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1 Central Force Problem

1.1 Introduction to the Problem

We start with a system in which there is a force between two objects that
depends only on the distance between them and that is directed along the line
between them:

F⃗m2→m1
= −F⃗m1→m2z

This vector can be represented as its magnitude in a certain direction r̂:

F⃗m2→m1 = f(r)r̂

where r̂ = r⃗
∥r⃗∥ . The magnitude of this force, f(r), is conservative, and is

thus the change in potential energy over change in distance, leading to:

f(r) = −dV
dr∫ r

0

f(x)dx = V (r)− V (0)

Using Newton’s Second Law we can see that:

F⃗m2→m1
= f(r)r̂ = m1

dr⃗1
dt

F⃗m1→m2
= −f(r)r̂ = m2

dr⃗2
dt

These two forces are equal and opposite, meaning that:

m1
dr⃗1
dt

+m2
dr⃗2
dt

= 0
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1.2 Converting to the Center of Mass Frame

We want to use the center of mass. This is because many problems can be
simplified using center of mass and it can be conceptualized as ”the particle
equivalent of a given object for application of Newton’s laws of motion.” At
this point, the weighted relative position of the distributed mass sums to zero
and any force can be applied to cause a linear acceleration without an angular
acceleration (Wikipedia).

So, finding the center of mass of this system:

r⃗CM =
m1r⃗1 +m2r⃗2
m1 +m2

We can then find the velocity and acceleration of the center of mass:

v⃗CM =
d

dt
r⃗CM =

1

m1 +m2
[m1

dr⃗1
dt

+m2
dr⃗2
dt

]

a⃗CM =
d

dt
v⃗CM =

1

m1 +m2
[m1

d2r⃗1
dt2

+m2
d2r⃗2
dt2

]

We establish initial conditions of constant velocity V⃗CM , initial position
R⃗CM , and nonzero angular momentum (this one will come in handy later):

v⃗CM = V⃗CM

r⃗CM = V⃗CM t+ R⃗CM

L⃗ ̸= 0

We can perform a change in coordinates and make the center of mass at
time = 0 be our new origin:
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r⃗1 = r⃗′1 + V⃗CM t+ R⃗CM

r⃗2 = r⃗′2 + V⃗CM t+ R⃗CM

The acceleration in each coordinate system is the same:

d2r⃗1
dt2

=
d2r⃗′1
dt2

d2r⃗2
dt2

=
d2r⃗′2
dt2

Now we can rewrite the center of mass in the new coordinate system:

r⃗CM =
m1r⃗1 +m2r⃗2
m1 +m2

=
m1(r⃗′1 + V⃗CM t+ R⃗CM ) +m2(r⃗′2 + V⃗CM t+ R⃗CM )

m1 +m2

=
m1r⃗′1 +m2r⃗′2
m1 +m2

+�����
(m1 +m2)(V⃗CM t+ R⃗CM )

(((((m1 +m2

=
m1r⃗′1 +m2r⃗′2
m1 +m2

+ r⃗CM

∴
m1r⃗′1 +m2r⃗′2
m1 +m2

= 0

From there we make a system of equations and solve for these new position
vectors. These position vectors have their origin at the center of mass at t = 0:

m1r⃗′1 +m2r⃗′2 = 0

r⃗′1 − r⃗′2 = r⃗

r⃗′1 =
m2r⃗

m1 +m2

r⃗′2 =
−m1r⃗

m1 +m2

1.3 Finding Angular Momentum

We define reduced mass as follows:

m =
m1m2

m1 +m2

If m1 is small and m2 is big:

m1m2

m1 +m2
≈ m1
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The force in the system (which is the same but in the opposite directions
for each of the two objects in the system) can be represented using this reduced
mass: (

m1m2

m1 +m2

)
d2r⃗

dt2
= f(r)r̂

≈ m1
d2r⃗

dt2
= f(r)r̂ = −dV

dr
r̂

Note that here d2r⃗
dt2 is sometimes termed ”relative acceleration” and is the

difference in acceleration of the two bodies. It is also, by definition, the accel-
eration of the distance between the two bodies.

Angular Momentum of this reduced mass system:

L⃗ = r⃗ × p⃗ = mr⃗ × dr⃗

dt

Change in angular momentum over time (should be zero for a closed system):

dL⃗

dt
= m

����dr⃗

dt
× dr⃗

dt
+mr⃗ × d2r⃗

dt2

= rr̂ × f(r)r̂

= rf(r)r̂ × r̂ = 0

We have proven that the magnitude and direction of the angular momentum
L⃗ don’t change over time

1.4 Angular Momentum in Cylindrical Coordinates

Now we can set the direction of the angular momentum as the z direction and
choose cylindrical coordinates. This will serve in helping us find additional
information about the system, such as angular velocity.

L⃗ = Lẑ

Cylindrical coordinates are defined as follows:

r⃗ = xx̂+ yŷ + zẑ = ρρ̂+ zẑ

ρ̂ = cosϕx̂+ sinϕŷ

ϕ̂ = − sinϕx̂+ cosϕŷ

z⃗ = zẑ

Conversions:
ρ =

√
x2 + y2

x = ρ cosϕ
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y = ρ sinϕ

Change over time:

dρ̂

dt
= (− sinϕx̂+ cosϕŷ)

dϕ

dt
=
dϕ

dt
ϕ̂

dϕ̂

dt
= (− cosϕx̂− sinϕŷ)

dϕ

dt
= −dϕ

dt
ρ̂

dr̂

dt
=
dρ

dt
ρ̂+ ρ

dρ̂

dt
+
dz

dt
ẑ =

dρ

dt
ρ̂+ ρ

dϕ

dt
ϕ̂+

dz

dt
ẑ

Right-handed system:
ρ̂× ϕ̂ = ẑ

ϕ̂× ẑ = ρ̂

ẑ × ρ̂ = ϕ̂

Revisiting our equation for angular momentum using cylindrical coordinates:

L⃗ = m(ρρ̂+ zẑ)×
(
dρ

dt
ρ̂+ ρ

dϕ

dt
ϕ̂+

dz

dt
ẑ

)

L⃗ = Lẑ = −mzρdϕ
dt
ρ̂−mρ

dz

dt
ϕ̂+mρ2

dϕ

dt
ẑ +mz

dρ

dt
ϕ̂

All terms not in the ẑ direction must be zero because of the direction we
defined the angular momentum, therefore:

L⃗ = Lẑ =
�
����

−mzρdϕ
dt
ρ̂−

�
�

��
mρ

dz

dt
ϕ̂+mρ2

dϕ

dt
ẑ +

�
�
��

mz
dρ

dt
ϕ̂

Lẑ = mρ2
dϕ

dt
ẑ

The value of L is therefore:

L = mρ2
dϕ

dt

Since we defined our system as having a nonzero, constant angular momen-
tum, we can now infer that m, ρ2 and dϕ

dt must all be nonzero.
Additionally, rearranging:

dϕ

dt
=

L

mρ2

dϕ
dt is the change in angle over time, otherwise known as the angular velocity,

often denoted ω.
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1.5 Finding Total Energy Equation from Total Force

Given that the angular momentum is in the z-direction, we can infer that the
two bodies must exist on the xy plane, and thus the position and force of the
reduced mass system would be:

r⃗ = ρρ̂

f(r) = f(ρ)

In order to find a value for the force in cylindrical coordinates, we start by
first finding the second derivative of r⃗:

d2r⃗

dt2
=

d

dt

(
dr̂

dt

)
=

d

dt

(
dρ

dt
ρ̂+ ρ

dϕ

dt
ϕ̂+

dz

dt
ẑ

)

=
d2ρ⃗

dt2
=
d2ρ

dt2
ρ̂+

dρ

dt

dϕ

dt
ϕ̂+

d2ϕ

dt2
ϕ̂− ρ

(
dϕ

dt

)2

ρ̂

=

(
d2ρ

dt2
− ρ

(
dϕ

dt

)2
)
ρ̂+

(
2
dρ

dt

dϕ

dt
+ ρ

d2ϕ

dt2

)
ϕ̂

If we take the derivative of the angular momentum with respect to time it
can add valuable information for simplifying this equation. We use the value
for angular momentum previously found:

Lẑ = mρ2
dϕ

dt
ẑ

dL⃗

dt
= 0

dL⃗

dt
=

d

dt

(
mρ2

dϕ

dt

)
ẑ

= ρ

(
2
dρ

dt

dϕ

dt
+ ρ

d2ϕ

dt

)
ẑ

Since we know ρ cannot be 0 (from the angular momentum equation), then:

2
dρ

dt

dϕ

dt
+ ρ

d2ϕ

dt
= 0

Therefore going back to the second derivative of r⃗ we get:

d2r⃗

dt2
=

(
d2ρ

dt2
− ρ

(
dϕ

dt

)2
)
ρ̂

The value of the force thus becomes:

f(ρ) = m

(
d2ρ

dt2
− ρ

(
dϕ

dt

)2
)

=
−dV (ρ)

dρ
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Rearranging and multiplying by dρ
dt :

dρ

dt

[
m

(
d2ρ

dt2
− ρ

(
dϕ

dt

)2
)

+
dV (ρ)

dρ
= 0

]

m
d2ρ

dt2
dρ

dt
− L2

m

1

ρ3
dρ

dt
+
dV (ρ)

dρ

dρ

dt
= 0

d

dt

(
1

2
m

(
dρ

dt

)2
)

+
d

dt

(
L2

2mρ2

)
+
dV (ρ)

dt
= 0

What we’re left with is an equation for the total energy differentiated with
respect to time:

d

dt

[
1

2
m

(
dρ

dt

)2

+

(
L2

2mρ2

)
+ dV (ρ)

]
= 0

d

dt
(Linear Kinetic Energy +Angular Kinetic Energy + Potential Energy = Total Energy) = 0

1.6 General Example

Now we can examine a general example of the Central Force Problem where k
is some force/energy constant and V (ρ) is some potential energy:

