

So let’s assume P(r) = r# for r — 0, then 42 = grf=1

Plugging this into the wave function our end result will be:

B(B—1)+B—m?rP2 +[2a -2 28" =0

Since both of these terms are positive real values, then examining the first
term:

BB-1)+B-m*=0 = B*=m’
= [ =|m|

So, B, which is the power of P(r), is the same as the absolute value of m,
where im is our eigenvalue of the operator L.

However, we only approximated that P(r) = 7. In reality, an accurate way
to represent it may be that P(r) = rI™U(r) where U is another polynomial.

Once more we can substitute this into our wave equation in terms of P and
manipulate to obtain:

+r!" ——

0 = (m?=[m|+m| =m?)r!™ 20 (1) + (2a=2=2fm] )™ U (1) 4 [(2fm] 4 1)l 2

RU . 2m|+1 dU
T (= =) 42— 1= [m)U =0

Now, let’s consider this U(r) as a sum:

(o)
E U,r"™
n=1

With this in my mind, we can manipulate and rewrite our wave equation
one more to end up with:

Ur+ Y [Unsa[(n+2)(nt1)+(2/m|+1)(n+2)]+ U, (2(a—1~|m|)—2n)]r"

n=0

_ 2|m|[+1
2

0

Now we know that in order for this expression to equal 0 at any r that all
the coefficients of every term must be 0:

Uy =0
Upi2l(n+2)(n+1) + 2/m|+ 1)(n+2)] + U, (2( — 1 — |m]) — 2n) =0
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2[1 4 |m|+n—q]
(n+2)2m|+n+2) "

For some N, we thus know that Uy = 0, meaning that:

— Un+2 ==

1+m|+N—-a=0

= a=N+1+|m|

This is our restriction on oo and shows that only some values of a are allowed.

Final note, when it comes to finding solely linear or rotational kinetic energy
or potential energy, this can be done through integrating the wave function as
follows and since it separates into multiple integrals, each part of the total energy
can be solved for separately, like so:

1,02 10 11 02 1
x( (Y - Y - - Y * | =2
/X( 2(8r2+r8r)X+/X[ 27“287’2]X+/X [QT]X
In this integral the first term is linear kinetic energy, second term is rotational
kinetic energy, and third term is potential energy.
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1 Understanding and Defining an Angular Mo-
mentum Operator in Cartesian Coordinates

1.1 Centered Potentials

In quantum mechanics there are various models of potentials that are used such
as the following;:

Vir)= %krz (spring) (1)
V(r)= %, a > 0 (electric) (2)
V(r) = Kr (confining) (3)
V(r)Te " (Higes) (4)

V(r) = ”Evolving” nuclear potential

such as Reid potential or Cornell potential

Based on one of these potentials that are proportional to radius, it is useful
to define an angular momentum operator in each of our directions in Cartesian
coordinates.:

=

L=7xyp (6)
Ly = yp. — zpy = —ih :yaaz - Zaay: (7)
L. = xpy — yp, = —ih :x;y - y% (9)

Likewise, we recall that for wave functions of the form we use, the momentum
operators are:

0

Pz = _lh% (10)
.0

Dy = —Zha—y (11)
L0

Dz = 71h% (12)



1.2 Commuting Angular Momentum Projection Opera-
tors

Let’s understand better by seeing whether these angular momentum operators
commute with each other. Let’s first try [Ly, L,]:

0 0 0 0 0 0 dyp dip
_ 20,9 01|, 9 o 2(, 0 0| av a4y
(Loly)t = —h [yaz Z@z} { or  'o- }1/1 —h {yaz Z@y} {Z x Jvalz]
0z O 82% 62% 0?
_ 32|, 0209 2 _
=-h [yaz 81+yz 2 y@:p Y182 e 0z
o
_ 2,0
N y@x
(13)
0 0 0 0 0 o oY
_ 2,9 o9 Oh . 32| O dyp oy
(LyLe)yp = =R [Zax x@z] [y&z Z&‘y] f [Zax T2 H a2 ay]
2 2 2 2
S 2y ya//i 2 Y 020y
910 D222 0 0z Oy 20y
——hgxa—w
Y
(14)
The commutator is thus:
Y IR DG S T
(LoLy — LyLy )t = — 12 [ 5 833]_(171)( ih) [xay 33:} -
— i1
[an Ly] = Z.hLz (16)

So these operators do not commute!
Now let’s try [Ly, L.]:

et i) 5] 3] o] -2

0 0 0 .
= —h2{z—y ~Yg = (th)(—ih) [zaz - 28:13] = ihL,

These don’t commute either!
The results of all three combinations is:

[La, Ly = ihL, (18)



[Ly,L.| =ihL, (19)
[L., L] =1ihL, (20)
This can be summarized as:

where:

0, ifi=jorj=kori==%k
Eijk =11, if odd permutation (such as i = 1,7 =2,k = 3) (22)

—1, if even permutation
ok R kR R Rk Rk Rk R Rk
Side note: This &, is used in the definition of the cross product
AxB=C (23)
EijkAjBr = C; (24)

Other examples of its use:

1) Volume differential

(dyg) x (dz2) = (dydz)@ (25)
(dxz) - [(dyg) x (dz2)] = dxdydz (26)
é[&jkdiid;}jdik] (27)

2) Determinant

EivigAriy Aoi, = detAgyo (28)
Eivigig Ariy Aoiy Az, = detAsys (29)
Eivigig...inAt1i1 A2iy Asig . Ani,, = detAyxn (30)

>k 3k ok sk ok ok ok ok ok >k ok okk ok sk ok sk sk sk ok skosk sk ok ok sk sk skook sk sk skok sk sk ok skook skok sksk sk ok ok sk ok skok sk sk sk sk sk k sk sk ok skosk sksk skokoskokoskoskoskoskskokskkok

>3k oKk oK 3k ok sk ok >k ok >kk Sk sk ok skosk sk ok sk sk sk ko sk skook skook skosk skosk sk sk sk skosk skok skok skok sk oskosk skok skosk skok skokoskoskosk skosk skok skokoskokoskoskskoskskkoskkosk



Note 2: Here are some useful commutator proofs for upcoming math we will
do in this chapter:

[A, BC] = ABC — BCA = ABC — BAC — BCA + BAC
= [A, B|C + BIA, C|

[A+ B,C] = [A,C] +[B,C] (32)

[AB,C] = ABC — CAB — ACB + ACB = A[B,C] +[A,C]B  (33)

3k 3k sk ok ok sk Sk ok Sk sk ok Sk sk sk kR KKK K K R KR R 3R 3R 3R SR sk sk sk sk sk sk sk ok sk sk sk Sk sk sk sk sk ko SkOR SK R R R R R R R R R SR sk ok sk sk skoskoskoskosk sk skoskoskokok

1.3 Commuting Total Angular Momentum Operator

If Ly, Ly, L, yield the projections of the angular momentum in z, y, z directions,
then the total angular momentum operator L is understood through L? = L2 +
L+ L2
So, does L, commute with L2?
Ly, L2)=L,L2 —L2L,=L3—-L13=0 (34)
Yes.
Does L, commute with Li? To figure this out we use the property defined
in (31) and the commutator (18).
(Lo, L) = [Lo, Ly|Ly + Ly[Ly, L) = ih(L.Ly + L,L.) (35)
No, and we will use this information to understand how the total angular
momentum commutes
Similarly, using (20):
[Ly, L2 = —ih(Ly,L, + L,L,) (36)

With this information we can see if L, commutes with the total angular
momentum squared L? where, as we said L? = L2 4 L2 4+ L? so we just sum the
separate commutators (32) to find:

(Lo, L2+ L2+ L2 =0 (37)

We can do the same process for L, to find that it also commutes with the
total angular momentum:

[Ly, L% = [Ly, Lo Lo+ Ly [Ly, L)+ [Ly, L] L2+ L.[Ly, L.] = ih(Lys — Lp) = 0

(38)
In conclusion:
[La, L?] =0 (39)
[Lyv LQ] =0 (40)
[L.,L*] =0 (41)



1.4 Simultaneously diagonalizing (finding a solution set)
total angular momentum operator and its projection
in one direction.

We want to simultaneously diagonalize one angular momentum projection op-

erator and the total angular momentum operator but in order to do that we’ll

first show that it is even possible.
We define the effect of these two operators on a ket/wave function and the
eigenvalues they extract as follows:

L2 |l,m) = 1*|l,m) (42)
L. |l.m) =m|l,m) (43)

The commutator of the total angular momentum squared and one of the
projections is as follows:

Moa

[LaLa, Le) Z{L [La, Le] 4 [La, L] Lo}

3
ZLg,L
a
3 3
=3 {L mZ&wab +th£achb} =ih Y {EacbLalp + EacvLvLa}

a=1 b=1 b=1 a,b=1

Il
W =

3 3 3
=ih Y EactLals+ Y EactLoLa =ih Y (Each + Evca)Laly

a,b=1 a,b=1 a,b=1
3
= ih Z (0)LoLy =0
a,b=1

(44)
Since we just showed that L? and L. commute with each other, we can
simultaneously diagonalize them. In our case, we will set L. = L, but we could
have instead chosen L, or L.
Now, we want simultaneously diagonalize L? and L., let’s first denote the
eigenvalues of each but this time, remembering that these operators extract an
h every time they are applied we will denote:

L% |l,m) = h%1?|l,m) (45)
L,|l,m) = hm|l,m) (46)

Additionally we remember that these operators in each direction (where
L1, Ly, L3 are in our case equivalent to Ly, Ly, L,) are hermitian:

Ll =1, (47)
Ll =1L, (48)
Ly =Ly (49)



Now, let’s use this to try to better understand these components of the
angular momentum. The expectation value of L7 is:

(I, m|L3|l,m) = (I, m|Ly(Ly|l,m)) = (Ly |1, m))t(Ly [1,m)) >0 (50)

Likewise:
{t,m|L3|l,m) >0 (51)
{I,m|L3[t,m) >0 (52)
— m?>0 (53)

So the squared eigenvalues of L? L3, and L3 will be positive, meaning they
must be real. In the case of L3, m must be real.
If we add two together we get:

(I, m|L3 + L3|l,m) = (I, m|L* — L|l,m) >0 (54)
B212 (1, m|l,m) — h2m? (I, m|l,m) = h%1? — B*m? = B?(1> —m?)  (55)
— ?>m? (56)

This means that the total angular momentum is more than or equal to its
projection in a particular direction.

Now we will define some new operators that will help in diagonalizing our
L? and Ly operators:

L+ = L1 + 'LLQ (57)
L =1,—ily (58)

‘We can see that:
(L)t =Ly +iLly) = LT+ (o) = LT —iLl = Ly —iLy, =L (59)

This will be helpful later.
Now let’s look into how these new operators commute, first with L3:

[Ls, Li] = [L3, L1] +i[L3, Ls] = ihLy + i(—ihLy) = hLy +ihLs
= W(Ly +iLy) = hLy
[Ls, L_] = [Ls, L1] — i[Ls, Ls] = ihLy — i(—ihLy) = —hLy + ihL,
= —h(Ly —iLy) = —hL_

And let’s look into how they commute with each other:

[Ly,L_] =[Ly+iLo, Ly +iLo)

= [LaAAT — i[Ly, Lo] + i[La, L — 1] + [Lackg] = —i(ihLs) + i(ihLs)  (62)
— 2hL;



Finally let’s look into how they commute with L2:

(L2, L4] = [L2, Ly] +4[L%, Lo] = 0 (63)
L%,L]=0 (64)

Let’s see what happens when we try to apply L? to the vector created after
applying L., remembering that we now know that these two operators commute
so we can change their order:

LA(Ly llm)) = Ly L2|lm) = R22(Ly |1, m)) (65)

This shows that (L4 |l,m)) is also an eigenvector of L? with an eigenvalue
of h2I2.
Similarly we can apply Ls after applying L :
Ls(Ly |l,m)) = (LsLy) |l,m) = (hLy + Ly Ls)|l,m) (66)
= hLy |l,m) + hmL, |l,m) = h(m + 1)(Ly |I,m))

This shows that Ly |l,m) is also an eigenvector of L3 with eigenvalue of
h(m + 1).
If we do these same two operations with L_ we find the following:
L*(L— |l,m)) = R*I*(L_ |l,m)) (67)
LsL_|l,m) =—hL_|l,m)+ hmL_ |l,m) = h(m — 1)(L_|l,m)) (68)

We can make a table for these results:

L,
Iy, w,]l\,:w hz 8= Jp,(@ o)
12, me2> 'hzfql h (m +2)
Pty S (CAY)

gy W R
[y WA (m-1)
Rl 0747 i)



The restriction we found (m? <[> = |m| < |I|) means that at some point
this set of eigenvectors produced by L; and L_ must be finite, meaning that:

L+ ‘lvmmax> =0 (69)
L_|l,mpmin) =0 (70)
So, we can write (no one is stopping us):
L,LJr \meam) =0= (Ll - ZLQ)(Ll + ZLQ) |l,mmaz>
=[L? + L3+ i(L1Ly — LoL1)] |l, Myaz) = [L3 + L3 4 i(ihL3)] |l, Mumaz) 1)
= [L?* — L2 — hL3] |l,Mmas)
=[R2 - hszmx — 2 Mmaz] |1, Mamaz) = 0
— P =m2,,, + Mmas (72)

We would have guessed that [ = m?2 ,, (because at max we say all angular

momentum is in one direction and think they behave like typical vectors we are
used to in classical mechanics) but this is not the case.
Similarly we can use the lower bound to solve:

LyL_|l,mpin) =0= (L} + L3 +i(LaLy — L1L2)) |1, Minin)

73

= 12 = m%nin — Mmin (74)

Remembering that [ is fixed (we are finding the set of solutions for a given
total angular momentum):

2 _ 2
Mmaz + Mmaz = Mppin = Mmin (75)

Two solutions to this equations are:

2) Mmaxz = —Mmin (77)

However, only the second solution is physically valid because Mz > Mnin -

We now understand that if we have an eigenvector of a certain value of m,
L., in essence, brings us to a new eigenvector of L? and Lz with m; =m +1
and L_ brings us to an eigenvector of L? and Lz with m_; =m — 1.