V (ρ) =
−k
ρ

dV

dρ
=

k

ρ2

F =
−dV
dρ

=
−k
ρ2

Re-examining the total energy equation:

Etotal =
1

2
m

(
dρ

dt

)2

+

(
L2

2mρ2

)
+ V (ρ)

We can plot the part of this equation that corresponds to angular kinetic
energy and potential energy (

(
L2/2mρ

)
+ V (ρ)) with respect to ρ. Remember

ρ is the same as r or distance for our given initial conditions.
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This part of the equation that we have plotted is dependent on k (our
force/energy constant), on the angular momentum L, and on the mass m. The
graph shown has these values set to 1. On the other hand, the linear kinetic
energy is not dependent on L or k. Furthermore, if we rearrange we get:

Ymin ≤ L2

2mρ2
− k

ρ
= E − 1

2
m

(
dρ

dt

)2

E ≥ 1

2
m

(
dρ

dt

)2

+ Ymin

E ≥ Ymin

Therefore Ymin (the lowest Y-value in the graph) is the minimum total en-
ergy which we will call Emin

And how do we find this Emin? We can take the derivative of the graph and
set it to 0 to find the minimum.

dY

dp
=

−L2

mρ3
+

k

ρ2
= 0

=⇒ L2

mρ��3
=

k

ρ2

=⇒ L2 = kmρ

=⇒ L =
√
kmρ

And so we end up with an expression for angular momentum L at the point
where there is a stable, circular orbit.

1.7 Earth and Sun

We are going to focus once more on the previously graphed quantity L2

2mρ − k
ρ

which corresponds physically to the sum of the angular kinetic energy and the
potential energy and can tell us about the minimum total energy. We’ll call this
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value Y. We are going to set our k constant equal to GmSmE where G is the
gravitational constant mS and mE are the masses of the Sun and Earth.

Y =

(
L2

2mρ2

)
− GmSmE

ρ

We know that there should be no change in the minimum energy over dis-
tance so:

dYmin

dρ
=

−2L2

2mρ3
+
GmSmE

ρ2
= 0

1

ρ2min

[
GmSmE − L2

mρ2min

]
= 0

GmSmE =
L2

mρmin

Therefore:
L2 = mρminGmSmE

ρmin =
L2

GmSmEm

As you may remember, m is the reduced mass of the system. For a system
such as the Sun and Earth, this can be approximated as solely the mass of the
much smaller object, in this case the Earth:

m ≈ mE

L2 ≈ ρminGmSm
2
E

ρmin ≈ L2

GmSm2
E

Substituting L2 and ρmin back into our minimum energy equation we get:

Ymin = Emin =
���ρminGmSmE��

2

2��mEρmin��
2

− GmSmE

ρmin

Emin =
GmSmE

2ρmin
− GmSmE

ρmin
=

−GmSmE

2ρmin

Emin =
−GmSmE

2

[
GmSm

2
E

L2

]
=

−G2m2
Sm

3
E

2L2

In order to find the minimum energy we must go back to our equations for
angular momentum L:

L = mρ2
dϕ

dt

L =
√
kmρ
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In this case our k constant is GmSmE .
So if we substitute our values for the Earth and Sun:

ρ = 1.496× 1011 meters

G = 6.67× 10−11 N ∗ kg−2m2

mS = 1.9891× 1030 kg

mE = 5.97219× 1024 kg

L =
√
GmSm2

Eρ = 2.66× 1040
kg ∗m2

s

We can also do the same for the angular velocity dϕ
dt :

dϕ

dt
=

L

mEρ2
= 1.991× 10−7 sec−1

The amount of time it takes for the Earth to go around the Sun would then
be:

P =
dϕ

dt
∗ 31, 536, 000 sec ∗ year−1

2π
= 0.999 years ≈ 1 year

We can also go back and find the minimum energy of the system in this
circular orbit:

Emin =
−G2m2

Sm
3
E

2L2
= 2.65× 10−39 J

1.8 Bohr Atom

Now we’ll examine a hydrogenic atom, meaning any atom with a nucleus and

1 electron orbiting it. We’ll set the k constant equal to Ze2

4πϵ0ρ
where e is the

charge of an electron, Ze is the charge of the protons in the nucleus where Z
is the number of protons, and 1

4πϵ0
is the constant for the permittivity of free

space

Y =

(
L2

2mρ

)
− Ze2

4πϵ0ρ

We know that there should be no change in the minimum energy over dis-
tance so:

dYmin

dρ
=

−2L2

2mρ3
+

Ze2

4πϵ0ρ2
= 0

1

ρ2min

[
Ze2

4πϵ0
− L2

mρ2min

]
= 0

Ze2

4πϵ0
=

L2

mρmin
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Therefore:

L2 =
mρminZe

2

4πϵ0

ρmin =
L24πϵ0
Ze2m

Substituting this back into the minimum energy equation we get:

Emin =
�m��ρminZe2

4πϵ0

2��mρmin��
2
− Ze2

4πϵ0ρmin

Emin =
Ze2

8πϵ0ρmin
− Ze2

4πϵ0ρmin
=

−Ze2

8πϵ0ρmin

Emin =
−Ze2

8πϵ0

[
Ze2m

L24πϵ0

]
=

−Z2e4m

2(4πϵ0)2
1

L2

Emin =
−Z2e4m4π2

2(4πϵ0)2h2
1

n2
=

−Z2e4m

8ϵ20h
2

1

n2

However, the minimum energy of a Bohr atom is quantized through its
angular momentum L (where n is an integer):

L =
h

2π
n

But where did this value for the angular momentum come from? Well,
when Niels Bohr analyzed hydrogen spectrum data, he noticed that the angular
momentum must be quantized in order to fit the data he gathered. De Broglie
expanded on this by justifying this quantization using the De Broglie relation,
p = h

λ which basically implies that the electron has a wave-like nature and thus
a wavelength that relates to its momentum p.

If we assume the electron orbits that nucleus in a standing wave, where only
integers of that standing wave frequency can exist along the orbit, 2πr, then we
can justify the following:

2πr = nλ

Using the De Broglie relation:

2πr = n
h

p

Finally, through some rearranging we arrive once more at the quantized
angular momentum:

h

2π
n = pr = L

For the smallest value of n, n=1, we can find the angular momentum and
minimum energy:
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L =
h

2π
∗ 1 = 1.05457× 10−34 J ∗ sec

me− = 9.1093837× 10−31 kg

Emin =
−Z2e4m

8ϵ20h
2

1

n2
= −2.179× 10−18 J = −13.607 eV
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2 Wave Mechanics

A general solution to the one dimensional classical wave equation is:

ψ(x, t) = ei(kx−ωt)

kx− ωt is a constant so we can see:

c = kx− ωt

Focusing on the x in this equation:

x =
c

k
+
ωt

k

Since c, k (wavenumber), and ω (angular frequency) are all constant, this is
an equation of the position that is dependent on ω

k , which is the velocity of the
wave:

0 = kdx− ωdt

dx

dt
=
ω

k
=

2πf
2π
λ

= λf = v

*****************************************

Particle mechanics Energy

Etotal =
1

2
m

(
dρ

dt

)2

+

(
L2

2mρ2

)
+ V (ρ)

E =
p⃗ · p⃗
2m

+ V

*****************************************

In wave mechanics, the process of finding the total energy (or extracting
other information such as average position) is different than in particle mechan-
ics. We have to perform an operation on the wave function that yields the total
energy multiplied by the original wave function:

(energy operator)ψ = Ĥψ = Etotalψ

(operator)ψ = (information)ψ
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2.1 Energy and Momentum Operators

Some operations we can perform on this wave:

iℏ
d

dt
(ψ(x, t)) = ℏωψ(x, t)

where iℏ d
dt is the energy operator and ℏω is the resulting value for energy.

−iℏ d

dx
(ψ(x, t)) = ℏkψ(x, t)

where −iℏ d
dx is the momentum operator and ℏk is the resulting value for

momentum.
Therefore energy and momentum of a wave are:

E = ℏω
p = ℏk

This makes sense when examining some possible units of each:

E = ℏω = (J ∗ sec)(sec−1) = J

p = ℏk = (J ∗ sec)(m−1) = ((
kg ∗m2

sec2
) ∗ sec)( 1

m
) = kg ∗ m

sec
We can also rewrite the angular frequency and energy of a free wave using

our values for energy and momentum:

p = ℏk

E = ℏω =
p2

2m

=⇒ E =
ℏ2k2

2m

=⇒ ω =
ℏk2

2m

***********************************************************************

Experimental Input

Through various types of measurement, we obtain values at certain locations
that we interpret as the intensity of this wave function, and we represent them
as the square of the wave function:

P (x) = ψ2(x)

*If we assume ψ(x) > 0, then for all x, ψ(x) =
√
P (x)

***********************************************************************
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2.2 Understanding Time-Independent Free Wave

Free waves must be proportional to this general solution, ei(kx−ωt).
Now, for the wave at time=0 and setting the proportionality constant be-

tween ψ and ei(kx−ωt) equal to 1:

ψ(x) = eikx

This wave function can be represented as the sum of many different wave
functions at different frequencies (Fourier Transform or visually interpreted as
an infinite vector summation). But how do we know this is true? We are going
to go through the steps to prove it:

ψ(x) =

∫ ∞

−∞
ψ̃(k)eikxdk

First, we’ll set up some parameters for this free wave, and assume that the
function starts and ends at the same value (this makes it periodic, and thus we
can later represent it as a Fourier series). Although we are denoting a length
for our function, eventually this length should be extended to approach infinity:

x =

[
−L
2
,
L

2

]

ψ

(
−L
2

)
= ψ

(
L

2

)
=⇒ ei(−k(L

2 )) = ei(k
L
2 )

=⇒ 1

ei(k(
L
2 ))

= ei(k
L
2 )

=⇒ ei(kL) = 1 = ei2πn

Therefore:
kL = 2πn

ψ(x) = ei
2πn
L x

*Note, the intensity, which we had previously described as the ψ(x)2 is more
accurately ψ∗(x)ψ(x).