This all leads us to conclude:

Momaz — Mmin = 2Mmaez = SOMe non-negative integer (78)
Let’s recall that Ly = L, = —ih[y2 — 2], Ly = L, = —ihz2 — x 2],
and Ly =L, = fih[x% — y%], yet we did not solve a differential equation to

find this solution set!



From now on, we will denote my,q, = j and we know that 25 must be some
integer so:

3.5

525, (79)

2 Diving deeper into the physical meaning of
these operators

We know now that L? operates on wave function with a resulting eigenvalue of
[2 which we can rewrite as the following based on our new definition of j:

L?|j,m) = Rj(j + 1) |4, m) (80)

This is a hermitian operator, which implies the following based on the proof
at the top of page 21 of QN 4:

= (J1.m1lj2, m2) = 0if j1 # jo (81)
Similarly for Ls:
= (j1,m1j2,m2) =0 if my # mo (83)

Combining these two:

(Jima|jzme) = 0 if j1 # jo or my # my (84)

We will also set the normalization such that (jm|jm) = 1.

2.1 Understanding the difference between classical and
quantum angular momentum, the nuance of the oper-
ator

Classical Mechanics angular momentum looks like the following:

L= Lyi+ Lyj+ Lk (85)
dL

= 0 so we can pick L = Lk (86)

Given this intuition frorﬂn classical mechanics, we would expect that in quan-
tum/wave mechanics L x L = 0 but let’s try it:
L x L = (Lyi+ Lyj + Lsk) x (Lyi + Loj + Lsk)
= L1Lok — L1L3j + LoLsi — LoLvk + L3L1j — L3Loi
= (LyL3 — LgLo)i + (LsLy — L1L3)j + (Ly Lo — Ly Ly )k
= ihL1i + ihLsj + ihLsk = ihL

10



Does not match expectations! So let’s dive more closely into what this
angular momentum " L” really is, how it compares to [ and what that really
means for an experimentalist.

2.2 Experimentalist’s Perspective
Let’s say an experimentalist measures angular momentum of some particle

whose wave function we will call s. They would measure [ as follows:

I'= Measurement of operator = (s|L|s)

A A =) (58)
— (s Lals))i + ((s|Lals))] + ({slLals))R
l

—

Taking this measured value of angular momentum, [, and crossing it with
itself:
I'x1=0 (89)
Therefore, the experimentalist is not confused at all! _
Now, let’s think about the dot product of the angular momentum measurement(!)
with itself (a bit different from in classical mechanics where we would be think-
ing about L - L = L?):
[-1'= ((s|L1]9))% + ((s|L2s))%] + ((s|La]s))*k (90)
Let’s try to solve this. First, understanding what the operator L? is and
what it does:
(s|(L1(Lals))) = (s[Lils) (91)
The question is: Is this equal to = ({s|L1]s))?? Let’s try to find out. First
applying the operator one time:
(gmlLs|jm) = (jm|(hm|jm)) = hm (jm|jm) (92)

Then, if we apply the operator twice, we simply extract Am from the eigen-
vector twice, and are left with only 22m?2. This is the same as having found this
expectation value twice and multiplied them together, so it is indeed the same
as ((jm|Ls|jm))*:

(gm|L5|jm) = h*m? = ((jm|Ls|jm))* (93)
The expectation value of L? is as follows (found previously):

(jm|L?[jm) = 1*j(j + 1) (94)

Now, we can write the addition of the square of the other two angular mo-
mentum projections through these other two known operators:

(gm|LY + L3|jm) = (jm|L? — L3|jm) = K*[j(j + 1) — m?] (95)

11



To find more eigenvectors that satisfy this system it will help to remember
these operators:

Ly =1Ly +iLy (96)

Where Ly |j,m) o< |§,m + 1)
And:

L =1L —ilo (97)

Where Ly |j,m) < |j,m — 1)
We can thus write the angular momentum projection L; in terms of these
operators:

(GmlLaljm) = & (GmlLy [jm) + GmlL_jm) = S0+0) =0 (98)

Since L; and Ly can be rewritten in terms of Ly and L_, there value must
be zero:

l1 =0 (99)
Iy =0 (100)
Is = him (101)

So, What does (2 (or [ -1 equal? Is it (jm|L2|jm) or (jm|L|jm) - (jm|L|jm)?
The answer that it is not (s|L?|s) because this is the "measured value of x2”

which is not the same as ” (measured value of x)*”
Going back to what we did before:
1 s
Measured value of x = T /700 ze 2 dx =0 (102)
— (Measured value of 2)? = 0 (103)

So, this is why the experimentalist still sees the correct dot product of the
angular momentum they measured, where [-I=o. But, the operator L? when
applied does not result in 0 but rather in h2j(j + 1).

We’ll now focus on solutions for j = 1. It has the vectors/functions |j,m) =
|1v _1> ’ ‘170> ’ ‘15 1>

(j2, ma|L1L?|j1, m1) = %1 (jy + 1) (2, ma|La|j1, m1)

. ar 1 I . ) (104)
= (jo, m2|L"L1|j1, m1) = h7j2(52 + 1) (j2, ma|L1]j1, m1)
Subtracting these two equivalent expressions we find:
(2, ma|Laljr ) B2 [j1(r + 1) = ja(j2 + 1)) = 0 (105)
= (jo,ma|L1|j1,m1) = 0if j1 # jo (106)

12



So we must have the same j value in order to find a value for the angular
momentum projection.
The same process can be repeated for Lo to find:

= (j2,ma|Lalj1,m1) = 0if ji # jo (107)

Recalling operators (96) and (97), we remember these are proportional to
new eigenvectors and we will now define the proportionality constants as follows:

L_ |]vm> :n*jm |j7m_]—> (109)

Where nj,, and n_j,, are some real and positive constants. This is a
choice we make. We can also write the conjugate of these:

(,m| LY = nijm (Gom + 1] (110)
Using this conjugate we find:
(Gyml| L) (L [j,m)) = n3j,, (G,m £ 1]j,m +1) (111)
— (j,m| (L1 FiLy)(L1 £iLy)|j,m) = (j,m|L? + L3 F hLs|j,m) (112)
— (j,m|?j(j + 1) — hm? F K®m|j,m) = K*[j(j + 1) — m* F m] (j,m|j, m)

(114)
S, = PP+ 1) — m(m £ 1)] (115)
So now we have a value for this constant!
Let’s check that this constant makes sense for L, when m=j:
Ly |j,m) =h/j(G +1) —m(m+ 1) [j,m +1) (116)
Lilj,)=0 (117)

This 0 is the expected result (because at j: j we reach the max value of m
allowed for a given j so performing L, should result in 0). So we did not make
a mistake in the algebra.

Similarly for L_:

L_|j,m) =h/j(j+1) —m(m—1)|j,m—1) (118)
L_|j,—j)=0 (119)

We can use L, and L_ to rewrite our L; and Lo:

Li+L_
L, = b (120)
2
L,—L_
Ly = 2t 121
2 5; (121)

13



. 1 . 1 .
Ly |.]am> = §L+ |]7m> + §L— |jam>

= G E D Dm0+ 2/ D)~ mGm ) m - 1)

2
. . (122)
. —1 . 1 .
L2 |.77m> = 7L+ |j7m> + §L* ‘Jam>

—ih . ih — )
= Vil + D) —mm+ 1) [jm+1)+ 5V +1) —mlm —1)[j,m —1)
(123)
Note: Unitary Operators
Let’s imagine an operator O acting on a vector u:
O |u) = |v) (124)
Where:
|u) = i |i) (125)
v) = vi |d) (126)
We know that in this basis:
(4li) = i (127)
Oluy = wOli)y = vl (128)

J
(E|Ofu) = u; (K|Oli) = > v; (klj) = > _ 00k = v (129)
i J J
In conclusion:

> (E|Oli))u; = vy (130)

%

(k|O|i) looks like a matrix that’s multiplying u;, so we’ll call it Oy;.

14



Applying what we learned above to the L3 operator:

(Jim1|L3|jama) = hm (jimy]jama) (131)
= hmady, j,0myms = (L3)jymy jam

So we're left with a matrix (L3);,m,,jom, (diagonal matrix in this case) with
which we can represent what this operator does.
Similarly for Ly:

(41, m1|L1lj2, ma)

h — ) ) h —— . )
= 5\/.72(]2 +1) = ma(mg + 1) (j1,m1j2, m2 + 1) + 5\/12(72 +1) —ma(ma — 1) (j1, m1lj2, ma2 — 1)

= 5\/]2(]2 +1) = ma(ma + 1)6j, jy0my ma+1 + 5\/]2(]2 +1) —ma(ma — 1)6j, jy0my ma—1
(132)
And finally for Ls:

. . —ih  —— th  ——
(J1,m1|L2|j2, m2) = 7\/.72(]2 +1) — ma(ma + 1)5j1,j25m1,m2+1+§\/,72(32 +1) —ma(ma — 1)8j, 4> 0my ma—
(133)

In summary:

(Ll)j1m1,j2m2 = 5\/32(32 + 1) - mQ(mQ + 1)5j1,j26m1,m2+1+§ \/]2(32 + 1) - mQ(mQ - 1)6j17j26m17m2—1

(134)
—ih th  —
(Lz)jlmlaj2m2 = 7\/j2(]2 + 1) - m2(m2 + 1)5j1,j25m1,m2+1+5\/]2(]2 + 1) - m2<m2 - 1)5j1,j25m1,m2*1
(135)
(L3)j1m1;j2m2 = hm26j1j26m1m2 (136)

3 Matrix Solutions

3.1 j=1 and m=-1,0,1

If j=1, our solutions above simplify to:

h h
(Ll)ml,mz =3V 2 - mQ(mZ + 1)6m1,m2+1 + 5 \% 2- mQ(mQ - 1)5m1,m271

2
! i (137)
—i i
(L2)m1,m2 = 7 V 2 - mg(mz + 1)§m1,m2+1 + 5 V 2 - m?(m2 - 1)5m1,m271
(138)
(L3)7n1,m2 - hm26m1m2 (139)

Plugging in various values for m; and ms (j; and jo must be the same for all
of these operators) into the expressions of each and making that into a matrix:
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(Ll)m1m2 =

oSl o

(L2)m1m2 = 7;

(LS)mmlz
ﬁ
2
(Ll)znlmg = 0
ﬁ
2
B2
2
(L2)12”I’le2 = 02
—h
2
h2

2h2 0
(D)2, =| 0 2R
0 0

From this last matrix we can see that j(j + 1)h?

expected so it seems this matrix is correct.
So, why are L? and L2 not diagonal?

1]

2
1

[L?
L2,
(L1,
L3

~

)

~

~

]
3]
]

7&
2, L3] #

0
0
0

0

o&‘m o

S o

S

St OO

ol oI,
N————

SN~————— o

(140)

(141)

(142)

(143)

(144)

(145)

(146)

= 2h? when j = 1, as we

(147)
(148)
(149)
(150)

Now, another thing we can do with these matrices to see if they are consistent
is check commutators. Checking that [Lq, Lo] = thLs:

—i
2
LiL,=h1| 0

—1

2

16

0 3
0 0
0 3

(151)



w‘l Ol
o O
|l owle

LyLy = h? (152)

-1
0
0

—i
[Li,Lo] = LiLy — LoLy = h* | 0

00
0 0| =inLs (153)
0 0 1

coo
. OO
I
-
>

Indeed, [Ly, Lo = ihLg!