Kronecker Delta for a Free Wave

Now, we are going to define a function in this bound, called gn(x), with a
constant 1√

L
that will serve when normalizing the entire wave function to have

a total intensity of 1 along the entirety of L:

gn(x) =
1√
L
ei

2πn
L x
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If we multiply the function by its complex conjugate and integrate from −L
2

to L
2 : ∫ L

2

−L
2

g∗n(x)gl(x)dx =
1

L

∫ L
2

−L
2

ei
2π
L (l−n)xdx

=
1

L
∗ [L if l = n, 0 if l ̸= n]

=
L

L
δnl = δnl

This symbol δnl is called the Kronecker Delta and is a representation of
the result where all values equal 0 except for when n = l. When n = l, the
Kronecker Delta denotes a value of 1.

Finding a Specific Coefficient/Component of Our Wave Function

Since our function ψ(x) is periodic, we can rewrite ψ(x) as a Fourier Series,
in terms of a linear combination of ψ̄ngn(x):

ψ(x) =

∞∑
n=−∞

ψ̃ngn(x)

Multiplying by g∗l (x) and integrating (and taking out the 1√
L
from g∗l (x) for

better notation):

1√
L

∫ L
2

−L
2

ψ(x)g∗l (x)dx =
1

L

∫ L
2

−L
2

∞∑
n=−∞

ψ̃ngn(x)g
∗
l (x)dx

=
1

L

∞∑
n=−∞

ψ̃n

∫ L
2

−L
2

gn(x)g
∗
l (x)dx =

1

L

∞∑
n=−∞

ψ̃nδnl

=
1

L
ψ̃n=l

Therefore, when we multiply the wave function by the complex conjugate of
the function and then integrate, we end up with the that ”component” of the
wave function (and maybe also with some coefficient depending on our notation):

=⇒ ψ̃l =

∫ L
2

−L
2

ψ(x)g∗l (x)dx =

∫ L
2

−L
2

ψ(x)e−i 2πl
L xdx

Going to infinite length
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Now that we have defined the wave function in both position and wave
number domains across L, we want to extend that to infinite length.

So, once more we can examine our function as a Fourier Series (Reminder
that we can do so because we expressly had defined it as periodic by making
ψ(−L

2 ) = ψ(L2 )).
This time removing 1

L for notation purposes:

ψ(x) =

∞∑
n=−∞

ψ̃ngn(x) =
1

L

∞∑
n=−∞

ψ̃ne
i( 2π

L )nx

We can rewrite this in the format of a Riemann Sum:

ψ(x) =
1

2π

∞∑
n=−∞

(
2π

L

)
ψ̃ne

i( 2π
L )nx

***********************************************************************

(Riemann Sum Formula for Reference):

lim
∆→∞

∞∑
n=−∞

∆f̃ (n∆) =

∫ ∞

−∞
f̃(x)

***********************************************************************

Previously we said that kL = 2πn. Now, denoting k = 2π
L , and as L approaches

∞ we get ψ(x) written as an inverse Fourier transform:

ψ(x) =
1

2π

∫ ∞

−∞
ψ̃(k)eikxdk

Proving that the above is true:

ψ(x) =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
ψ(y)e−ikydy

]
eikxdk

ψ(x) =

∫ ∞

−∞
ψ(y)

[∫ ∞

−∞

1

2π
eik(x−y)dk

]
dy

=

∫ ∞

−∞
ψ(y) [δ(x− y)] dy

***********************************************************************

Dirac Delta Function: :

δ(x− y) = δ(z) =
1

2π

∫ ∞

−∞
eikzdk
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***********************************************************************

Tying back to measurements

Taking a look at our measurements (or really the measurements that some-
one, somewhere took), they appear in a Gaussian distribution so we can define
P(x) as such:

P (x) =
1

σ
√
2π
e−

x2

2σ2

To solve the integral of this across all of x we can examine this known integral
solution: ∫ ∞

−∞
e−αx2

dx =

√
π

α

Relating it back to the Gaussian Distribution:∫ ∞

−∞
P (x) =

∫ ∞

−∞

1

σ
√
2π
e−

x2

2σ2 dx = 1

The wave function defined in terms of this Gaussian distribution :

ψ(x) =
1

(2πσ2)
1
4

e−
x2

4σ2

We can again perform a Fourier Transform on this to find a different domain
of this function (domain k) :

ψ̄(k) =
1

(2πσ2)
1
4

∫ ∞

−∞
e−

x2

4σ2 −ikxdx

=
1

(2πσ2)
1
4

∫ ∞

−∞
e−

1
4σ2 [x2+4σ2ikx]dx

=
1

(2πσ2)
1
4

∫ ∞

−∞
e−

1
4σ2 [(x+2σ2ik)2+4σ4k2]dx

ψ̄(k) =
1

(2πσ2)
1
4

e−σ2k2

∫ ∞

−∞
e−

1
4σ2 (x+2σ2ik)2dx

Now a change of variables:

z = x+ 2iσ2k

ψ̄(k) =
1

(2πσ2)
1
4

e−σ2k2

∫ ∞+2iσ2k

−∞+2iσ2k

e−
1

4σ2 z2

dz
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Now through Cauchy’s Theorem this becomes:

ψ̄(k) =
1

(2πσ2)
1
4

e−σ2k2

∫ ∞

−∞
e−

1
4σ2 z2

dz =
1

(2πσ2)
1
4

e−σ2k2√
4σ2π

ψ̄(k) = 2
3
4π

1
4σ

1
2 e−σ2k2

P (k) = (ψ̄(k))2 = 2
3
2π

1
2σe−2σ2k2

We can look at the probability distributions in both position and wavenum-
ber domains for different standard deviations and notice that as one spreads,
the other narrows:
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2.3 Understanding Time-Dependent Free Wave in the Po-
sition (x) Domain

Our next goal is to find ψ(x, t) for a free wave.
From the general solution:

ei(kx−ωt) = eikxe
−iℏk2

2m t

Also, our new value of ψ̄(k) from the Gaussian distribution of P (x) is:

ψ̄(k) = 2
3
4π

1
4σ

1
2 e−σ2k

We can take the Fourier transform of ψ̄(k, t) to find ψ(x, t):

ψ(x, t) =

∫ ∞

−∞
f̄(k)ei(kx−ωt)dk =

∫ ∞

−∞

2
3
4π

1
4σ

1
2

2π
e−σ2k2

eikxe
−iℏk2

2m tdk

=

∫ ∞

−∞

2
3
4π

1
2σ

1
2

2π
e−σ2k2

eikxe
−iℏk2

2m tdk =

∫ ∞

−∞

2
3
4π

1
2σ

1
2

2π
e−σ2k2 −iℏk2

2m t+ikxdk

=

∫ ∞

−∞

2
3
4π

1
2σ

1
2

2π
e−(σ2k2+ iℏt

2mk2)+ikxdk =

∫ ∞

−∞

2
3
4π

1
2σ

1
2

2π
e
−(σ2+ iℏt

2m )[k2− ik

σ2+ iℏt
2m

x]
dk

=

∫ ∞

−∞

2
3
4π

1
2σ

1
2

2π
e
−(σ2+ iℏt

2m )[k2− ik

σ2+ iℏt
2m

x]
dk =

∫ ∞

−∞

2
3
4π

1
2σ

1
2

2π
e
−(σ2+ iℏt

2m )[k− ix

2(σ2+ iℏt
2m

)
+ x2

4(σ2+ iℏt
2m

)2
]
dk

=
2

3
4π

1
2σ

1
2

2π

π
1
2

[σ2 + iℏt
2m ]

1
2

e
− x2

4(σ2+ iℏt
2m

) =

[
σ2

2π(σ2 + iℏt
2m )2

] 1
4

e
− x2

4(σ2+ iℏt
2m

)

ψ(x, t) =

[
σ2

2π(σ2 + iℏt
2m )2

] 1
4

e
− x2

4(σ2+ iℏt
2m

)

P (x, t) = ψ(x, t)ψ∗(x, t) =
σ√

2π(σ2 + iℏt
2m )

1
4

e
− x2

4

(
1

σ2+ iℏt
2m

+ 1

σ2− iℏt
2m

)

=
1√

2πσ2(1 + ℏ2t2

4m2σ4 )
e

−x2

2σ2

(
1

1+ ℏ2t2

4m2σ4

)

P (x, t) =
1√

2m(σ(t))2
e

x2

2(σ(t))2

σ(t) = σ

√
1 +

ℏ2t2
4m2σ4
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**************************************************************************

What we’ve established so far:

For a Gaussian Distribution of Intensities:

ψ(x) =
1

(2πσ2)
1
4

e−
x2

4σ2

ψ̄(k) = 2
3
4π

1
2σ

1
2 e−σ2k2

P (x) =
1√
2πσ2

e−
x2

2σ2

=⇒ ψ(x, 0) =
1

(2πσ2)
1
4

e−
x2

4σ2 = ψ(x)

[ψ(x, 0)]2 = P (x, 0)

ψ(x, t) =

[
σ2

2π(σ2 + iℏt
2m )2

] 1
4

e
− x2

4(σ2+ iℏt
2m

)

P (x, t) =
1√

2m(σ(t))2
e

x2

2(σ(t))2

σ(t) = σ

√
1 +

ℏ2t2
4m2σ4

P (x, 0) =
1√
2πσ2

e−
x2

2σ2

=⇒ ψ(x, 0) =
1

(2πσ2)
1
4

e−
x2

4σ2 = ψ(x)

Small Review on Types of Operations Used

For x: [−L
2 , L2 ] we previously established:

gn(x) =
1√
L
ei

2πnx
L

This gn(x) is defined as a complete orthonormal set.∫ ∞

0

g∗l (x)gn(x)dx = δln

f(x) =

∞∑
n=0

f̃ngn(x)
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If L → ∞

=⇒ f̃n =
√
L

∫ L
2

−L
2

f(x)g∗n(x)dx

(This is a Riemann Sum, ∆ = 2π
l → integral)

f̃(k) =

∫ ∞

∞
f(x)e−ikxdx, f(x) =

1

2π

∫ ∞

∞
f̃(k)eikxdk

δ(x) =
1

2π

∫ ∞

∞
eikxdk

**************************************************************************

2.4 Characteristic Time

Standard deviation over the course of time is:

σ(t) = σ

√
1 +

ℏ2t2
m2σ4

= σ
√

1 + τ2

τ =
ℏt
mσ2

=
t

(mσ2

ℏ )
=

t

T

T is the characteristic time. It depends on accuracy and mass and is used for
comparison between objects/systems.
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2.5 Examples of Various Gaussian Distribution Decays

**Note, for all of the following calculations and graphs, σ = 1 (σ is σ(t) at t=0)
It would take a human being (the age of the universe)3 time in order to

really decay into nothingness:
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Characteristic Times of Different Objects

These are some of the characteristic times T of various objects:

Human

mass= 65 kg
T= 1.2e+36

Electron

mass= 9.11e-31 kg
T= 17276

Neutron

mass= 1.67492750e-27 kg
T= 31765072

Proton

mass= 1.67262192e-27 kg
T= 31721347

Earth

mass= 5.9e24 kg
T= 1.1e+59

Moon
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mass= 7.3e22 kg
T= 1.4e+57

Sun

mass= 1.9e30 kg
3.7e+64

2.6 ”Extra”: Proving Constant Intensity in 3 Dimensions

Understanding Experimental Conditions:∫ ∞

∞
P (x)dx = finite

P (x) ≥ 0

For both of these to be true, P (∞) → 0 and P (−∞) → 0∫ ∞

∞
dx

∫ ∞

∞
dy

∫ ∞

∞
dzP (x) = finite

We must simply use the same logic above and realize that the limit of P(x,y,z)
as x/y/z approaches ∞ for all x,y; x,z; or y,z is 0.

Potential V(x,y,z)- not time-dependent Particle mechanics

P 2
x + P 2

y + P 2
z

2m
+ V (x, y, z) = E

Wave mechanics (same sorta idea)

[
−ℏ2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
+ V (x, y, z)

]
ψ(x, y, z, t) = iℏ

d

dt
ψ(x, y, z, t)

P (x, y, z, t) = ψ∗(x, y, z, t)ψ(x, y, z, t)

ψ∗
[
−ℏ2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ V

]]
ψ = iℏψ∗ ∂

∂t
ψ

Take complex conjugate

ψ

[
−ℏ2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ V

]]
ψ∗ = −iℏψ ∂

∂t
ψ∗

Subtract these two:

−ℏ2

2m

[
ψ∗
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+��V

)
ψ − ψ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+��V

)
ψ∗
]
= iℏ

[
ψ
d

dt
ψ∗ + ψ

∂

∂t
ψ∗
]
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ℏ2

2m

[
∂

∂x

(
ψ
∂

∂x
ψ∗ − ψ∗ ∂

∂x
ψ

)
+

∂

∂y

(
ψ
∂

∂y
ψ∗ − ψ∗ ∂

∂y
ψ

)
+

∂

∂z

(
ψ
∂

∂z
ψ∗ − ψ∗ ∂

∂z
ψ

)]
= iℏ

[
ψ
∂

∂t
ψ∗ + ψ∗ ∂

∂t
ψ

]
∂

∂x

(
ψ
∂

∂x
ψ∗ − ψ∗ ∂

∂x
ψ

)
=
�
���∂ψ

∂x

∂ψ∗

∂x
+ψ

∂2

∂x2
ψ∗−

�
���∂ψ∗

∂x

∂ψ

∂x
−ψ∗ ∂

2

∂x2
ψ =

∂

∂x

(
ψ
∂

∂x
ψ∗ − ψ∗ ∂

∂x
ψ

)
We want to show that in 3 dimensions, the probability over all of space is a
constant that does not change over time. The integral of the probability over
all of space would be:

∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dx

∂

∂x

(
ψ
∂

∂x
ψ∗ − ψ∗ ∂

∂x
ψ

)
=

∫ ∞

−∞
dz

∫ ∞

−∞
dy

[
ψ
∂

∂x
ψ∗ − ψ∗ ∂

∂x
ψ

]∞
−∞

= 0

Looking at the other side of the wave equation, and performing this same
integral

=⇒
∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dx iℏ

[
ψ
∂

∂t
ψ∗ + ψ∗ ∂

∂t
ψ

]
= 0

=⇒ iℏ
∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dx

∂

∂t
(ψψ∗) = 0

=⇒ ∂

∂t

[∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dx (ψψ∗)

]
= 0

Since ψψ∗ = P (x, y, z, t), this means the total probability/intensity is a con-
stant. If we normalize the total intensity to 1, then it will be 1 always.

2.7 ”Extra”: Delta Dirac function as the result of the
derivation of a step function∫ ∞

−∞
f(x)δ(x− y)dx = f(y)
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For this graph, what is dθ
dx?

Limitϵ→∞
θ(x+ ϵ)− θ(x− ϵ)

2ϵ
= ∞

f(x) is some function that is continuous and we want to find:∫ ∞

−∞
f(x)

dθ

dx
dx =

∫ ∞

−∞

[
d

dx
[f(x)θ(x)]− θ(x)

df

dx

]
dx

= [f(x)θ(x)]∞−∞ −
∫ ∞

−∞
θ(x)

df

dx
dx

= f(∞)θ+ + f(−∞)θ− + θ−

∫ 0

−∞

df

dx
dx− θ+

∫ ∞

0

df

dx
dx

= f(∞)θ+ + f(∞)θ− + θ−[f(x)]
0
−∞ − θ+[f(x)]

∞
0

= f(∞)θ+ + f(∞)θ− + θ−(f(0)− f(−∞))− θ+(f(∞)− f(0))

=����f(∞)θ+ +����f(∞)θ− + θ−f(0)−�����θ−f(−∞)−����θ+f(∞) + θ+f(0)

= f(0)[θ+ + θ−]

∴
dθ

dx
= (θ+ + θ−)δ(x)
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1 Potential Well

1.1 Adding a Potential

So far, we have examined only a free wave, which existed either on a certain
length L or expanded through all of space and that had no potential energy
through anywhere it existed. What types of simple models can we look at
when adding a potential energy through a region of space. Well, let’s start by
rewriting our general wave equation into its time and position components.

ψ(x, t) = ei(kx−ωt) = ϕ(x)e−i(ωt) = ϕ(x)e−iE
h̄
t

This new format makes it easier to plug this into the wave equation and ask
the question, are there solutions to this?

Wave Equation:

ih̄
dψ

dt
=

−ℏ2

2m

d2ψ(x, t)

dx2
+ V (x)ψ(x, t)

Plug in:

iℏ
(
−iE
ℏ

)
ϕ(x)e

−iE
ℏ t =

−ℏ2

2m

d2ϕ

dx2
e

−iE
ℏ t + V (x)ϕ(x)e

−iE
ℏ t

(Notice that the potential energy is independent of time, this is easier to
solve for us).

If V (x) = 0, there is no solution (examine second derivative of ϕ(x))
Since the typical potential, constant

x2 is hard to solve and we are merely un-
dergraduate students doing our best, let’s try a potential that looks like this:

............................................................................................................
Briefly on Force

What happens if we look at the force of this potential, in other words the
derivative of this potential with respect to position?

Well, it will be zero for most of the potential graph, but, at the ”jumps” it
will be equal to the property shown at the end of ”Quantum Notes 1”, in other
words, at each jump this function will look like:
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dV

dx
@ − a = (θ+ + θ−)δ(x) = (−V0 − 0)δ(−a)

dV

dx
@ a = (θ+ + θ−)δ(x) = (0− (−V0))δ(a)

Often, the delta dirac function is interpreted as being infinite in one location,
or at least a ”big spike” so we can kind of imagine that at the edges of the
potential the particle can be thought of as instantly ”bouncing off” the edges
and changing directions after having experienced a very large force.

............................................................................................................

1.2 Classical Context

We know from classical mechanics that for a bound state, the total energy must
be negative (if it is positive then there is enough kinetic energy to make the
system no longer bound), meaning that:

E =
1

2
mv2 − V0 < 0

With this understanding, let’s change the sign of E for simplicity in math
and declare that:

TotalEnergy = −E

Meaning:

∴ −E =
1

2
mv2 − V0 < 0 =⇒ V0 − E =

1

2
mv2

The value of E (which is now -(Total Energy)) has to be less than V0. This
makes sense intuitively because the total energy HAS to larger than the potential
energy (−V0) :

−E < −V0 =⇒ E < V0

But it can also be shown mathematically because if E is not smaller than
V0, you would get an imaginary value for velocity. :

v =

√
2(V0 − E)

m
∴ E < V0

OK, let’s change our signs for everything else we’ve already established. The
wave function and wave equation become:

ψ(x, t) = ϕ(x)e
iE
ℏ t

i�ℏ
iE

�ℏ
ϕ(x)�

��e
iE
ℏ t =

−ℏ
2m

d2ϕ

dx2
�

��e
iE
ℏ t + V (x)ϕ(x)�

��e
iE
ℏ t
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=⇒ −Eϕ(x) = −ℏ
2m

d2ϕ

dx2
+ V (x)ϕ(x)

=⇒ ℏ
2m

d2ϕ

dx2
= (E + V (x))ϕ(x)

=⇒ d2ϕ

dx2
=

2m

ℏ2
(E + V (x))ϕ(x)

Looking at the three regions of this graph we have:

Region I

d2ϕ

dx2
=

2mE

ℏ2
ϕ(x)

where 2mE
ℏ2 > 0

Region II

d2ϕ

dx2
= −2mE

ℏ2
(V0 − E)ϕ(x)

where 2mE
ℏ2 > 0

Region III

d2ϕ

dx2
=

2mE

ℏ2
ϕ(x)

where 2mE
ℏ2 > 0

Since we know that any measurements taken as intensities or as probabilities
of a particle being found at a certain location (P (x) = ϕ2(x)) must all be positive
and finite and can be normalized so that the following condition is true:
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∫ ∞

−∞
ϕ2(x)dx = 1

Then, we know that this condition implies that for any ϕ(x):

ϕ(−∞) = 0

ϕ(∞) = 0

This detail will help in finding energy value for a given finite potential well
and ultimately solving this problem.