3.2 j=1/2 and m=-1/2,1/2

If j = 1/2, our solutions above simplify to:

h /3 h /3
(Ll)mhmz = E 1 - m2(m2 + 1)6m1,m2+1 + 2mémhm2—l
(154)
—ih |3 th |3
(L2)jyma jams = > Vi~ ma(msg + 1)5m1,m2+1+2\/m(5m1}m21
(155)
(L3)m1,m2 = hm26m1m2 (156)
So, our matrices are:
0 &
(Ll)mlmg = <h (2)) (157)
2
0 ih
(s = (L0 7) (158)
2
_h 9
Lahmms = (1) (159)
2

G DG Y-(G Y

— (Z 0) (161)
0

> - (% ,i’) (162)

=12+ 12+12="h1 (163)




3.3 j=3/2 and m=-3/2,-1/2,1/2,3/2

If j = 3/2, our solutions above simplify to:

h |15 h /15
(L1)my,me = 2\/ —ma(ma + 1)m, mot1 + 2\/4 —ma(ma — 1)6m, .my—1

! (164)
164
—ih [15 ih [15
(LQ)jlml,jzﬂw =5\ 5~ mQ(mQ + 1)5m1,m2+1+ \/ - mQ(mQ - 1)5m1,m271
2 V4 2 V1
(165)
(L3)m1,m2 = th(smlmz (166)
0o ¥h oo 0
AVEI B 2h 0
2 2
0 0 ¥ o
0 B 0
sishog 2
(L2)myms (2) —i2h (2) iV3h (168)
2 . 2
0 0 =R
SR 0 000
0 = 0 0
Sl 0 b
2
G 2 2 G
0 oo 0 R |
2 2
(L )2 \/2§h 0 227}1 0 — 0 % 0 \/§2h
1)mimes 0 2h 0 V3h - V/3h? 0 E 0
2 2 2 4
0 0 ¥ 0 o
(170)
0o W9 o\ g =R g
—i\/3h i2h 7h? —/3h*
(L2)2 = TB O 27 40 = 0 2 4 02 23
S R R
0 0 =BEE g 0o =25 0 o
(171)
=29 0 0\ (% 0 0 0
0 =2 0 0 0 2 o0 o
2 _ 4
(LS)m1m2 0 0 % Sh;i 0 0 %2 7 (172)
0 0 0 0 0 o0 2
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2 _ 12 2 2 _
L"=Li+L,+L; =

h?1 (173)
3.4 j=2 and m=-2,-1,0,1,2

h h
(Ll)ml,mQ = 2 6 — mQ(m2 + 1)5m1,m2+1 =+ 9 6 — m2(m2 - 1)6m1,m2—1

‘ _ (174)
(L2)jimy jams = 7171 6 — ma(mz + 1)5m1,m2+1+%\/m5m1m_1
(175)
(L3)my,ms = hmadm,m, (176)
O A 0 0 0
R0 Yp 0 0
(L)myms, = [0 Lr 0 L o (177)
0 0 p 0 &
0O 0 0 A 0
0 ih 0 0 0
—~ih 0 h 0 0
(L2)mym, = | 0 =28p 0 B g (178)
0 0 =6 0 iR
0 0 0 —ih 0
2 0 0 0 0
0 —h 00 0
(L3)myms=| 0 0 0 0 O (179)
0 0 0 h 0
0 0 0 0 24
o n 0 0 o0\ 2o S0 o
R0 Yno0 0 0 R 0 2 o0
(L), = | O @h 0 @h o] = @hz 0 3m 0 @hz
0 0 rn 0 & 0 3w 0 5 o
0 0 0 n 0 0 0 Ypz o w2
(180)
0 ih 0 0 0\’ K2 0 =Y
—ih 0 iv6h 0 0 0 Sh? 0
(L)iym, = 0 —iv6h 0 iv6h 0| =| =52 0 352
0 0 —iv6n 0 ih e
0 0 0  —ih 0 0 0 =vEp2

19
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—2h 0 0 0 0 402 0 0 0 0
0 —h 0 0 0 0 h 00 0
(L3)2m,=| 0O 0 00 0] =] 0 000 0
0 0 0 h O 0 00 & O
0 0 0 0 2h 0 0 0 0 4h?

Let’s say our experiments can measure j but not m, a "Rotor Model.”

. . . —iE
Remember eigenvectors depend on time like e ™% *

At time t = 0:

c1|Er) + c2 | E2)
c1lj1, ma) + caljo, ma)

Over time this will become:

—iBGD, —iBGa),

c1e 2 |E1> + coe h ‘E2>

—iE(j1) i —iE(j2) .
cre” 7 g, my) 4 coe T Bt o, )

(182)

(183)

(184)
(185)

(186)

(187)

This new state is not proportional to the state at time t = 0 if j; # jo.

3.5 Changing basis of our Matrix Solutions

Now, for our solution set where j = 1, let’s switch to finding eigenvalues of
(L1)mym, in order to find a new basis for this solution set. Taking the determi-

nant and setting to 0:

A% 0

V2 V2

0 % A
2 ho(—h

-:AV+<0—O
) (3
o h?

2————:
:>/\{/\ 5 2} 0

(188)

(189)

(190)

(191)
(192)



We want to find new transformation matrices and show that the ones we
had are arbitrary based on the basis. Our previous basis was:

[La,Ly] = Lo Ly — Ly Ly = ih€qpeLe (193)

We want to find a change of basis matrix based on the eigenvectors of
(L1)mym, that we just found. This matrix v will be unitary, meaning it satisfies
u'u = 1 because that will allow us to find the new transformation matrix L,:

L, = uL,ut (194)

This new set of transformation matrices will operate just like the previous
set did:

L;L;J — L;,L; = uLgu'uLyu’ — uLyuTul u’

(195)
=u(LoLpy — Ll,La)uT = wihEgpe Lo’ = ihEpeuLout
Lo, Ly) = ihEapeLe (196)
So, let’s try to diagonalize L,. Currently we have:
A 010
Li=——1[1 0 1 (197)
V2 010
A 0 4 0
Ly=—|—i 0 i (198)
V2 0 —i 0
K -1 0 0
Ly=—10 0 0 (199)
V2 0 0 1

From the matrix (L1 )m,,m, for j = 1 we get the following eigenvector equa-
tion (ignoring the %)

01 0 a a
1 0 1 bl=1(b] A (200)

01 0 c c

From this we find that:

b=a\ (201)
a+c=>b\ (202)
b=c\ (203)
= a\+ch =b)\? (204)
— b+b=0\ = N =2 (205)
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— A=+V2 (206)

From looking at these equation, A = 0 is also a solution.
IfA\=0,thenb=0and a+c=0:

1
o\ [
=10 (207)
—1
=
If)\:\/ﬁ, then a + ¢ = v/2b and ¢ = %:
1
¢ ?
= ? (208)
2
If \ = —/2, then a = \7—% and a + ¢ = —/2b:
-1
N 1
=\ (209)

Now let’s check that these eigenvectors are correct. If we are adding back
the % that we have so far been ignoring, the eigenvalues become 0, h, and —h:

h - _
Lo LllL 0o Hl=|% 0o H||o oo (0
0 A0 Y1 o101 Y1 o101 0 0 h

V3 2 2 2 2 2 2
Therefore our diagonalized L is:

—h 0 0
0 0 0 (211)
0 0 &

We will denote this matrix of the eigenvectors of this diagonalized L; as u
and see that ufu = I:

-1 1 -1\ /-1 1 1
AN SRR AN A
0 2L 0 Ll=fo 10 (212)
1 1 -t =1 1 0 0 1
2 5 2 2 5 2
—h 0 0 . —h 0 0
Liu=u|l 0 0 0] = u'Liu=|0 0 0|=1L] (213)
0 0 h 0 0 h

What about w!Lou?
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-1 1 =1 . -1 1 =1 -1 1 1
B 2 2 2 0 ¢ 0 2 2 2 2 V2 2
N R IR IE R
V2l o1 0 —i 0 T 010 S R ¥
2 2 2 2 V2 2 2 V2 2
(214)
-1 1 -1 ; ; .
2 R N ) B R W
=— | 5 7= 0 —iv2 0= 0 +])]—=1Ly (215
V2 L Pl T = i va =t 1)
2 V22 V2 V2
What about ufLyu?
-1 1 -1 -1 1 1
2 2 2 -1 0 0 2 /2 2
uLsu=h|2 0 Z||l0 005 0 5 (216)
1 1 14
5 5 3 0 0 1/\F = 3
—1 1 —1 1 —1 -1 1
FRNNCRC I A D (PO C R B
AR U R R
2 v o2)\2 ©»n 2 0 % 0
These three (L,L5, and L%) must be related through:
(L4, L] = ih€ane Ly, (218)
We can perform these three operators to prove this is indeed true:
~n o0 0\ [0 - 0 0 - 0\ (= 0 0
ih i i i
(L1, L) = | O 0 o)V O vi|Tlve O |0 00
0 0 0 -2 0 0 - 0 0 0
(219)
ih?
=1o ?n2 0 —i o & (220)
0 -5 0 0 0 O
h
b
. - li
=ih o) Oh vl thLj (221)
0 -5 0

The same can be done for L, and L}
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ih h h
0 =5 0\ [0 5 0 o 5 0 0
[L’ L/]f ih 0 ah _h 0 __h _h 0 __h ih
203l = | 2 2 V2 2 V2 V2 V2
0 - 9 0o —L o0 0 - 0 0
V2 V2 2
(222)
[Lo, Ls] = 02 0 02 — 02 0 02 (223)
o —~h 0 0
[Lo, Lyl =ik [ 0 0 0 =inL} (224)
0 0 h
And finally for L] and Lj:
h h
/ / 2 ﬁ Oh _h 00 _h 00 2 ﬁ Oh
O F VI AT
0 % 0 0 -5 0
(225)
0 0 0 0 —% 0
’ ’ 2 2
[Ly, L] = —% 0 -1 1|0 0 0 (226)
0 0 0 0 —h2 0
ih
L 0 -y 0
. 3 (2 . !/
Ly, Ly) = ih | 2% O‘h 2| =inLh (227)
0 % 0

So, these operators are related in the same way as the previous set!

3.6 Summary

These are the steps we have taken to finding the set of matrices that represent the

eigenvalues of the angular momentum projection operators in all three directions
for certain coordinates.

1) We have to pick L1, Lo or L3 as the pair to L2,

2) We decided to choose L |j,m) = nijm |j, m + 1) Thus we ended up with
one result that satisfies [Lq, Lp] = thi€qpcLe.

3) ulLyu = L, = [L!, L}] = ih€ap.L.. This results in many other sets of
L, that are equivalent.
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4 Changing to spherical to find function solu-
tions

4.1 Rewriting Operators

Side Note: Matrices for converting between Cartesian and spherical coordi-
nates (will be useful):

dx sinfcosp rcosbcos¢p —rsinfsing dr
dy | = [ sinfsing rcosfsing  rsinfcosd do (228)

dz cost —rsinf 0 do
dr sinfcoso sinfsing cost dx
do | = %cosf)cosqﬁ %cos@sinqﬁ _71 sinb dy (229)
dg e = 0 dz

Using the matrices above, we can rewrite our operators:

: 0 0
Ly = —ih {yaz - Z@y}

) o 1.0 o 1 0
= —ih {(rszn951n¢) [?&6/5;— Tsan%] — rcost {M"" ;COS@COS¢%

r
0 cosf 0
— _ein20ai _ 204 - _ i
= zh{( sin“fsing — cos*Osing) 50 cosqﬁsme 3(;5}
. ., 0 0
=1h [Sln¢89 + cosqbcot@aqs}
(230)
Similarly, for Ls:
Lo =ih|— ¢g+ ing t@2 (231)
2 =1 cospp g + singeo 9
And for Ls:
0
Ly = i (232)

These three angular momentum operators do not derive with respect to r,
it becomes clear that:

{f(?“) La:| = 0 where a=1,2,3 (233)
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For this reason it might be convenient to rewrite these operators in spherical
coordinates. So, for L:

Ly=1L+1ils = {zh <szn¢)§9 + cosgbcotﬁaa(b)} +1 {zh (_COS¢(§9 + sind)cotﬂ(ib)}
=h [(cos¢ + isin(b)% +i(cos¢p + isin(b)coté’aaqj
9 , 9
— 9\ 2y it —_
=h {(e )89 +i(e )cot@aé]
(234)
Ly = he'® [5)9 + icot@aij (235)

Similarly for L_:

L =Ly —1ily, = [zh (sznqﬁge + Cosgf)cow;)} —1 [zﬁ <cos¢§9 + sinqﬁcow;)}

=h {—(cosd) + zsmgb)% +i(cosg + isingb)cot@%]

o O , 0
=h [—(ew)ae + i(e“z’)cotﬁaqj
(236)
For L_ we could have also used the fact that we previously proved that it’s

the complex conjugate of L.

L =L =he ™ {zfe + icot@aé;} (237)

4.2 Finding function solutions for integer j’s

So far we have just been talking about |j, m) but we can imagine this to include
some function Yj,, that depends on the angles 6 and ¢
Let’s plug this into these following expressions we have derived:

Ls|j,m) = hm|j,m) (238)
Ly |j,m) = m/j(j +1) —m? —m|j,m +1) (239)
L_|j,m) = h/j(j +1) —m? + m|j,m — 1) (240)
Plugging in for Ls:
Lsl|j,m) = hm|j,m) (241)
NS Yin(0.6) = B (0,) (242)
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— Yim(6,0) = P ()™ (243)

Pj™(0) is the integration constant for Yj,,(0, #). Additionally, we know that
¢ and ¢ + 27 denote the same angle in these coordinates so:

eim(o+2m) _ gimé . gi2mm _ (245)

This has the consequence that m values have to be integers. This also means
that j at half integers aren’t allowed for this particular solution set. However,
we know that there should be half integers of this j (if j is a half integer then m
must be a half integer), first found out from experiments by Stern and Gerlach.
The solutions for these half integers we will find later.