............................................................................................................

Introducing α and finding better units for this problem

For regions I and III, What is this?:

2mE

ℏ2

We’ll look at the units to try to understand.

2mE

ℏ2
:
kgJ

(Js)2
=

1

m2

We want to have a better understanding of the general forms that these
square well problems take on through values that do not rely on the mass of
the particle or the width of the well. So we will convert to ”natural units” by
multiplying by the width of the well:

α = a

√
2mE

ℏ2

This α is a way of defining the energy so that we can find the trend of energy
distributions for a set of square well potentials. As such, it is clearer to see
that they are same, but simply scaled differently by various factors, namely the
width, mass, and total energy in SI units.

For region II we do something similar but we change the sign of the region:

β = a

√
2m(V0 − E)

ℏ2

Both α and β are constants dependent on the potential well width, total
energy, and in the case of beta, the potential well depth as well. In addition,
the square of each of them must be a positive value. We can add these squares
together to denote a new value, γ, which is dependent on only the potential well
depth and potential well width.

5



γ2 = α2 + β2 =
2mV0a

2

ℏ2

This γ in essence represents a set of all the possible, different combined
solutions of α and β for a given combination of well depth, mass, and width.
When comparing it to the other terms in this equation, α and β, it is notable
that γ is dependent on V0 and not E, so it can be thought of as representing
the well depth. It is not dependent on the total energy and thus may represent
solutions for various total energies (α values) of a given well.

γ and Natural Units

When setting up a particular square well potential model, the relevant in-
formation determining the state of the model includes the depth of the square
well potential, its width, and the mass of the particle or object of the model.
These values are all included in γ which is in essence an identifying value for a
given problem.

In addition, γ can be thought of as the potential in the given ”natural units”
of the model. Let’s elaborate on this. γ2 is as follows:

α2 + β2 = γ2 =
a2mV0
ℏ2

=
V0

( ℏ2

2ma2 )

Now we’ve rearranged γ as some potential well depth value divided by a
particular denominator which is dependent on the width of the well (a) and
the mass of the particle m. Let’s examine the units of this denominator more
closely:

ℏ2

2ma2
units =

J2 sec2

kg m2
=

J2

kg m2

sec2

= J

Therefore this is a particular value in Joules for the given problem, and we
are dividing the well potential by it. γ is basically measuring the well depth
(V0) in a unit created by the model itself. It is measuring the well depth in the
”natural units” of the problem.

............................................................................................................

We can rewrite our equations for each region from before using this new
notation:

Region I

d2ϕ

dx2
=
α2

a2
ϕ(x)

where α2 > 0
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Region II

d2ϕ

dx2
=

−β2

a2
ϕ(x)

where β2 > 0

Region III

d2ϕ

dx2
=
α2

a2
ϕ(x)

where α2 > 0
When thinking of how to solve this problem, it might simply feel instinctual

that ϕ(x) should be continuous. But instinctual is insufficient proof, so let’s
examine the wave equation (when −E = (total energy)) to understand where
this assertion arises from:

−Eϕ(x) = −ℏ
2m

d2ϕ

dx2
+ V (x)ϕ(x)

By looking at this, it seems that at most, d2ϕ
dx2 can be discontinuous at x = ±a

because at this location, the potential’s ”discontinuousness” when added to
V (x)’s ”discontinuousness” may cancel each other out and thus it would make
sense that they could be equal to −Eϕ(x). But this would only happen at a
and -a.

Also, d2ϕ
dx2 cannot be a Dirac delta function (δ, the derivative of a step in

a discontinuous function) because then it would not be possible to make the
other side of the equation also a Dirac delta function. This means that if dϕ

dx

is discontinuous at some point x = x0, then the derivative here (d
2ϕ

dx2 ) will be

δ(x− x0). We already established that d2ϕ
dx2 cannot be a delta Dirac function so

dϕ
dx must be continuous everywhere.

Some educated guesses for each segment.:

x < −a : ϕ(x) = De
α
a x + 0e

−α
a x = De

α
a x

−a < x < a : ϕ(x) = (Bsin(
β

a
x) + Ccos(

β

a
x))e−α

x > a : ϕ(x) = 0e
α
a x +Ae

−α
a x = Ae

−α
a x

For x < −a and x > a the reason the wave function must exponentially
increase and exponentially decay respectively is in order to fulfill the condition∫∞
−∞ ϕ2(x)dx = finite

And, the reason the −a < x < a section is multiplied by the factor e−α is
because it makes the math simpler.

In order to find solutions to this problem (which now consists of finding
acceptable values for α and β) we will apply the previously discussed continuity
conditions for ϕ(x) and dϕ

dx
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ϕ(x) : dϕ
dx :

x = −a : D��e−α = (−Bsin(β) + Ccos(β))��e−α D
α

�a
��e−α =

(
B
β

�a
cosβ + C

β

�a
sinβ

)
��e−α

x = a : A��e−α = (Bsin(
β

a
x)+Ccos(

β

a
x))��e−α −A

α

�a
��e−α =

(
B
β

�a
cosβ − C

β

�a
sinβ

)
��e−α

Solving this system:

α(A+D) = 2αCcosβ = 2Cβsinβ

=⇒ C(αcosβ − βsinβ) = 0

∴ either C = 0 or αcosβ = βsinβ

α(A−D) = 2αBsinβ = −2Bβcosβ

=⇒ B(αsinβ + βcosβ) = 0

∴ either B = 0 or αsinβ = −βcosβ
3 potential solutions (B=0 and C=0 is a trivial solution because then there

is no wave function)
1): α = βtanβ and B = 0
2): C = 0 and α = −βcotβ
��3) : αcosβ = βsinβ and αsinβ = −βcosβ
=⇒ αsin2β + αcos2β = 0 =⇒ α = 0
However, this solution 3 is not allowed based on the definition of alpha,

where it is clear that α > 0. (This is because α2 is -(Total Energy) when α and
Total Energy are in natural units. Therefore, since the total energy is negative
in an attractive potential, α must be positive)

To find final values for α and β we must take into account both their defini-
tion with respect to γ and these above solutions. A graphical representation of
possible values for β (and thus α based on the γ value of your particular setup)
is shown below for a value of γ = 5
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In addition, looking back at the continuity conditions we had established,
these solutions tell us more information about the coefficients:

1): B = 0, A = D = Ccosβ, and α = βtanβ
2): C = 0, A = −D = Bsinβ, and α = −βcotβ
However, we still have not solved the wave function equation because we have

not found all the values of the coefficients in terms of the intrinsic properties of
the well and situation (γ). We are missing one coefficient (C in solution 1 and B
in solution 2 are missing) and through the process of finding this, quantization
will result.

1.3 Quantization

We are learning quantum mechanics, where does the quantization come in?
In the case of the potential well, it arises due to both the intrinsic continuity
conditions as well as at the time of normalization:

The requirement that
∫∞
−∞ ϕ2(x)dx = 1 means that ϕ(x) must approach zero

at its ”ends” so as to end up with a finite number for the integral. In other
words ϕ(±∞) = 0.

Solution Set 1 (Wave Function is Even)

So let’s re-examine our solution 1) and rewrite ϕ(x) in terms of these values:
B = 0, A = D = Ccosβ, and α = βtanβ:

x < −a : ϕ(x) = De
α
a x = Ccosβe

α
a x

−a < x < a : ϕ(x) = Ccos(
β

a
x))e−α

x > a : ϕ(x) = Ae
−α
a x = Ccosβe

−α
a x

Now, based on this wave function let’s perform the integral
∫∞
−∞ ϕ2(x)dx = 1:

∫ ∞

−∞
ϕ2(x)dx = C2

[(
cos2β

∫ −a

−∞
e2

α
a xdx

)
+

(
e−2α

∫ a

−a

cos2(
β

a
x)dx

)
+

(
cos2β

∫ ∞

a

e−2α
a xdx

)]

Remember cos2(βax) =
cos( 2β

a x)+1

2

= C2[cos2β
a

2α
e

2αx
a |a−∞ +

e−2α

2

a

2β
(sin2(

β

a
x) + x)|a−a − cos2β

a

2α
e

−2
a |∞a ]

C2

2
[
2a

α
cos2βe−2α + e−2α(

a

β
sin(2β) + 2a)]

= C2ae−2α[
1

α
cos2β +

sin2β

2β
+ 1]
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Remember for this solution α = βtanβ = β sinβ
cosβ

= C2ae−2α[
cos3β

βsinβ
+
sinβcosβ

β
+ 1]

= C2ae−2α[
cosβ

βsinβ
(cos2β + sin2β) + 1]

= C2ae−2α[
1

βtanβ
+ 1] = C2ae−2α[

1

α
+ 1] = 1

=⇒ C2 =
αe2α

a(1 + α)