Now plugging in for L, :

Ly |jym) = ha/j (G +1) —m? —m|j,m + 1) (246)

he' [({;90 + icot@aagb} P;”(é’)eimq5 = h\/j(j +1)—m?2— ijmH(6‘)ei(m+1)‘7j
(247)
helmATTE L%ij(ﬂ) - mcot@ij(G)} = A5G + 1) — m? — mP T (9)eln AP
(248)
= ((;99 — mcot@) P(0) = Vi@ +1) —m?2 — ijmH(Q) (249)

This is the recursion relation between the different values of m for each j
Similarly, plugging in for L_ leads to:

— (aaa + chte) PP (O) = —/i(i +1) —m? +mP(0)  (250)

Let’s see what happens when m=j and we plug in the first of the above
recursion relations:

0 _; . j
%Pj (0) — jeotdP)(0) =0 (251)
Solution is thus:
PJ(0) = N,[sinf]’ (252)

Let’s check that this makes sense:

P! (0)
90

= N;j[sin0]" " 'cosf) = N;jcotf(sind)’ = jcot@PJj(ﬁ) (253)
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Now let’s see what happens when we plug in m=-j into the second recursion
relation:

—P79(0) — jeotdP () =0 (254)

P! = P77 = Nj[sing)’ (255)

So the solution is of P is the same for both m=-j and m=j.
Now if we want to fix this N (the normalization constant), we follow our
typical process of integration and solve for it:

| = / 7 / " 0] (0, )Y (6, 6)]sinBd0d (256)
0 0

4.3 Function solutions for j=1 and m=-1,0,1

Starting with the lowest m-value function, m=-1:

P! = Nsinf (257)

Using recursion relation to find the next value up, m=0:

BP_

_ Ncost) + cot Nsind
\/2 —1+1 V2

The highest m value should be the same as the lowest (proven above).
Let’s normalize Y7 _q:

PP = = NV2cosb (258)

2m T
/ do / N%sin?0e=¢? = 1 (259)
0 0

— N= \/g (260)

In conclusion, writing these solutions as Y}, (0, ¢) = P]m(g)eim¢;

Yi = \/ ism@e i (261)
Yio= \/ f cost (262)
Yi1= ,/§s¢n961¢ (263)

Y

Using an integral calculator, I confirmed that these functions are all normal-
ized such that [27 do [T djm (6, $)*Yjm (6, ¢)emoeimd = 1
These functions squared such that they become only real are:
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3
Yy Y11 = —sin®0 (264)

8T
* 6 2
Y0 Yi0 = 3, Co8 0 (265)
* 3 -2
Y1 Y= 3 5 0 (266)

Plotting these with respect to Y yields:

Probability Distribution of Y when j=1

0.25

0.20 1

0.15

— 11

YEY

0.10

0.05 A

0.00

4.4 Function solutions for j=2 and m=-2,-1,0,1,2
Starting with the lowest m-value function:
Py ? = Nsin*0 (267)

Using recursion relation to find the next value up:

—2
P{l _ 01;29 + 2cotfN sin®0 _ 2N sinfcost + 2cotdN sin20 9N coshsing
6_4+2 V4
(268)
And the next:
-1
P = 2%+ cot§2Ncossind _ 2N(=sin?0 + cos0) + cotf(2N)cosfsing _ 2 N(=3sin26+2)
Vo—1+1 V6 V6

(269)
And the next:
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o 881393 +0 %N(—Gsin@cosﬂ) ON sinfeosd (270)
= = = —2Nsinfcos

2T V6-0-0 V6

The highest m value should be the same as the lowest (proven above).

In conclusion, writing these solutions as Y}, (0, ¢) = ij(tﬁ))eim"’:

Yy, o = Nsin?fe 2% (271)
Yo _1 = 2N cosOsinfe *® (272)
2 .
Y20 = —=N(—3sin’0 + 2)e? (273)
TVe
Y21 = —2Nsinfcosfe'® (274)
Ya0 = Nsin?0e*® (275)

4.5 Rewriting L2

Now let’s rewrite L? in terms of these spherical coordinates. First finding each
of the projections (since L? = L? + L3 + L%):

0 0 0 0 0? 0 9? 0
2_ _g2(, 9 9 g 9\N_ 2|00 O , 0 0
Li=-—h (yﬁz Z@y) <y82 Z@y) f [y 022 y@y 2y28y8z “0z *

(276)

0 0 0 0 0? 0 0?
2_ _g2(, 9 9 2,290 O _ .9
Ly=-n (Zﬁy y@z) ( dy y8z> f [Z a2~ “92 QZxaa:@z e T

(277)

0

82

0 0 0 0 02 0 0? 9?
L2:*h2 -~ -~ :*h2 27 —~ _9 oy 2 Y
3 (”ay yax) <28y y@z) {Z 022 "9z oror  “ox T 022

(278)
Adding these:

L? = —h?

0? 0? 02 02 82
($2+y2+22) (ax2+8y2+822> _$27_y2

2 2 2 ] o o
_Qxyaxay B 2”8;;63: B 2y28y8z 2 ( oz + yﬁTy * Z@z)

> 9> D o 9 . a\ )
2 2 2\ 2 - I . - i _ -
(" +y" +27) (55 + +822) ( +y y+ Z) <xax+

_ 32
=-h 0x?2 = Oy? Ox
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5 Understanding Total Energy Equation of this
System and Comparing to Classical Mechan-
ics

We will work towards an equation for the total energy of this system.

Now let’s replace these partial derivatives with their equivalents in spherical
coordinates:

9 9 O\ o 2 29 2 0 O
<x8x+y6y+zaz) = [rsm Ocos“p + rsin“0sin“¢p + rcos ] p

(280)
+[sinfcosfcos* ¢ 4 sinfcoshsin’p — sin@cos@]%
:>;hQ £+ £+2 fifhiz g2+g (281)
om \" oz y@y “92) " 2mrz  2mr? |\ or "or

Let’s think about this a bit more closely. Left is kinetic energy operator,
composed of (right side, first term) angular kinetic energy operator and (right
side, second term) radial kinetic energy operator.

So, total energy H includes this operator plus a potential energy operator
(which must only depend on r):

2 2
H= g = gy [0 4| £ V0) (282)
0
[F(1)5 Lal =0 (283)

So now we have three commuting operator and can simultaneously diago-
nalize all three: H,L, and L3
Once more so we don’t forget, these are the three operators:

L3|E7jam>:hm|E7j,m> (284)
L*|B, j,m) = h%j(j +1)|E, j,m) (285)
HIE,j,m) = E|E,j,m) (286)

Looking at H:

—h? 0\? 0 R +1) . ;
{erg l(’“ar> + (Tar> + V() + =5 5 1B jym) = B|E, j,m)
(287)
But what is this |F, j,m)? It is some function:
wE,j,m (Tv 0, ¢) = RE,j (r)}/j,m (0, ¢) (288)
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Where Rg j(r) is simply an integration constant. Note that we did not use
separation of variables.
Therefore, rewriting again:

{2;52 [(ri)er (raar) -JjG+1)

We might recall from classical mechanics central force problem:

+V(r) - E} |E,j,m)=0 (289)

1 dp 2 L?
- — Vip) - E=0 290
571 (%) + gz VO (290)
Comparing these two, we notice that the angular kinetic energy term is %

in classical and thﬁ;l) in quantum. The quantization of the angular kinetic

energy is apparent given that j are only certain values.
Now, we will denote:

Rp; = UE’Z r) (291)
Meaning that:
AN r&2Ug ;(r)
= = i(r) = ———2%——= 292
[(Tar) o Bz (r) or2 (292)
Plugging this into total expression:
—h? [ 5 d*Ug,(r) Ug,;(r) Ug,(r) . Ug,(r)
s _ala 1 5] 5] —E 5] — 2
Dy {r 0 jG+1) " } +V(r) . . 0 (293)
d? ; 2 K2 j 1

dr? h C2m 2

This E -V (r) — %J(%l) looks like the term from classical mechanics that

was crucial for analysis of the central force problem, =~ + V(p) — E.

’ 2mp

6 Continuing to improve the form of our wave
function

Overall we discovered that the wave function looks like:

UEJ( )

VB jm(r,0,0) = Rp ;(r)Y;m(0,¢) = 2152 P (9)e'™? (295)

Additionally, the probability function looks like:
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2

Uz (r
P(r,0,¢) = £4(7) [P (9)]

[P (296)

In order to normalize:

1= / dr / do d¢ r2sind)P(r,0, ¢) = 2 ( /O h drU,%’j(r)) ( /O "0 [P]m(e)]gsm)

(297)
Therefore fooo U]%J-dr must be finite and UJ%J,J’ — 0 as r — oo.
When r — 0, Ug ;(r) — r?
< p r2P+1
dr = —|¢ 2
/OT T opilo (298)
-1
.'.2P+1>0:P>7 (299)
When r is small:
P-2 . p_2 , 2m P
0=PP-1r = —jG+1r —“+ ﬁ(E —Vir)r (300)
When r is close to 0, the last term can be ignored.
— V(r)rf < P2 (301)
1
V(r) < o} (302)

— P(P-1)r" 2= +1)r"? = P(P-1)=j+1,—j (303)

r~J only works for j=0. We will assume V(r) has no delta function terms,
thus ruling —j out.

What if j = 0, m = 0, and P} = 1?7 What is the kinetic energy for this?
Well our kinetic energy expression is:

—h2 82 82 82
om |02 Tope T o2

Rp,;(r) = UE’Tj( ) rlwe, (r) (305)

Ug; —0asr — oo (306)

Up;(r) =t asr — oo (307)
P(P-1)=j(j+1) = P=—jand P=j+1 (308)
P> % (309)

Change of variable:
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UEJ‘ (’I“) = rj+1wE7j (’I“)

dUp ; . .

= Dt 4
d2Ug . A . ;
Ja = DI () + 23+ 1)

Plug these in:

. 2 .
JGHDI wp 5 (1) + S5 [E=V ()] g (r) +

d*wg (r) . 2(j +1) dwg,;(r) n 2m

dr? r dr h2

34

41 dwE,j (7“)
dr

(310)

(311)

dwg ;(r) +,rj+1d2wE7j(r) (312)

dr dr?

2(5 + V)ridwg ;(r)

dr

—j(+Dr
(313)

[E—V(r)wg,(r)=0 (314)
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1 Hydrogen Atom
1.1 Hydrogenic Atom Potential
A hydrogenic atom has the following potential:

-1 Ze?
T dweg 1

V(r) (1)

Where ¢ is the permitivity of free space, Z is the atomic number (1 in the
case of hydrogen), and e is the charge of an electron

We will do the substitution r = bu where b is some unit of length.

Instead of using our wg ;(r) function, we define:

wg,j(bu) = xg,j(u) (2)

Now we can rewrite our energy equation as:

b2 du? b2u du

1 dQXEj(U) 2(j +1)dxe j(u) 2m o2m Ze? 1
. . —F4+ —=——— . -0 (3
+ K2 + h2 4mey bu XEJ(U) ( )

We multiply this by b2

E
du? U du +

Pxpg() | 26 +1) dypg() | (2m? o 2m Ze? b
hi2 h? 4dmey u

s =0 @
We will also set:
2m Ze*
h? 4req

And by plugging in all these constants and rearranging for b we arrive at:

b=1 (5)

1
b= —2.64588603 x 107 meters (6)

Looking at the other term in equation 4 we see that the units of 2722”2 are

Joules, meaning for natural units of energy we can set:

~h
T 9mb2? p (7)
So, rewriting equation 4:
d*xgj(u) 20 +1)dye,(u) 9 1
PR T Bxes() + oxe(u) = (8)



1.2 As u approaches infinity

As u — oo, this equation becomes:

This implies that as u — oo:
X,j(u) ~ et (10)
Therefore, the total solution will thus be in this form:
Xu,(u) = e 7Ry j(u) (11)
We can take derivatives of this:

dxe,j(u) dRE ;(u)

- _ 7667betauRE7j (u) + efﬁu - (12)
Pxpi(u) o pa _pudRpj(u)  _5,d*Rp (u)
du2 = ﬂ e RE,j (u) — 2ﬂ€ 7du +e du2 (13)

And use these to plug back into equation 8, resulting in:

d*Rp
u% +(2(j 4+ 1) — 28u)

dREJ' (u)

BI 1 (1 -2 + 1)) Re(u) =0 (14)

Now we take this Rg j(u) and rewrite it as a polynomial which we know
would have this form.:

Rp,j(u) = Z cru® (15)
k=0
The first and second derivatives are:
dRp;(u) < k
PRy (u) < !

So, using these to plug back into equation 14 results in:

2064+ 1)k 1) 4 ks Dlewin + [(—28)k+ (1— 20+ D)Jec)ut =0 (18)
k=0

Since each of these terms in the sum must be 0 in order for the total sum to
be 0, we know that the coefficient of each term must be 0:

G +DE+D) +E(E+Dlekr +[(=20k+ (1 =2+ 1)B)ler =0 (19)



28(k+754+1)—1
Ek+1D)+2(+1)(k+1)
This is our "recursion relation.”
Furthermore Going back to our definition in equation 11, we know that

this polynomial Rg j(u) must terminate because xg ; — 0 as u — oo (due to
normalizability conditions):

— Ck+1 = (20)

lim —— =0 (21)

This means that in the sum in equation 18, we must reach a point where the
term is zero (because the polynomial must terminate, and for this to happen,
there must be some P for which:

2+P+1)—1=0 (22)
We can rearrange for a value of 3:
1 1
== 23
b 2+P+1) 2n (23)
So, our solutions depend on 4 quantum numbers:
n=123,..
P=0,1,2,..
. (24)
j=0,1,2 ..
m = 7]-7 7.7 + 17"aj
And the energy and natural unit b look like:
2meph?
= (25)
—h2 _Z2 4 _Z2 4
_ _ e mﬁ2 26 m (26)
2mb?  8mw2eih 32n2e5h%n?

And, the total wave function, with all the changes of variable we have made
will look like:

wn,]m bu 9 gb (Z CrU > bu)]Pm imeo (27)

where 8 = -



2 Hydrogen Energy Levels and States
We can rewrite the above expression to be in terms of r once more:

k=0
Where P is the upper limit of k and P=n—j—1
In order to find the normalization constant we integrate over the entire
volume, set this integral to 1, and solve for N:

1:N?KNA%ZTwwmdw¢ (29)

2.1 n=1 Wave Functions
j=0m=0

¢1oo =

2.2 n=2 Wave Functions

j=0,m=0
1 —r —r
S S e P 1
Y200 \/647rb3<4b+ >64 (31)
j=1,m=—1
1 -r . —ig
o111 = SoasEe ™ sinfe (32)
j=1m=0
a10 = L V2re cos (33)
20487b°
j=1,m=1

/ 1 —r .
’ll)211 = m?ﬂeﬁsineewﬁ (34)



2.3 n=3

n=3:

P=0,7=2m
P=1j5j=1m
P=2j53=0m

-2,-1,0,1,2
-1,0,1
0

(35)

In a given energy level (value of n), are all the states orthogonal to each

other?

Yes, because orthogonality is independent for 7,6, ¢. Since either P’s,j’s, or
m’s are different for each state, they’re all orthogonal

2.4 Analysis

By integrating with respect to df and d¢ with trespect their area we can find
the probability of finding the particle on the surface of an infinitesimal sphere:

We can also integrate with respect to dr and d¢ to find the
of finding the particle at a given angle 6:

density

P

P

P

Probability of finding an electron at a given shell njm=100
1e10

Probability of finding an electron at a given shell njm=200
1e9

Probability of finding an electron at a given shell njm=21-1
1e9

00 o5 10 15 20 25

Probability of finding an electron at a given shell njm=210
1e9

r 1e-9

Probability of finding an electron at a given shell njm=211
1e9

probability



3 Effect of Temperature on energy states

3.1 Atom

Starting at a temperature arbitrarily close to zero, what temperature would you
need to raise an atom or group of atoms to in order to have electrons exist in
the next state up?

Thanks to Boltzmann we know that:

Pn it —
By = errm (36)

P(n) x TP (37)

Where P(n) is the probability of a given n.
When an electron changes state and loses or gains energy, this can be due
to either the transfer of heat or of light, meaning:

Eni1 — By = hw = kpT (38)

4 Relativistic Energy Operator

4.1 Introduction to the problem (What if j is not an inte-
ger?)

We recall that:



We also might recall from any modern physics class that E2 = p?c? +m?c*.

In my modern physics class we never wrote E = 1/p2c2 + m2¢* because E > 0.
In order to get it in a better form we write:

E=mc*\/1+ p22 =mc?(1+ v —|—...):m02+ﬁ (41)
2mc? 2m
This becomes o
E—mc = o (42)

Our goal now is to find an operator to represent this relativistic energy. The
first idea that physicists Klein and Gordon had was to find an E? operator:

0 0
2 2,2 2 4
[ hatz——h a2+mc}z/)(m,t) (43)

However in this case we find that ¢*¢ # P. Instead you can do i(w*%—f —
w%—f) but the issue is that this is not real AND positive.

Dirac was more ambitious. He proposed actually finding the square root of
this:

02 0
< _h2626:u2> Y(x,t) = iha@/}(x,t) (44)

Let’s try to rewrite this operator in a better form, such as (where o and g
are some constants):

2
(a2+5)2=—52 2 0 +m2ct

ox 0x?
0? 5 0 oo\ 0 9B
—04624-54' ﬁf—l—ﬁa——l- (&U)&U+ o7
In order to find the value of o and 8 we will first take a detour back to
discussing our angular momentum operators, which as we recall include:

(45)

L? |jm) = h%j(j + 1) |jm) (46)

Ly |jm) = hm [jm) (47)

Ly |jm) = 2/j(j +1) —m? —m|j,m + 1) (48)
_[gm) = h/iG +1) —m? + m|j,m—1) (49)

As you might remember, we argued that solution of j = %(m = —1
weren’t physically relevant because they have the consequence that eim(¢+ ™) £

eim¢

l\)\»—l

7

Nonetheless, just for fun, let’s look at the solutions to the angular momentum
operators for j = % and see what happens:



I|5,%35) = S15,4) (50)

31330 =51503) 61)

Lslg 5 = 5 I35 (52)

NSNS T
11 1 -1

L-lyg) =ty g oY

Now we can write the expectation value of these operators in the form of
the matrix such that for Ls for example: (L3)m,m, = (J1, m1|L3|j2, ma)

So for these operators for j = %:

(Lmms = (5 ) (55)
(L= (g 1) (56)
R I

*Lq1 and Lo are found by remembering L; = LHQ'L‘ and Ly = L+;L‘
Based on this information, we can rewrite this equation from earlier too by
defining L, = %aa. These o matrices are called Paul matrices.:

[Laa Lb] = Z.hgabch (60)
h? ih?
- = 5 cOc 1
= 1 [Cas ob] 5 Eabeo, (61)
= [04,08) = 2iEupe0e (62)

What are the properties of these Paul matrices and do they commute?

o? = <(1) é>2 =1 (63)

o3 = <_0Z é>2 =1 (64)



o= (0 o) (5 0)= (5 9)=i(T )= @

Therefore, from (57) we know:

0901 = —i03 (67)
Similarly:
0 -1 0 0 ¢ .
7293 = (—i 0) ( 0 1) - (z 0) o (68)
0309 = —iUl (69)
And:
-1 0\ /0 1 (0 4 .
0301 = < 0 1) (1 O) =1 (—i 0) = 102 (70)
0103 = —idg (71)

Therefore, this can be summarized through what we call ” anti-commutators”:

0109 + 0901 =0 (72)
o903 + 0309 =0 (73)
o103 + 0301 =0 (74)

Alternatively it can be summarized like this:
0a0b = 1€qpcTc + Ol (75)

This was all for the special case of j = %
Now this below is a Clifford algebra, the answer to which generalizes what
we’re going to work on into more dimensions:

{'Vav 'Yb} = 204 (76)

4.2 1 spacial dimension and 1 time dimension

To solve for our relativisitic energy operator we will start solving with one
dimension of space and one of time. The squared operator would thus look like:

0y = w2 el

ot? Ox? (77)

*By the way, this slashed D, I, is used in honor of Dirac.
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We will try to solve for the non-squared operator by writing it in this form
and solving for vo and ~;:

D =ihy gt then o (78)
So, the squared operator would look like:
D= (zh’yog —ihieyy (‘38 )(zh’yggt —ihcy %) = %, g—;fh%z’yl 88 2+h2 (7170+7071)8f;
Therefore, to satisfy (72) we know the following must be true 7
BW=11M=-1 nmpo+r1n=0 (80)
Dirac had the idea of using:
Yo = 0o, Y1 = 102 (81)

Using this, ) becomes :

(0 1\ 0 0 1\ 9 0 zha—l—zhcam
penl o)t (% o) (g Cae ") 2

4.3 2 Dimensions of Space and 1 of Time

Having understood one dimension of space, we can add a second to the solution
by adding another partial derivative to our squared operator:

02 02 02
(m) *hz 8t2 + hQCQW —+ h2 28y2 (83)
0 0
= — iheyi — — iheys — 4
D =ihyo—; 5~ eng o — iy 99 (84)
5 0 0 H? 02
2 2 2 2
(D)? = —n*, oatQ —R*c*y3 pe ——+h? 6(7170+7071)3tax+h C(’Y2’Yo+7072)atay
(85)

Therefore, the conditions of a solution of this form are:

'Yg:la '7%:_17 732_17

(86)
7% + %71 =0, 727 +772 =0, 1172 +7271 =0
Like before, we can use our Pauli matrices as solutions:
Yo =01, Y1 =102, Y2 =103 (87)

Therefore the total operator solution is:
(0 1\ 0 0 4\ 9 -1 0\ 9 ([ ~—heg  ihf +ihcgs
D= ih (1 0) ot The (—z’ 0> agﬁhc< 0 1> oy (z’hgt —iheZ  hel

11

0
—h? (M172+7271) .

(

C Y27
C



4.4 3 Dimensions of Space and 1 of Time

Finally, we extend this to the z dimension. The operator thus looks like:

0? o2 0? 02
2:*71,27 h2 2 Y h2 2 Y h2 2> ]9
(D) 92 + h%c 922 + h%c ay? + h%c 5.2 (89)
0 0 0 0
= ihyy— — theyy— — theyy— — iheys— 90
lD ? ’YOat themn o herya By ? C’YB@Z ( )
0 0 0? 0?
2:*h2 2777122 2 Y h2 h2
(D) 7052 g2 + h%e(nvo + ’YO’Yl)atax + hc(y270 + 7072)(%32!
2 2 0 20 0 22 2 0 2 2 §
—h7c (172 +7271)axay —h%c V252 h*c gz T h=e* (370 +70’Y3)%
2 2 § 2 2 0
_A _ K i
(s + Vﬂl)axaz (7273 + 7372) Dy0=
(91)
Therefore, the conditions of a solution of this form are:
W=11=-11%=-1=-1 (92)

1% + Y71 =0, 727% +7%7%2 =0, 12 +72711 =0, ¥37% +7%73 =0

Now, unlike before, we cannot just use the Pauli matrices for our solutions
because there is only 3. Rather we will extend the matrices to be 4 x 4 matrices

such that:
[ 1Laxe 0
Vyxa = ( 0 _12><2) (93)

Yiaxa = (O _(()77’) ’ 1= 17273 (94)

g

Don’t forget that these Pauli matrices are specific to j = % and are as follows:

o = (2 é) (95)
oy = <_OZ é) (96)

o3 = <_01 ?) (97)

Squaring our  matrices to find what some of the conditions look like:

1 (98)
@

12



And the other conditions are of course:

({1 0\ [0 -o 0 -\ (1 0 _

Y0 + YivYo = (0 1) <0i 0 ) + (Ui 0 ) (0 1) =0 (100)
o P 0 —0; 0 —0j 0 —0j 0 —0;
= (o ) (0 )+ (0 ) (0 )

- <_U(;Jj ! ) + (_Jojoi 0 > =0if i # j (because o2 = 1)

—0i05 —0,0;

(101)

The total matrix equation for 3 dimensions of space and 1 of time is thus:

Lih2 —me®l  ihe 320 (05-2)
_ 2\ — ot 1=1\""? 9x; U =0
(B —me?) —iheY? (0i5L)  —lihd —mcl

Y1(z1, 22, 23,1) (102)
where ¥ = 7[)2(.%’17.’112,{)33,t)
VY3(x1, 22, 23,1)
w4(.1317$2,1'3,t)
*Note: when looking for this I relativistic energy operator, we have been
ignoring the fact that the original energy equation is squared such that there
would be a positive and negative solutions:

D’ =E% - p* 2 = mic* = I = mc®, —me® (103)

However, this negative solution is not physically sensible and doesn’t lead
to any new physics.

Furthermore, what Dirac found out is that actually he was not just describing
a particle by itself, but one in a vacuum that isn’t empty and that this vacuum
can have energy. But, we will not go into this. Instead we will focus on Dirac
wave mechanics with no potential.

With this in mind, our next goal in solving this is to find an operator that
is hermitian. I? is not hermitian as shown below:

ol =0 (104)
% = (105)
W= (106)
. . 0 0 0
I?T = ihyo + %hc(’h% + 7287; + 73@) £ 1) (107)

So, instead let’s see what happens when we do o Pvo:

13



L0 ) ) P
YolPvo = iho 5, = ihe | om0 + Mor05 +7071870 5

= ih%% — the —7170706% - 7270708%/ — 37070 882} (108)
_zh%gt +ihe :7 aa +72§ + 5 ] p'
We can rearrange this to find a new operator that is hermitian:
Yoo = lf = Dy = Volf = (D)f (109)
Alternatively we can use this operator:
WD = D' = (o)’ (110)

*Note, remembering (98), we see that instead of these solutions of v;, there
are also solutions of—~;.
Anyways, now we can write () — mc?)¥(z,y, z,t) = 0, which will look

like this:
1 0 1iha 21 zhczl 1(0182 ) U0
0 -1/ \—inc ZZ 1(0z o ~1ih 2 — me1 N

-)

(1’1,.%'2,1'371])
(l‘l,.fQ,J?g,t)
($1,$2,$3,t)
¢4(I1,$27$37t)

(111)

where ¥ =

We can also rewrite ¥ into two 2-component vectors to match the notation
style of the rest of the equation. Also, writing out the sums explicitly. This
results in:

1iﬁ%7m621 th((fla +020y+0382) 1/)L($7y7z,t) —0
ihe(o1 2 +U2a% +o52) Lih g + me*l Yr(x,y,2,t)
(112)
So, let’s write the matrix equations this correlates to more explicitly:
0 0 0 0
h (;ptL me wL—i—zhc |:01(9 —l—aga——i—ag ]wR—O (113)
0 0 0 0
ihc [018+028y+03 ] v + h%+ch¢R:O (114)
VL@, 2,8) = xpeh rotrvipe=E) (115)

14



Equation (113) can thus be written as:
{ExL — me®x1 — clo1p1 + oaps + 03p3]XR}€%(p1r+p2y+p3z—Et) -0 (117
— (E—mc*)xy = c(o1p1 + gaps + 03p3)XR (118)
And (114):
{~clopr + o2pa + ospslxr + Exgr + mcPyplet Protravea=E — o (119)

—> (E+mc®)xr = c(o1p1 + 02p2 + 03p3) XL (120)
If we multiply (118) or (120) by = ¢(o1p1 + o2p2 + o3p3) we end up with:

(E —mc®)(E +mc*)xr = *(o1p1 + 0ap2 + 0303)* xR = p°XR (121)

(E +mc®)(E —mc®)xr = (o1p1 + 0apa + 03p3)®xr = p°xr (122)

But let’s not forget that yr and xy are both 2-component vectors, so we
should write these as:

E? —m?2ct — p?c? 0 XR1
(= i) () =0 )

E? —m?2ct — p?c? 0 XL1
(= g o) (F) =0 a2

Since we know that E? = p?c? + m2c*, the eigenvector solutions to (123)

XR = (é) ) ((1)) (125)

And we can find the correspond x, vectors corresponding to these by rear-
ranging (118):

3
c(D_i— Pioi)
——= 126
E — mc? (126)

Similarly, there will be a set of solutions:

XL = <(1)> ) <(1)> (127)

Where the corresponding x r vectors would be found by rearranging (120):

XL =

3
(2= Pioi)
1= 128
E +mc? (128)
This first solution set ((125) and (126)) we say is for F < 0 and the second
is for E > 0 ((127) and (128)). We say that £ = 0 is unphysical because it
would be a massless particle at rest and how would you even detect that?