Therefore:

x < −a : ϕ(x) =

√
αe2α

a(1 + α)
cosβe

α
a x

−a < x < a : ϕ(x) =

√
αe2α

a(1 + α)
cos(

β

a
x))e−α

x > a : ϕ(x) =

√
αe2α

a(1 + α)
cosβe

−α
a x

Finally, if we want to change the units of position x to natural units, we
would divide by the well width a, so y = x

a and we can create a new wave
function in these units:

y < −1 : ϕ(y) =

√
αe2α

(1 + α)
cosβeαy

−1 < y < 1 : ϕ(x) =

√
αe2α

(1 + α)
cos(βy))e−α

y > 1 : ϕ(x) =

√
αe2α

(1 + α)
cosβe−αy

Solution Set 2 (Wave Function is Odd)

This same normalization can be performed for solution 2 (where C=0, A=-
D=Bsinβ) to find the following values for wave function and coefficient B:

x < −a : ϕ(x) = −Bsinβeα
a x

−a < x < a : ϕ(x) = Bsin(
β

a
x)e−α
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x > a : ϕ(x) = Bsinβe
−α
a x

B2 =
αe2α

a(1 + α)

Once more substituting this new value for B and in natural units of length
we get:

y < −1 : ϕ(y) = −

√
αe2α

(1 + α)
sinβeαy

−1 < y < 1 : ϕ(x) =

√
αe2α

(1 + α)
sin(βy)e−α

x > 1 : ϕ(x) =

√
αe2α

(1 + α)
sinβe−αy

1.4 Example: γ=10

Below are the wave functions and probability functions for γ = 10. Solution
Set 1 consists of all even wave functions below and Solution Set 2 consists of all
the odd wave functions. The graphs are ordered from lowest energy to highest
and are in natural units, where the edges of the potential well are at y=-1 and
y=1
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Energy in natural units: -97.96
Probability of finding the particle outside of the well: 0.002

Energy in natural units: -91.86
Probability of finding the particle outside of the well: 0.008

Energy in natural units: -81.76
Probability of finding the particle outside of the well: 0.018

Energy in natural units: -67.75
Probability of finding the particle outside of the well: 0.035
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Energy in natural units: -50.03
Probability of finding the particle outside of the well: 0.062

Energy in natural units: -29.05
Probability of finding the particle outside of the well: 0.111

Energy in natural units: -6.32
Probability of finding the particle outside of the well: 0.267

The graph below shows the probability of the particle or mass existing out-
side of the potential well, which classically would be 0 for a bound state since
there would not be enough energy to overcome the potential energy barrier.
However, this is no longer the case for this quantum mechanical model, and as
it turns out, for a given γ value there is a higher probability for the lower α
(higher energy) particles to exist outside the well
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There is a lower possible energy as the value of γ increases as shown in the
graph below. This makes sense in relation to the total energy constrictions
wherein the total energy cannot be less than the potential well. For a deeper or
more significant potential well, it would make sense that the lowest total energy
could be a lower value.

Below is a graph showing the probability of a particle existing outside of the
potential well for multiple different well depths.
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2 Building to Multiple Attractive Centers/Wells

This 1-dimensional model with multiple attractive wells, often called the
Kronig-Penney model, starts to build a basic understanding of conductors and
insulators and why they work like they do. Our goal is to work towards under-
standing of this model step by step.

How do you find the changes in energy for a model like this one? We’re
going to start by expanding on our understanding of a single attractive center
and working with it as a delta function confined to a single region in space as
opposed to a square well.
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2.1 Understanding One Attractive Center

Due to dealing with an attractive potential in a bound state, every solution
has to satisfy (where Total Energy is −E and the potential depth is −V0):

0 < E < V0

The area of each square well is 2V0a, meaning:∫ a

−a

V (x)dx = −2C

where C = V0a
This means that, in a sense:

”V (x) = −2Cδ(x)”

We can conceptualize this as taking the potential well and compressing its
entire area to a single point, x=0. The depth would become infinitely deep and
the width would become infinitely narrow.

Plugging this into the wave equation:

”
−ℏ2

2m

d2ϕ

dx2
− 2cδ(x)ϕ(x) = −Eϕ(x)”

(where remember −E = Energy and ϕ(x, t) = e
iE
ℏ tϕ(x)

Rewriting this:

=⇒ d2ϕ

dx2
+

4mc

ℏ2
δ(x)ϕ(x) =

2mE

ℏ
ϕ(x)

=⇒ d2ϕ

dx2
+

4mV0a

ℏ2
δ(x)ϕ(x) =

2mE

ℏ
ϕ(x)

=⇒ d2ϕ

dx2
+ 2gδ(x)ϕ(x) = α2ϕ(x)

where g = 2mV0a
ℏ2 > 0 and α2 = 2mE

ℏ > 0
So, based on this, is ϕ continuous as x=0?

16



Well, if ϕ is discontinuous at x=0, then dϕ
dx |x=0 has to be δ(x) and

d2ϕ
dx2 |x=0 will

be ”worse” (even harder to define) than δ(x). Therefore, ϕ has to be continuous
at x=0.

Is dϕ
dx continuous at x=0?

No, and the jump must ”match” δ(x) in the potential term!
What about away from x=0?
Away from x=0, the wave equation simplifies to the following (because V (0 <

x < 0) = 0):

d2ϕ

dx2
= α2ϕ

Therefore the wave function will look as follows (taking into account the need
to normalize the probability function)

x ≤ 0 : ϕ(x) = Aeαx

x ≥ 0 : ϕ(x) = Ae−αx

Therefore at x = 0, ϕ(x) = A

x < 0 :
dϕ(x)

dx
= Aαeαx

x > 0 :
dϕ(x)

dx
= −Aαe−αx
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x < 0 :
d2ϕ(x)

dx2
= Aα2eαx

x > 0 :
d2ϕ(x)

dx2
= Aα2e−αx

+Bδ(x)

Since dϕ
dx jumps from positive to negative, B < 0.

∫ ∞

−∞

d2ϕ

dx2
dx =

dϕ

dx
|x=0 −

dϕ

dx
|x=−∞

Aα2

∫ 0

−∞
eαxdx+Aα2

∫ ∞

0

e−αxdx+B

∫ ∞

−∞
δ(x)dx = −Aαe−αx|x=∞

=⇒ 2Aα+B = 0 =⇒ B = −2Aα

Now, back to examining at x=0:

”α2ϕ(x) =
d2ϕ

dx2
+ 2gδ(x)ϕ(x)”

Integrate this:

α2A

∫ 0

−∞
eαxdx+ α2A

∫ ∞

0

e−αxdx =

∫ ∞

−∞

d2ϕ

dx2
dx+ 2g

∫ ∞

−∞
δ(x)ϕ(x)dx

=⇒ αAeαx|0−∞ − αAe−αx|∞0 = 0 + 2gϕ(0)

=⇒ 2αA = 2gA

=⇒ α = g

We can thus write the probability function as:
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x ≤ 0 : P (x) = A2e2gx

x ≥ 0 : P (x) = A2e−2gx

And we can use to the fact that
∫∞
−∞ P (x)dx = 1 to find solve for A2:

2A2

2g
= 1

=⇒ A2 = g

Therefore we can rewrite the ϕ(x) solution as:

x ≤ 0 : ϕ(x) =
√
gegx

x ≥ 0 : ϕ(x) =
√
ge−gx

Remember that g is related to the potential of the well:

g =
2mV0a

ℏ2
And the bigger the g the more ”localized” the solution. This makes sense
because you are saying that the stronger the potential, the more likely that the
wave function is found there.

Summary of what we just did:
1) ϕ(x) for x > 0 and x < 0
2) Make ϕ(x) continuous at x=0 (because it has to be)
3)dϕdx |x=0− − dϕ

dx |x=0+ = 2gϕ(0)

2.2 Multiple Wells (work in progress)

Let’s imagine we have N number of attractive centers located at x = d, 2d, ..., nd,
and at each of them there is a dirac delta function δ(x).

We set g = 2mV0a
ℏ2 = 1 and furthermore understand the potential energy to

be the following:

V (x) = −2V0a

[
N∑

n=1

δ(x− nd)

]
Much like before, we know that away from the attractive centers the wave

equation simplifies to:

d2ϕ

dx2
= α2ϕ

And at the attractive centers:

”α2ϕ(x) =
dϕ2

dx2
+ 2

[
N∑

n=1

δ(x− nd)

]
ϕ(x)”
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We know that since ϕ(x) must be continuous at this delta function location
(x = nd)we can create the condition:

An−1e
−α d

2 +Bn−1e
α d

2 = Ane
α d

2 +Bne
−α d

2

We can rewrite this in a nicer way by defining v = e−α d
2 :

I) An−1v +Bn−1
1
v = An

1
v +Bnv

In addition, much like before we know that since there is a dirac delta func-
tion we know:

dϕ

dx
|x=nd− − dϕ

dx
|x=nd+ = 2ϕ(nd)

Rewritten this becomes:

[−αAn−1v + αBn−1
1

v
]− [−αAn

1

v
+ αBnv] = 2An−1v + 2Bn−1

1

1

=⇒ An−1(−αv − 2v) +Bn−1(
α

v
− 2

v
) = −αAn

1

v
+ αBnv

=⇒ II) − vAn−1(1 +
2
α ) +

1
vBn−1(1− 2

α ) = −An
1
v +Bnv

Adding I) and II):

�2Bnv =
−�2v

α
An−1 + (�

2

v
− �2

αv
)Bn−1

Subtracting I) and II):

�2An
1

v
= (�2π + �2v

α
)An−1 +

�2

αv
Bn−1

Therefore:

Bn =
−1

α
An−1 +

1

v2
(1− 1

α
)Bn−1

An = v2(1 +
1

α
)An−1 +

1

α
Bn−1

Or, written in matrix format:(
An

Bn

)
=

(
v2(1 + 1

α )
1
α−1

α
1
v2 (1− 1

α )

)(
An−1

Bn−1

)
We will name this transformation matrix from An−1 and Bn−1 to An and

Bn as T (α, d). Note that this matrix has no dependence on which of the N
attractive centers we are transforming to or from. This means that we can
imagine that for each attractive center there exists this same transformation
matrix that transforms from one side of it to the other, like so:

And thus for the total scenario of N attractive centers we end up with:
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(
AN

BN

)
= TN

(
A0

B0

)
However, looking at the image we know that at the ends of the wave function,

as it approaches ∞ and −∞ the function must approach 0. This means that
this matrix simplifies to:(

AN

0

)
=

(
(TN )11 (TN )12
(TN )21 (TN )22

)(
0
B0

)
Yielding the two equations:

An = (TN )12B0

0 = (TN )22B0

We know that B0 ̸= 0 for the wave function to actually exist so (TN )22 = 0.