XR =

15



As we know, the total energy equation is E? = m?c* 4+ p?c?, meaning the
energy could be:

|E| = \/m?2c* + p2c? (129)

B ++/m2ct + p2c?  physical (130)
| =/m2c* + p2c2  "unphysical”

4.5 Solution of j=1/2

So, let’s figure these out completely.
We know that:

3 .
Z D —Cp3 cp1 + 1cp2

¢ < 1pzaz> B (6291 —icpa cps ) (131)
1=

If xg = (é) , ((1)> then finding the rest of the solution set (y vectors

involves plugging x g vectors into (121).

0 1
vectors involves plugging x g vectors into (123).
Placing both of these solution sets in a table:

Similarly, if xp = (1> , <0> then finding the rest of the solution set (xr

E>0 E <O
Solution 1 | Solution 2 | Solution 1 | Solution 2
1 0 —Cp3 cp1Ficps
XL —|E|—mc? —|E|—mc?
0 1 Cp1—1Cp2 Ccp3
—|E|—mc? —|E]—mc?
—cp3 cp1ticps 1 0
XR |E|+mc? |E|+mc?
CP1—Cp2 Ccp3 0 1
|E|+mc? |E]+mc?

4.6 Orthogonality

Let’s now examine the orthogonality between these vectors, starting with E;0
Solutions 1 and 2:

1 1
0 0
i Tcm - : ‘ ‘—Cps 5
El|+mc El+me
cp1—icps cp1—icps (132)
|E|+mc? |E|+mc?

—Cp3 cp1 +icpa cp1 + icps cp3
=040 =0
+ +<E+m02)<E+m02)+(E+m02>(E+m02>

16



Likewise we find that between £ > 0 and F < 0 solutions there is also
orthogonality. Between E > 0 Solution 1 and F < 0 Solution 1:

1 —€p3
0 —|E|—mc?
_cp1—icps_ —ep: .
e || SEEme | = Ps___ LCEY) (133)
[El+mc? 1 —|E| —mc |E| + mc
cp1—icp2
|E|+mc? 0

And here is another example for £ > 0 Solution 1 and E < 0 Solution 2
(remembering that since this is an inner product we take the complex conjugate
of the first vector):

1 cp1ticps
0 —|E|—mc?
R - C] ic C] iC
—cps . 7|E|7mc2 — pl + p22 + pl + p; — O (134)
[ET+mc? 1 —|E| — me |E| + mc
Cp1—1Cp2
|E|+mc? 0

In summary:

wiﬂﬁw =0
1/)117//—1 =0
1/)121/)—1 =0
Y2 =0 (15
7/’127//—2 =0
¢i11/172 =0

4.7 Normalization

However, these wave function vectors are not yet normalized. In order to nor-
malize we find the "length”.

For example, the ”length?” (inner product with itself) of Solution 1 of E > 0
is:

c?p? Ap+ 12 + 2pl s cp?
(|E] +mc2)2 — (|E] +mc?)? (|E] +mc?)?

:1+M:1+W(IE\—mc2) _ 2lE]
(|E] + mc?)? WOE\—ch?) |E| + mc2

The result is the same for the rest of the solutions, meaning the normalization
constant we must multiply each solution term by is:

1 [|E| +mc?
= 1
length 2|E| (137)

17
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So, the solutions when they are normalized look as follows:

E>0 E<0
Solution 1 Solution 2 Solution 1 Solution 2
| E|+mc? 0 |E|+mc? _ —cps |E|+mc? _cpiticps
XL 2|E| 2|E| —|E]—-mc? 2|E| —|E|—-mc?
0 |E|4+mc? |E|+mc? cpy—icpa |E|+mc? cps
215 2B —|Bl—mc 2B —|Bl-mc
|El+mce?  —cps |E|4+mc? cpi+icps |E|+mc? 0
XR 2|E]  [E[+mc? 2|E| |E|+mc? 2|E]
|E|+mc? cp1—icps |[E|+mc®  cps |E|+mc?
0
2|E| |E|+mc? 2|E| |E|+mc2 2|E|

Between the two solutions for £ > 0 we know that Solution 1 can be in-
terpreted as the negative spin state and Solution 2 can be interpreted as the
positive spin state because:

1 1
()= (1) -
Meaning m, = _71 Likewise:
0 0
(01 () 35

The same is true for E < 0 where Solution 1 is m,
m, = 5

Let’s now think about what happens with a particle at rest. For a particle
at rest with a certain mass, we know that p; = 0 and E = mc?. Therefore our
solutions for E > 0 become:

%1 and Solution 2 is

1

. 0
Solution 1 = 0 (140)

0

0

. 1
Solution 2 = 0 (141)

0

This makes the above claim about the spin state of each solution even more
clear.

4.8 Charge

It turns out, ¥T491 has a physical meaning that can be understood as telling
you about the charge (or the direction in time). We don’t need to integrate this
value over x or t because they cancel out. Furthermore, overall we find that:
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Vi = (p.j) (142)

Where p is the charge density and ; is the current density which together
make the four-current.

Let’s apply this to the case of a particle at rest (5 = 0). The solutions to
this are:

FE >0: and F < 0:

o O =

(143)

o o = O
O = O O

(an]
— O O O

Performing v7y91) (7o defined in (93) on each of these respectively yields:
1, +1, =1, -1

Since we want to interpret this as physical charge, we don’t want this quan-
tity to change with momentum so for the case of the first solution in (143):

2p2 2(p? 4 p2 2p2
¢1170¢+1 —1_ p3 - (p P22)2 _ p
(IE| +mc2)2  (|E| + mc?)

|E| — mc? 2mc?

- B |E| + mc?

(|E|+me2)2 ~  |E[+me?

(144)
So, unlike before where we just used 114 we use 11791 to normalize.

. . E 2
In that case our normalization constant would be 4/ ZEme

2me?
So our normalized solution set for a particle at rest becomes:

/ |E\+mc2 0 0 0
20mcz |E|+mc? 0
0 ) Q(ijQ |[E|+mc? | 0

2mc2
E 2
0 0 0 V
But we want to extend this outside of just particle at rest solutions. So we

will find some matrix of these 7y to normalize and find orthogonality that has
components:

YiYo; (145)
This matrix looks like this:
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Yi1vve1r Y2y Yo1yoer Y20t

bivoth; = Yi1votye  Yiovtiz Yo1v%i2 Y_270%42
B Yp1vo¥—1 Yyovo¥-1 Y_170%-1 Y_270P-1
Yi1vot—2 Yyovo¥_2 Y_170%-_2 Y_2v0Y_2

1 0 P3 —P1—tp2
mc. mc
0 1 —Dp1tip2 —Pp3
— . mc mce
P3 —pi1+ips -1 0
mc, mc
P1—p2 p3 0 —1
mc mc

(146)

As you can tell, the terms that are crossed between negative and positive
charge values are non-zero, meaning they are not orthogonal with each other in

this way. The implications of this are to be expanded on.

4.9 Adding a magnetic field

Let’s define a magnetic field in the z direction:

—

B =Bz, ¢(>0)

— —

F=eVxB

- _  eB . . R . R .
= — = —V x2=—(vo® +vyf +v:2) X 2 = —0,§ + vy &
— :

dve _eB,
dt  m "
dv, eB
T m'”®
dv,
dt

. ,eB
vy = vosin(—t)
m

( eB 0

vy = vgcos(—

v m

where <2 is the cyclotron frequency and vy = v + v

U = vg[sin(wt) + cos(wt)y]
) A . N
7= —[—cos(wt)E + sin(wt)y]

w

2,2 2

2 2
- L L omug.., mys,. mvg .  mg .  evs ..
L=mfxi=—2[3= Boz: 02:62 ng:—QOBz
w e eB e‘B w

(147)
(148)

(149)

(150)
(151)

(152)

(153)

(154)

(155)

(156)

(157)



2
where ©% is a property of the charged particle.

P B_ mvi B _ m2vi B _ m2v3 (158)
w 14 e
Total energy is thus the sum of the free kinetic energy, the potential energy,
and the kinetic energy due to the magnetic field:

2
Total Energy = 2pim +V(r)+

—

L-B (159)

e
m

Do =

Let’s just note that .~ is a property of the particle, Lisa property of the

motion, and B is the external applied field.
We will define u = 5%

2m*
So now we will look at a new hamiltonian that we will define as Hg =

H+ ME - B. Our new wave equation becomes:

2m

IR L 9
{ (@ + a2 + @) +V(r)+pL- B} Y(x,y, 2,t) = Zhaw(%y,zv?ﬁ)
(160)

—h2 82 82 82 o
{27,”(6]:2 + o2 + @) +V(r)+pL- B} V(z,y,2) = EY(z,y,2) (161)
Let’s compare how this affects our energy level solutions by summarizing.
Before we had picked a set of operators that commute:

[H,L*] =0
[H, Lo] =0 (162)
[L?, La]
where a = 1,2,3
With this we ended up with:
[La, L) = ih€apeLe (163)

With this we were able to obtain a wave function ¢, ; (7,0, ¢) = |n,j,m)
and perform the operators on it:

L. |n,j,m) = hm|n,j,m) (164)
L? |n, j,m) = h*j(J + 1) |n, j, m) (165)
1[Ze27? me 1
H ] =F j = ——=|—| —=— j 1
|7’L,j,m> n|n7]7m> < 2 |:47T€0:| h2 712) |7’l,j,m> ( 66)

Now, with the introduction of a magnetic field we have our new operator
Hp = H + pL - B. The operation thus becomes (if L = L,2:
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- o eB .
H|n7j7m> = H|n7]7m> —I—,uLB\n,y,m) = En |najvm> + %Lz |na]7m>

e

. eB
- En |7’L,_j,m> +

h .
2me m |n?]7m>

(167)
The direction of the magnetic field sh_’oulg not matter, so we should end up
with the same result for B = BZ where L. - B = L, B

~5r3sind (168)

b3 ¢

(169)
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1 Perturbation Theory

1.1 Motivation
We defined the Hamiltonian:

H (2, 2,0) = iy, y, 2,1 )

Based on wave functions of this type we find that this Hamiltonian extracts
the energy of the wave in a stationary state:

)= la,y,2)e 7 (2)

Hé=E¢ (3)

We can define the entire wave function based on separate functions of the
following type which we have previously defined in more detail:

In=1,j=1,m=-1) = [R](r)P"(0)e™] T * (4)

The question becomes, with this setup, how do we go from this state to one
of a higher value of j7 The reality is that we have assumed that the state is the
same one over time. In more advanced quantum mechanics courses, perturbation
theory is used to show time dependent changes in state.

Side note: Hs Experiment

In the hydrogen gas experiment, there is a current run through hydrogen
gas and the current is controlled by a switch

There is a 6V (r,t) that happens whenever the switch is opened or closed
(gas is deexcited or excited). Perturbation theory shows one method for dealing
with these changes in the potential energy.

1.2 Perturbed Hamiltonian and Wave Functions

We know that Hy (with no perturbation) can be solved exactly:

Hy[n) = Ey |n) (5)

(By the way, these |n)’s are not necessarily referring to the n quantum num-
ber from the hydrogenic atoms solution.)
However, H (including a perturbation) cannot be solved exactly, where H is:

H = Hy+ A\Vi(r) A is ”small” (6)

We will denote this complete hamiltonian and solution set as:

H[¢) = Ey|9) (7)



(Ho +AV1)[¢) = Ey [6) (8)

However, we can rewrite these energies and solution sets as:

) = > Ngr) and Ey = > Ny 9)
k=0

k=0
With this we can rewrite (12) as:

(Ho + AVi) (o) + A1) + A2 [a) + ...)
= (ko + M+ Npz + ) (o) + Ad1) + A [¢2) +...)

Since A can be anything, equation (14) must be true for each term of A. So
for A to the power of 0:

(10)

)\0

Ho [¢o) = 110 |$0) (11)

We see that these |¢g) are just the unperturbed solutions of Hy, where:

[¢0) = [n) and po = En (12)
Then for A to first power:

)\1
Ho|¢p1) + Vi |do) = po|p1) + 11 o)
= (Ho — o) |¢1) = 1 |¢o) — Vi |¢o) (13)
= 1 |¢o) — Vi |n)

To this equation we can apply (n|:

(nl(Ho — En)[¢1) = 1 (nfn) — (n|Vi|n) (14)

Since we know that (n| Hy = E, (n|. This can be rewritten as:
Ey, (n|¢1) — By (nf¢1) = 0= p1 — (n[Viln) (15)
— 1 = (n|Viln)

These are the energy solutions for pq which we can use to find a closer value
to the total perturbed energy. Now let’s find the actual states (eigenvectors) of
this order A'. First, we think about how how any vector can be rewritten as a
linear combination of eigenvectors of Hy:

|61) = D Cron [m) (16)

Where these constants C',, are complex numbers.
So (17) is rewritten as:



(Ho = Ex) (D Crm [m)) = pua [n) = Vi |n)
= Y Cim(Ho — Ey) |m) = pu|n) = Vi |n) (17)
= Y Cra(Bn — En) [m) = p1 [n) = Vi [n)

Then we take inner product with (k|:

Y CunlEm = En) (Klm) = 1 (kln) — (k[Vi|n)

—— Clk(Ek — En) = mékn — (k\V1|n> (18)
f10kn — (k|Vi|n)
C =
— Gk E.—E,
If k # n then:
— (k[Wi|n)
- 1
Crk BB, (19)
With this we can finally write our vectors |¢1) in terms of this constant:
m|Vi|n
61 = 3 Cuon ) = Cua o)+ 3 A (20)
m m#n n m

So we're closer to knowing the perturbed states and their energies:

(m[Vi|n)
= =1 —_— + ... 21
[#) = |bo) + Algr) + ... = ( +ACI")|”>“7;LEH—Em+ (21)
where C1,, is fixed by normalization. The energies:
Ey=po+AMa+...=E, +X(n|Vi|n) + ... (22)

The A to the second order:

)\2

Ho |p2) + Vi |é1) = po [p2) + pa [d1) + p2 |do)
= (Ho — po) |p2) = p2 |¢o) + p1 |¢1) — Vi |o1)

For this order of A we use the same trick as for A\', rewriting the states as a
sum of other states:

(23)

|62) = > Cax |k) (24)

For clarity we will now also refer to |¢1) as the sum |¢1) = > Cy;|l)
So, equation (27) becomes:

> Cor(Ho = En) [k) = > Cuu(p — Vi) [1) + piz |n) (25)
k

l



Now we take the inner product with (m|:

Z CQk(Ek - 6k7n Z Cll /1/167nl - <m|‘/1‘l>) + /-L26mn (26)
k l

If m=n:

0=p1Crn — Y_ Cu (n|Vill) + po
l

= u1Crp — Crp (n|Viln) — Z (nVall) + po

l#n
27
= 11Cip — p1Cip *Z<H\V1|l>+u2 (27)
l#n
([[Vi]n) (n|VA]1)
= U2 = ZC][ <n|Vl|l> = Z W
l#n l#n
If m #n:
Cim C il
Copy = H1C1 El 11 <m| 1‘ > (28)

E, — E,

Once more using these we end up with something closer to the perturbed
state and energies:

62) 02k|k+z k|V |m) (1_ <m|V/|m>>+

(E[V"n) (n|V"|m)
Em - Ek Z (

Em - Ek)(Em - En)

k#m k#n
(29)
| (V! [n) |?
Ey=En+ (n|V'|n)+ Y A1
; b (30)
_ 7 (nV'[0) ([[V"|n)
= + (n|V'|n Z B, L

l#n

If we were to continue this pattern we could look for the third order of the
perturbed states:

)\3

(Ho — o) |¢3) = p3 o) + p2 |P1) + pa |d2) — Vi |é2) (31)

1.3 Perturbation Theory with Degenerate States

It may happen that there are unperturbed degenerate states that are affected
differently by an added potential or perturbation, making them non-degenerate.



More specifically had assumed that all for F, all m # n were such that
FE,, — E,, # 0 but this isn’t necessarily true.

So, let’s assume that E,, = E, 11 = po. This means that some unperturbed
|¢o) can be any linear combination of the two of them:

This |¢g) will have the same energy for any choice of C,, and Cj,41 so it can
be any linear combination of |n) and |n 4 1).

We will do the same trick of writing the next wave function as a sum of
vectors:

61) = > Cux |k) (33)
k

Plugging into the equation from the first order of lambda (13):

Ho — chk|k _Vvl)(cn |7’l> +Cn+1 |Tl+1>)
(34)
= Y Ci(Er — Ey) k) = (1 — Vi)(Cn [n) + Cryr In+ 1))
k

Then we take the inner products with both |n) and |n + 1):

Zcm By — Ep)0kn = 1Cr — Co (nVi|n) = Cppr (n|Viln + 1) (35)
chk (Ex — En)dk 1 = 1Cnyr — Cp (n + 1|Vin) — Crq1 (n + 1|Vin + 1)
(36)
Finally, we can write this system of equations as a matrix and solve for the
values of pq:
(n+1Viln) (n+1Viln+1)) \Cnir) =M \Cui

We want to find both the eigenvalues and eigenvectors of this equation.
**Note, in order for our values of energy to make physical sense, we don’t
want them to be complex. Therefore, V3 must be hermitian:

((n[Viln +1))" = (n + 1{Vi[n) (38)

2 Examples of Perturbation Theory

2.1 1D Harmonic Oscillator with V; =z

We know that for our perturbed states, the new energy (to the second order)
becomes:



Vi) (W
By = Byt (i) + 3 VLU 'EZM
l#n n

(39)

We also know that = = @((ﬂr + a). With this we can find the energy of a
perturbation where Vi = x:

V2b + b2 (n|at + a|l) (l|a’ + a|n)
E¢—En+7<”\a +a|n>+51¢2n B, —E
2b
:En—|—\[7 [Vn+1(n|n+1)+vn(njn—1)]
+g 3 WVIFT(nll+1)+ V|l — 1)+ 1{n+1) +ndn—1))
2 En - El
l#n
b? (VI+ 160151+ VI0ni—1)(Vn + 16115 + /161 41.0)
= En + = Z
2 En - El
l#n
B4 V/ny/nb? N Vn+1y/n + 162

2E, — En_1) = 2(Ep — Ens1)

) D)

2hw 2hw
1 1 1
= Bt 2mw? (n - i)hw—’_ 2mw?
(40)
2.2 1D Harmonic Oscillator with V; = z*
Again, we use the fact that x = f%l#(cﬂ +a).
This means that:
4b*
t=—(a" +a) 41
x T (a"+a) (41)
And the first order perturbation is:
b4
(nViln) = (nla|n) = = (nl(a’ + a)*|n)
b4
= Z(<n|aaaTaT|n> + (nlaa’aa’|n) +
(n|a’aaa’n) + (nlataataln) + (naa'a’a||n) + (n|a’alaaln)) (42)
b4
= 7+ 2)m+1)+ (n+ D2 +2(n+ )n+n? +n(n—1)]
h? 9



The fractional correction is thus just this perturbation divided by the total
energy:

6 5 3
Fractional Correction = z 4m2“’2( n(6+2 n;— ) 3)
n T ne +on +
4m2w2 (43)
4m2w2 (6n +5n+3)

(n—3)hw+ 4m2w2 (6n2 4 5n + 3)

This shows that the correction is greater for greater values of n because this
correction approaches 1 as n — oo.

2.3 Proton with Uniform density
Now we will exam a proton with a radius R where R = 10~ meters. The charge

is uniformly distributed charge with density:

e

_— 44
%ﬂ'R?’ ( )

p:

We use Gauss’ law to convert this to values for the electric field outside and
inside the radius of the proton:

/E.dhzi (45)

€0
Fanr? = apV = 77T;3€0 gm"s
o (46)
— F= dmeg B3  — R
Fdnr? = —pV = T ;3 gﬂ' 3
0 367; 0 (47)
- - 4eq rz2 = R

Then we convert these electric field values into values for electric potential
through £ = —VV. Then we multiply by another e to represent the potential
energy of the proton:

1 2..2
V(r) = L0 <R
8meg R®
12 (48)
—+D r>
Vir)= Tres T + r>R

The part of V where r > R is the same as the unperturbed state because
the proton ”looks” the same as a point particle outside that radius and also
v(o0) = 0, meaning D = 0.

At radius R:



1 er? -1 e

8meg R”3 471'60 r
I (49)
— C = P
8meo 5
Therefore the potential energy really looks like:
1 e?r? 3
V)= o g g TSR
TEo TEY) =
1 e ) (50)
\% — r>R
(r) = 4meg T "
The perturbation that exists when r < R comes from subtracting the per-
turbed and unperturbed (V(r) = 4;610 ZfQ) potential energies:
e? r? 1 3
ir)y=——»\|=z=+-—=—5 <R
)= ey <2R3 T 2R> h= (51)

Vilr)=0 r>R

For the lowest energy state of hydrogen, |n =1,j = 0,m = 0), which does
not have any degenerate states, we find the first order correction by integrating
in spherical coordinates like so:

2
r
<100|‘/1|100 1/1100 <2R3 ; ) wIOOT smﬁdrd&dqb
2 et ((12b3 - 3R2b + RY)ef — 126 — 12Rb — 3R%)
= 2)(2
4dTeg ST R3b (2)(2m)

(52)
The states of n = 2 are all degenerate however, so we have to solve the
following matrix based on perturbation theory:

(200|V;[200)  (200|Vi|21 —1)  (200[V4]210)  (200[V;|211) a
(21 — 1]V4]200) (21 — 1[V4]21 —1) (21 — 1[V3[210) (21— 1[v3[211) | | b
(210|V1[200)  (210|Vi|21 —1)  (210[V4[210)  (210[V4[211) c
(211V4]200)  (211[W4]21 — 1) (211[V4]210)  (211|V4[211) d
(53)
However, if we look at the potential it is clear that it only depends on are,
meaning that for any particular |njm) we know that:

27 ppi R
<nlm|{/1‘n/llml> :/ YlfnYl/m/smededqﬁ/ R(T)*VlR(T‘)’f’Qd’I"
0 0 0
. (54)
1B (2)(27) / R(r)*Vi R(r)r2dr

0

:#’1

QLo o e



The reason we can write it this way is we know that the perturbation Vi
is only dependent on r and not 6 or ¢. Thus we know that only the diagonal
terms of our matrix could survive.

When it comes to our 4 diagonal states, we know that [ = 0 the radial-
dependent part of our wave function takes the form:

r —r
R(r)a00 = (1= 1) e (55)
And for the [ = 1 states it looks like:
R(r) L ew (56)
T)21m = Qbe

For |200):

(200[V7[200) =
e 1 [13446° — 24R203 + 2R3b2 (268807 + 1344Rb* + 288R%D® + 36R3b? + 3RD) e %

4
4meg w(4b)3 R3 2R3 (4m)
e2b? 24R? 2R3 R R? R® 3R* _r
R YV P LRGN TV B0 S VY M T S LI
PRine 13 o Tty 28 T gp)e™)

(57)
Looking at this it is apparent that as R — 0, the perturbation approaches
1344 — 1344 = 0. If we plug in a value of R = 10~ " meters, we get a value of
-2.295221796726887¢-18 Joules for the perturbation
For |210),]21 — 1,),and |211):

(210[V1]210) = (21 — 1|V; |21 — 1) = (211|V4]211)
2 1 |6bez - ((1920b4 — A8R?0® + AR%b) e — 1920b* — 960Rb? — 192R?b? — 20R%b — R4)

)
dreg 4m(4b)3 R3 3

e2em b’ A8R2  4AR3 & R R? R® R

= (1920 — " + = )e? — 1920 — 960~ — 192—— — 20 — —

2eom B R [( o T ) b ZE b4}

e2b? 48R* 4R3 R R? R® RY _r

= 1920 — (192 4192 4205 4 —)e
2607T43Rg[go gt e — (19204 960 + 1925 42055 + r)e

(58)

Just like above, looking at this it is apparent that as R — 0, the perturbation
approaches 1920 — 1920 =0
Overall, the matrix representing the perturbation energies will look like:

(200| V1] 200) 0 0 0 a a
0 (21 — 1[V4]21 — 1) 0 | |»
0 0 (210[V4]210) 0 c|l = e
0 0 0 @11|vy211)) \d d
(59)

10



If we call this matrix A and take the determinant |A — A\I| and set it to zero,
we find the eigenvalues are:
A = (200|V1]200) , (21 — 1|V;|21 — 1), (210]V4|210), and (211]V4]211) (60)

Each of these eigenvalues can correspond to these eigenvectors (not normal-
ized):

1\ [0\ [0\ [0
o| [1] [of [o
o] o] 1] ]o (61)
o/ \o/ \o/ \1

Each of these eigenvalues represents the perturbation that corresponds to
that particular eigenvector, which represents to one of the degenerate states (in
the order represented in the matrix).