2.3 Putting Them On a Circle

So far, we have been imagining our wells on an infinite flat line. However,
there are benefits to instead modeling these potential wells as existing on a
circle. Much like a periodic function repeats while as you move down it, a circle
repeats intrinsically due to its shape:

For this new geometry, we can now state that:

V (x+ L) = V (x)

V (x+ d) = V (x)

Nd = L

Previously, for our flat line we had the restriction that
∫ L

0
ψ2(x)dx = 1 . We

extending this flat line L out towards infinity, meaning
∫∞
−∞ ψ2(x)dx = 1 which

further has the consequence that the ends of our wave function must go towards
zero (ψ(−∞) = ψ(∞) = 0 ).

However, with the circle, we no longer have this restriction on the ends, yet,
when making the length L go to ∞, this circle turns into a flat line at any point
anyways.

Now, with the circle, this restriction on the ends of the wave function no
longer applies.

............................................................................................................

Definition of ”Bound”

Before, we had one or multiple attractive potentials, and said the wave
function was ”bound” thus it didn’t exist at the edges (approaching −∞ and
∞). Now, with this model on a circle, ”bound” refers simply to attractive
centers existing.
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............................................................................................................

Going back to the modified wave equation we used previously but this time

looking for solutions of the type ψ(x, t) = e
−iE
ℏ tϕ(x) (Notice we are no longer

changing the sign of E as we did previously):

− ℏ2

2m

d2

dx2
ϕ(x)− V (x)ϕ(x) = −Eϕ(x)

=⇒ − ℏ2

2m

d2

dx2
ϕ(x) = V (x)ϕ(x)− Eϕ(x)

Where Energy = E and E¿0
Our periodic boundary conditions are now:

ϕ(x) = ϕ(x+ L)

dϕ

dx
(x) =

dϕ

dx
(x+ L)

V (x) = V (x+ L)

Given the first condition, plugging x into the left hand side of the above
wave equation should give the same result as plugging in x+L, meaning:

d2ϕ

dx2
(x) =

d2ϕ

dx2
(x+ L)

In addition to these periodic boundary conditions for this circle, we have a set
of conditions for the particular problem type we want to solve:

V (x) = V (x+ d)

Nd = L

This all begs the question of whether ϕ(x) = ϕ(x+ d)?
Comparing:

− ℏ2

2m

d2

dx2
ϕ(x) = V (x)ϕ(x)− Eϕ(x)

And:

− ℏ2

2m

d2

dx2
ϕ(x+ d) = V (x+ d)ϕ(x+ d)−Eϕ(x+ d) = V (x)ϕ(x+ d)−Eϕ(x+ d)

It is apparent that ϕ(x+ d) = ϕ(x)

∴ ϕ(x+ 2d) = Cϕ(x+ d) = C2ϕ(x)

ϕ(x+ kd) = Ckϕ(x)

ϕ(x+Nd) = CNϕ(x) = ϕ(x)
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=⇒ CN = 1 = ei2πk

=⇒ C = e
i2π
N k

Where k=0,1,2,..,N-1
Therefore, for ϕ(x+Nd) when N=1,

ϕ(x+ d) = Cϕ(x) = e
i2πk
N ϕ(x)

dϕ(x+ d)

dx
= e

i2πk
N
dϕ(x)

dx

For this delta function potential centered at x=0, we define once more the
wave equation:

d2ϕ

dx2
− 2m

ℏ2
V (x)ϕ(x) =

−2mE

ℏ2
ϕ(x)

We can define two values for total energy in natural units depending on whether
the energy is negative or positive:

E < 0 : α2

E > 0 : −β2

If x ̸= 0:

E < 0 :
dϕ

dx
= α2ϕ

E > 0 :
dϕ

dx
= −β2ϕ

And at x = 0 we have the following δ-function condition:

dϕ

dx
|x=0− − dϕ

dx
|x=0+ = 2ϕ(0)

And:

ϕ(x = 0−) = ϕ(x = 0+)

For E¡0:

ALe
−αx ARe

−αx

BLe
αx BRe

αx

Wave function left of the potential is ϕL = ALe
−αx + BLe

αx and the wave
function right of the potential is ϕR = ARe

−αx + BRe
αx. Using this we can

apply the previously established conditions to our wave function:

ϕR

(
d

2

)
= CϕL

(
−d
2

)
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∴ ARe
−α d

2 +BRe
α d

2 = C(ALe
−α d

2 +BLe
α d

2 )

We rewrite this in a nicer notation such that v = eα
d
2

1)
AR

v
+BRv = C(

AL

v
+BLv)

Similarly for the rest of our conditions:

dϕ

dx
(x) =

dϕ

dx
(x+ d)

=⇒ −Ar�α

v
+BR�αv = C(−�αALv +�α

BL

v
)

=⇒ 2)
−Ar

v
+BRv = C(−ALv +

BL

v
)

ϕ(x = 0−) = ϕ(x = 0+)

=⇒ 3) AL +BL = AR +BR

dϕ

dx
|x=0− − dϕ

dx
|x=0+ = 2ϕ(0)

=⇒ 4) [−ALα+BLα]− [−ARα+BRα] = 2[AL +BL]

Now we can add 1) and 2):

2BRv = 2C
BL

v
=⇒ BR =

C

v2
BL

And Subtract 1) and 2):

2AR

v
= 2CALv =⇒ AR = Cv2AL

Substitution these values for BR and AR into 3):

AL +BL = C(v2AL +
1

v2
BL)

=⇒ (Cv2 − 1)AL = (1− c

v2
)BL

Converting 4) and substituting values for BR and AR thus becomes:

ARα−BRα = (2 + α)AL + (2− α)BL = C(v2αAL − 1

v2
αBL)

=⇒ (
2

α
+ 1)AL + (

2

α
− 1)BL = C[v2AL − 1

v2
BL]

=⇒ (Cv2 − 1− 2

α
)AL = (

2

α
− 1 +

C

v2
)BL

Using 3):

=⇒ (Cv2 − 1− 2

α
)(1− C

v2
) = (

2

α
− 1 +

C

v2
)(Cv2 − 1)
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=⇒ Cv2 − 1
�
��− 2

α
− C2 +

C

v2
+

2C

αv2
=

2Cv2

α
− Cv2 + C2

�
��− 2

α
+ 1− C

v2

=⇒ 2C2 + 2 = 2Cv2 +
2C

v2
+

2C

αv2
− 2Cv2

α

=⇒ C2 + 2 = Cv2 +
C

v2
+

C

αv2
− Cv2

α

=⇒ 1

2

[
ei

2πk
N + e−i 2πk

N = eαd + e−αd − 1

α
(eαd − e−αd)

]
Finally, by converting this through identities we arrive at the equation for

the solutions:

cos(
2πk

N
) = cosh(αd)− 1

α
sinh(αd)

Let’s examine this equation a bit further by trying to plot both the left-
hand-side (LHS) and the right-hand-side (RHS) with respect to alpha.

The LHS is just going to be a straight line, since it does not depend on alpha
but rather just on which k we are examining.

The RHS can be understood better by taking the derivative with respect to
alpha:

d

dα
(RHS) =

1

2
d(eαd − e−αd) +

1

2α2
(eαd − e−alphad)− d

2α
(eαd + e−alphad)

= (d+
1

α2
)sinh(αd)− dcosh(αd

α

= (d+
1

α2
)(αd+

α3d3

6
+ ...)− d

α
(1 +

α2d2

2
+ ...)

If d< 1, we only have < N solutions.
If d> 2, we will have ≥ N solutions.
As N→ ∞, more lines from the LHS, meaning more continuous.
Extending this to bound and unbound states (so far we’ve just looked at

alpha not beta):
Bound States (”valence e-”):

−d
2

≤ x ≤ 0 : ϕ(x) = ALe
αx +BLe

−αx

0 ≤ x ≤ d

2
: ϕ(x) = ARe

αx +BRe
−αx

Unbound States (”conduction band e-”):

−d
2

≤ x ≤ 0 : ϕ(x) = ALe
iβx +BLe

−iβx
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0 ≤ x ≤ d

2
: ϕ(x) = ARe

iβx +BRe
−iβx

By defining this β term, where if we wanted to write it instead still as α
would be α = iβ, we can solve for the ”unbound” states as well. This means
that for any given d and N, we should be able to solve for all αk and all βk.

So, to understand the unbound states better, we’ll examine solutions where
β is ”large”. Looking at our solution equation one more in terms of β:

cos(
2πk

N
) = cosh(βd)− 1

β
sinh(βd)

In this case:

−1 ≤ cos(βd) ≤ 1

−1 ≤ sin(βd) ≤ 1

Additionally:

| 1
β
sin(βd)| ≤ |cos(βd)|

=⇒ cos(βd)− 1

β
sin(βd) ≈ cos(βd)

∴ cos(
2πk

N
= cos(βd)

=⇒ βd =
2πk

N

∴ β =
2πk

Nd
=

2πk

L

Since the wave function for β is defined as e±iβx this becomes ϕ = e±
2πk
L

which is called the ”free particle/wave limit” and whether it is more particle-like
or wave-like (aka whether it will disperse or not) is dependent on its mass.