2.4 Applying an Electric Field to a Hydrogen Atom
We will think about how an electric field in the & direction will perturb a
hydrogen atom:
E = Ek (62)
This electric potential corresponding to this field, causing a perturbation,
will look like:
Vi = eE, = eErcosf (63)

We will first understand the lowest energy hydrogen state |100) and |200).
Both of these wave functions depend only on r and not € or ¢ Therefore the 6
integrals will go to zero because the functions inside are odd.

(n=1,2,j = 0,m=0|Viln = 1,2,5 = 0,m = 0)

[es} ™ 2m
= eE/ / / z/JTQL:LQJZO’mZO(r)r%os@sin&drd@c&b =0
o Jo Jo

Now, we can look at the other two of the three n = 2 degenerate states. For
these states it is also clear that for (21 — 1|V7]21 — 1) and (211|V7|211) the term
inside the df integral will go to 0 because the functions inside the integrals will
be periodic between 0 and .

(64)

00 T 2
<21 + 1|‘/1|21 + 1> = BE/ / / 1/)217m:i1¢21,i1T260595Z'n0d’r‘d9d¢ (65)
0 0 0

These two facts lead us to knowing the 1 values of the wave functions cannot
be the same to have a perturbation on that state. Additionally, we know the m

11



values must be the same for their to be a perturbation because if they are not
then the ¢ integral will go to zero because of e**® part of the wave functions.
With this in mind we can form the matrix:

0 —6eEb O 0
(nlm|Vi|nlm) = [ O 0 0 0—6eEb 0 0 O (66)
0 0 0 0

This matrix representing the perturbation can thus be diagonalized to find
the new states after perturbation:

—A —6eEb 0 0
0 —A 0 0
—6eFEb 0 - 0 (67)
0 0 0 =X
This becomes:
[A? = (=6eE)| A> =0 (68)
So our eigenvalues are:
A=0,0,—6eEb,6eEb (69)

We see that these two states, |200) and |210), have now been "mixed” and
after applying a perturbation have been changed into being a mix of the both
of them. these two mixed states (once normalized) are understood like so:

: _ L 1200y =
|mixed 1) = \/§[|200> |210)] (70)
|mized 2) = L[|200> + |210)] (71)

V2

Where mixed 1 corresponds to V; = 6eEb and mixed 2 corresponds to V; =
—6eFEb. So one of these mixed states is higher energy due to the perturbation
and the other is lower energy. No longer are there 4 degenerate states for n=2
but rather 2 degenerate states and these 2 other mixed states.

This hybrid states corresponds to a 2s and 2p orbital, and this concept might
have parallels to how bonding creates sp hybridizations, with the electrons in
the bonds acting as the electric field that causes a Stark effect that accounts for
changes in the states of the electrons.
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1 The Experiment

1.1 Introduction

A hydrogen lamp was placed with a current running through it, providing it
with energy. This causes the hydrogen lamp to emit light. The quality of the
light emitted from this lamp is investigated by splitting up the wavelengths it
emits through use of a diffraction grating which reflects the light at various
angles. The wave- like nature of light means that in certain locations, there will
be constructive interference and the light will be visible very clearly.

If there are only certain wavelengths of light visible, then this may be ex-
plained through the the idea of only quantized packets of light being able to
be emitted, which would each correspond to only a certain wavelength of light,
through the transition of a electrons from a higher to lower energy state. This
transitions and the energy loss associated with it would thus correspond to the
energy and thus wavelengths of the photons being emitted by the hydrogen
lamp.

diffraction grating

Hydrogen Lamp

Y telescope lens

eye piece
with cross
hair

The optical axis angle (6,) of the hydrogen lamp, shown as (a) in the figure
below, the angle of the "0 image” (fy), shown as (b) below, and every angle
of the various wavelengths of light, represented as (c) in the figure below, must
be measured.



Angle Vernier

(a) ’Il

origin

Hydrogen Lamp

1.2 Wavelength and Energy Calculations

These angle values are used to find a value for wavelength at each location.
First, the measured angles are converted into values for the incident angle (6;,)
and the outgoing angle (6,,¢):

90 - ea

Oin = =5 (1)

Hout =60- (Ha - gzn) (2)

These angles are used to find the difference in path-length between two
vectors of light hitting the diffraction grating at two different locations on the
grating. Here, D is the distance between locations on the diffraction grating
and is called the grating constant for the particular diffraction grating.



Each of these path-length differences is found by looking at the geometry:

Ain = Dcos(0;,) (3)
Aout - Dcos(eout) (4)

Therefore, the total distance in the path between these rays is:

Atotal = Azn - Aout = DCOS(ein) - Dcos(eout) (5)
In order for the light to be visible, the rays must be constructive, meaning

the difference in the path-length of the rays must be an integer of the wavelength
of the light:

Atotal = md)\ (6)
mg = 0,41, 42, +3, ... (7)

Therefore wavelength is described as:

5= Dcos(0;r) — Dcos(Oout) (8)
mgq
These wavelengths can be converted to an energy value through the use
of some constant, which we theorize to be Planck’s constant. This constant

converts the frequency of the light into a value for energy in Joules:

hc
B== 9)
This can now be expanded on further by theorizing on the form and use of
so-called wave functions that describe the electron in the hydrogen atom (and
thus dictate the energies/wavelengths of the emitted photons). Further detail

on this will now be provided.



1.3 Introduction to Wave Functions

Wave functions can be written in terms of functions of their separate spherical
coordinates as follows:

Unjom = R i (r) P (0)e™? (10)

Where n is a quantum number related to the total energy, j is related to the
angular momentum, and m is related to the projection of the angular momen-
tum.

Written in detail, these wave functions are in the form:

k=0

To find values of Y2 [ Cj (%)k7 first we need to know how many of these
constants are nonzero for a state. So, we define some P which is the upper limit
of k. We find this P to be related to n and j through P =n —j5 — 1.

Furthermore, we will find in this chapter that the relationship between con-
stants is the following, allowing us to put all the constants in terms of the lowest
constant Cy, which can then be found through normalization:

Lk+j+1)-1
k+D)(k+2j+2) "
The P;" functions can be found for different m’s by starting off with the

largest or smallest value of m possible for a given j and then using the relation-
ship below to find the functions for the rest of the states of that j:

Ok+1( (12)

P! = P77 = Nj[sinf)’ (13)
RA—— P™(0) = /(G +1) —m2 — mPmH! (14)
a0 mco i =VJU m meb;

We find that the part of the wave function that is dependent on the angles
0 and ¢, in other words P;”(G) and e"™? was understood through using the
angular momentum operators. However, the radial part of the wave function
and in particular the sum ;2 Cj (%)k was found by inserting a potential
energy into the wave equation, in this case the potential of a hydrogen atom,
which is dependent on r.

We will now go into detail about how this way of writing the wave function
came about.

1.4 Hydrogen Atom Potential and How It Alters the Wave
Functions

Through experiment, the potential of a hydrogen atom has been found to be:



. 2
O P

dmeg T

(15)

Where € is the permittivity of free space, Z is the atomic number (1 in the
case of hydrogen), and e is the charge of an electron.

In order to apply this potential to the previous setup, we will convert to
natural units. So, we will set b as the following in order to convert r to natural
units as in:

r=bu (16)
2m Ze?
NAC 1
h? 4meq (17)

And by plugging in all these constants and rearranging for b we arrive at:

b = 2.64588603 x 10~ meters (18)

We see that the units of 2%’2 are Joules, meaning for natural units of energy
we can set:

B —h
©2mb?

B (19)

Our energy equation was:

d*yp ;(r) n 2(j+1) dyg ;(r) n 2m
dr? r dr h2
So our energy equation in natural units becomes:

R n 2(j +1) dxg,j(u)
du? U du

— s+ e ) =0 (21)

2 .
By examining the limit as u — oo we find that dXdET‘é(u) ~ axg,;j(u) and

thus g ;j(u) ~ e P and so we rewrite xg ;(u) as:

xe,j(w) = e PR j(u) (22)
Where Rg ;j(u) is a polynomial:

Rpj(u) =Y cpu® (23)
k=0

This ultimately results in (12) being rewritten as:

12064+ 1)k 1) 4 £k lewin + [(—28)k+ (1— 20+ D)Jecut =0 (21)
k=0



Since each of these terms in the sum must be 0 in order for the total sum
to be 0, we know that the coefficient of each term must be 0, resulting in the
recursion relation:

28(k+j+1)—1
E(k+1)+2(+1)(k+1)
Furthermore, we know that the polynomial Rg j(u) must terminate because

XE,; — 0 as u — oo (due to normalizability conditions). So there must be some
value of k, which we will call P, for which:

Crr1 = (25)

28(P+j+1)—1=0 (26)

We can rearrange for a value of § (energy):

1 1
== 27
b 2+P+1) 2n (27)
So, our solutions depend on 3 quantum numbers:
n=123,..
ji=0,1,2 .. (28)
m = _ja _j + ]-7 a] - 17]
(And P is a result of a choice of a particular j and n):
P=n—j-1 (29)

We have been working in natural units but also, of course, if we want, we
can always bring our wave function back to units of r, in which case it would
look again like this:

k=0

2 Data

2.1 Wavelength/Energy at Each Data Point

These are the values for wavelength and energy at each angle data point, com-
puted from equation (8) and (9).



Values of Wavelength and Energy when m_d=1

Wavelength (nm) Energy (eV)
Red 654.9 +/- 1.6 1.893 +/- 0.005
Green-Blue  486.0+/- 1.5 2.551 +/- 0.008
Violet 428.0+/-1.5 2.897 +/- 0.010
Dark Violet 413.8+/-1.4 2.996 +/- 0.010
Values of Wavelength and Energy when m_d=2
Wavelength (nm) Energy (eV)
Red 656.2 +/- 0.7 1.890 +/- 0.002
Green-Blue  485.5+/-0.8 2.554 +/- 0.004
Violet 433.7 +/- 0.8 2.859 +/- 0.005
Dark Violet ~ 409.6 +/- 0.8 3.027 +/- 0.006
Values of Wavelength and Energy when m_d=3
Wavelength (nm) Energy (eV)
Green-Blue  485.91 +/- 0.36 2.552 +/- 0.002
Violet 433,56 +/- 0.45 2.860 +/- 0.003

2.2 Final Wavelength and Energy Values

Using these values, we can find the weighted mean and uncertainty of each
wavelength and energy, as described in the data analysis section:

Weighted Mean Values of Wavelength and Energy for Each Wavelength

Wavelength (nm) Energy (eV)
Red 655.99 +/- 0.62 1.890 +/- 0.002
Green-Blue  485.85 +/- 0.32 2.552 +/- 0.002
Violet 433.21+/- 0.38 2.862 +/- 0.003
Dark Violet ~ 410.66 +/- 0.72 3.019 +/- 0.005

3 Conclusions of the Experiment

4 Connecting back to our lecture

We had designated g to in essence be what defines our natural unit of energy
where:

_h2
T 2mb?
(Remember we found set found that 8 = m and set this to 8 = 5-)

This E is the total kinetic energy of the electron in a given state.
For the electron on a hydrogen atom this simplifies to:

—_ 724 _ 724
E gr= e 2 T (31)
8m2egh? 32n2e5h%n?

—etm,

- 32m2e3h2n?
In the experiment, we look at the Balmer series, meaning transitions from
n=3,4,5,6... down to n=2. So the wavelengths coming from the hydrogen lamp

E, (32)



would have the energy of these transitions. For example, for the transition from
n=3 to n=2:

—etm, 1 1
Eys—F=—F—|=5— = 33
5T 3on2a2p? (32 22> (33)
And for any other transition down to n=2 we find that:
—etme, 1 1
E,—Fy=—s—=|——- 34
2 32m2e3h? <n2 4) (34)
For these constants:
C?s?

€0 = 8.8541878128 x 10712
kgm3

k 2
h = 1054571817 x 10*34% (35)

e =1.602176634 x 10~1°C
me = 9.1093837015 x 103 kg

So the photon energies emitted by Balmer series transition are defined by:

—etm, (1 1 11
E,=E, — E em(—)——13.6< > eV

- 32m2e3h? \n? 4 n2 4
1 1
=2.17987236 x 10718 <4 - n2> Joules
6.241509 x 108 eV 1 1 (36)
= 2.17987236 x 10718 % [ = - =
J 4 n?
1 1
= 13.60569 (4 — n2) eV
The first four transitions would be:
1 1
Ninitial = 3 : F3 — Fy = 13.60569 <4 — 9> eV = 1.889680 eV (37)
1 1
TNinitial = 4 1 E1 — Ey = 13.60569 (4 — 16) eV = 2.551067 eV (38)
1 1
TNinitial = D : Es — Ey = 13.60569 (4 — 25) eV = 2.857196 eV (39)

1 1
Ninitial = 0 1 g — By = 13.60569 <4 — 9) eV = 3.023487 eV (40)



This experiment provides evidence for the ideas, mathematics, and theory
behind quantum mechanics and the quantization of the energy states of an elec-
tron. It also confirms that the wavelengths observed are coming from the Balmer
Series visible wavelengths of Hydrogen because the values are very close to the
literature and computed values and the experimentally determined Rydberg
constant is accurate when assuming these are Balmer series wavelengths (how
the Rydberg constant was determined experimentally was not presented here).
Additionally, most of the Balmer Series includes visible wavelengths, which is
what was seen experimentally.
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