Going back to analyzing the derivative of the RHS for bound states. We
already established:

0 = (d+
1

α2
)sinh(αd)− d

α
cosh(αd)

=⇒ tanh(αd) =
d
α

d+ 1
α2

=
αd

α2d+ 1

We will call this f(α):

df

dα
=

d

α2d+ 1
− 2α2d2

(α2d+ 1)1
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We’ll set this equal to 0 to find our maximum location:

df

dα
= 0

=⇒ d(α2d+ 1) = 2α2d2

=⇒ α =
1√
d

Plug this maximum location back into f(α):

tanh(
1√
d
d) =

√
d

2

This shows that for small d the RHS of the bound state is monotonic (mean-
ing it keeps on increasing or keeps on decreasing. Alternatively, it has one
minimum for large d’s.
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1 Building to Multiple Attractive Centers/Wells

This 1-dimensional model with multiple attractive wells, often called the
Kronig-Penney model, starts to build a basic understanding of conductors and
insulators and why they work like they do. Our goal is to work towards under-
standing of this model step by step.

How do you find the changes in energy for a model like this one? We’re
going to start by expanding on our understanding of a single attractive center
and working with it as a delta function confined to a single region in space as
opposed to a square well.

1.1 Understanding One Attractive Center

Due to dealing with an attractive potential in a bound state, every solution
has to satisfy (where Total Energy is −E and the potential depth is −V0):

0 < E < V0

The area of each square well is 2V0a, meaning:∫ a

−a

V (x)dx = −2C

where C = V0a
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This means that, in a sense:

”V (x) = −2Cδ(x)”

We can conceptualize this as taking the potential well and compressing its
entire area to a single point, x=0. The depth would become infinitely deep and
the width would become infinitely narrow:

Plugging this into the wave equation:

”
−ℏ2

2m

d2ϕ

dx2
− 2cδ(x)ϕ(x) = −Eϕ(x)”

(where remember −E = Energy and ϕ(x, t) = e
iE
ℏ tϕ(x)

Rewriting this:

=⇒ d2ϕ

dx2
+

4mc

ℏ2
δ(x)ϕ(x) =

2mE

ℏ
ϕ(x)

=⇒ d2ϕ

dx2
+

4mV0a

ℏ2
δ(x)ϕ(x) =

2mE

ℏ
ϕ(x)

=⇒ d2ϕ

dx2
+ 2gδ(x)ϕ(x) = α2ϕ(x)

where g = 2mV0a
ℏ2 > 0 and α2 = 2mE

ℏ > 0
So, based on this, is ϕ continuous as x=0?

Well, if ϕ is discontinuous at x=0, then dϕ
dx |x=0 has to be δ(x) and

d2ϕ
dx2 |x=0 will

be ”worse” (even harder to define) than δ(x). Therefore, ϕ has to be continuous
at x=0.

Is dϕ
dx continuous at x=0?

No, and the jump must ”match” δ(x) in the potential term!
What about away from x=0?
Away from x=0, the wave equation simplifies to the following (because V (0 <

x < 0) = 0:

d2ϕ

dx2
= α2ϕ
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Therefore the wave function will look as follows (taking into account the need
to normalize the probability function)

x ≤ 0 : ϕ(x) = Aeαx

x ≥ 0 : ϕ(x) = Ae−αx

Therefore at x = 0, ϕ(x) = A

And the derivative would look like this:

x < 0 :
dϕ(x)

dx
= Aαeαx

x > 0 :
dϕ(x)

dx
= −Aαe−αx

The second derivative would thus look like this:

x < 0 :
d2ϕ(x)

dx2
= Aα2eαx

x > 0 :
d2ϕ(x)

dx2
= Aα2e−αx

+Bδ(x)

**Note: This added delta function exists through all of the 1-D space.
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Since dϕ
dx jumps from positive to negative, this can be conceptualized as a

very, very negative slope at this point, meaning that there is a negative area at
x=0, a delta function where B < 0. Another way to conceptualize this is that

since dϕ
dx represents the integral of d2ϕ

dx2 then there must be some negative area

at x=0 to see that dϕ
dx changes from positive to negative after x=0.

Let’s understand the integral of this second derivative:∫ ∞

−∞

d2ϕ

dx2
dx =

dϕ

dx
|x=∞ − dϕ

dx
|x=−∞

Aα2

∫ 0

−∞
eαxdx+Aα2

∫ ∞

0

e−αxdx+B

∫ ∞

−∞
δ(x)dx = −Aαe−αx|x=∞

=⇒ 2Aα+B = 0

=⇒ B = −2Aα

With this result, we go back to examining the wave function at x=0 to see
if we can discern more about the problem:

”α2ϕ(x) =
d2ϕ

dx2
+ 2gδ(x)ϕ(x)”

Integrate this:

α2A

∫ 0

−∞
eαxdx+ α2A

∫ ∞

0

e−αxdx =

∫ ∞

−∞

d2ϕ

dx2
dx+ 2g

∫ ∞

−∞
δ(x)ϕ(x)dx

=⇒ αAeαx|0−∞ − αAe−αx|∞0 = 0 + 2gϕ(0)

=⇒ 2αA = 2gA

=⇒ α = g

We can thus write the probability function as:

x ≤ 0 : P (x) = A2e2gx

4



x ≥ 0 : P (x) = A2e−2gx

And we can use to the fact that
∫∞
−∞ P (x)dx = 1 to find solve for A2:

2A2

2g
= 1

=⇒ A2 = g

Therefore we can rewrite the ϕ(x) solution as:

x ≤ 0 : ϕ(x) =
√
gegx

x ≥ 0 : ϕ(x) =
√
ge−gx

Remember that g is related to the potential of the well:

g =
2mV0a

ℏ2
And the bigger the g the more ”localized” the solution. This makes sense
because you are saying that the stronger the potential, the more likely that the
wave function is found there.

So, a summary of how we solved this single Dirac Delta function potential
well:

1) ϕ(x) for x > 0 and x < 0
2) Make ϕ(x) continuous at x=0 (because it has to be)
3)dϕdx |x=0− − dϕ

dx |x=0+ = 2gϕ(0)

1.2 Multiple Wells Along a Line

Let’s now imagine we have N number of attractive centers located at x =
d, 2d, ..., nd, and at each of them there is a dirac delta function (δ(x)) potential
energy well.

We set g = 2mV0a
ℏ2 = 1 and furthermore understand the potential energy to

be the following sum of different delta potentials:

V (x) = −2V0a

[
N∑

n=1

δ(x− nd)

]
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Much like before, we know that away from the attractive centers the wave
equation simplifies to:

d2ϕ

dx2
= α2ϕ

And at the attractive centers:

”α2ϕ(x) =
dϕ2

dx2
+ 2

[
N∑

n=1

δ(x− nd)

]
ϕ(x)”

Why is it quotations marks? Because delta potentials are weird.
First we will look more in depth at what happens away from the attractive

centers. On either side of these attractive centers there will be some term of
the wave function that corresponds to decay in one direction and another that
corresponds to decay in the other direction. Zooming into one of these attractive
centers:

We know that since ϕ(x) must be continuous at this delta function location
(x = nd) (just like before with a single delta function potential) we can create
the condition:

An−1e
−α d

2 +Bn−1e
α d

2 = Ane
−α d

2 +Bne
α d

2

We can rewrite this in a nicer way by defining v = e−α d
2 :

I) An−1v +Bn−1
1
v = An

1
v +Bnv

In addition, much like before, we know that since there is a dirac delta
function we know:

dϕ

dx
|x=nd− − dϕ

dx
|x=nd+ = 2ϕ(nd)

Rewritten this becomes:[
−αAn−1v + αBn−1

1

v

]
−

[
−αAn

1

v
+ αBnv

]
= 2An−1v + 2Bn−1

1

1

=⇒ An−1(−αv − 2v) +Bn−1(
α

v
− 2

v
) = −αAn

1

v
+ αBnv
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=⇒ II) − vAn−1(1 +
2
α ) +

1
vBn−1(1− 2

α ) = −An
1
v +Bnv

Adding I) and II):

�2Bnv =
−�2v

α
An−1 + (�

2

v
− �2

αv
)Bn−1

Subtracting I) and II):

�2An
1

v
= (�2π + �2v

α
)An−1 +

�2

αv
Bn−1

Therefore:

Bn =
−1

α
An−1 +

1

v2
(1− 1

α
)Bn−1

An = v2(1 +
1

α
)An−1 +

1

α
Bn−1

Or, written in matrix format:(
An

Bn

)
=

(
v2(1 + 1

α )
1
α−1

α
1
v2 (1− 1

α )

)(
An−1

Bn−1

)
We will name this transformation matrix from An−1 and Bn−1 to An and

Bn as T (α, d). Note that this matrix has no dependence on which of the N
attractive centers we are transforming to or from. This means that we can
imagine that for each attractive center there exists this same transformation
matrix that transforms from one side of it to the other, like so:

And thus for the total scenario of N attractive centers we end up with:(
AN

BN

)
= TN

(
A0

B0

)
However, looking at the image we know that at the ends of the wave function,

as it approaches ∞ and −∞ the function must approach 0. This means that
this matrix simplifies to:(

AN

0

)
=

(
(TN )11 (TN )12
(TN )21 (TN )22

)(
0
B0

)
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Yielding the two equations:

An = (TN )12B0

0 = (TN )22B0

We know that B0 ̸= 0 for the wave function to actually exist so (TN )22 = 0.

1.3 Examples of Graphing the Solutions for Evenly Spaced
Delta Function Potentials on a Circle

This Transformation matrix was coded in Python and examples of some of the
resulting plots are shown below:
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1.4 Putting Them On a Circle

So far, we have been imagining our wells on an infinite flat line. However,
there are benefits to instead modeling these potential wells as existing on a
circle. A circle, due to its geometry, additionally repeats after a certain length
intrinsically due to its shape:

This circle has circumference L, divided into N segments of d length.

Nd = L

We go back to this position after this length:

x = x+ L = x+Nd
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Since there are potential wells of the same depth every d, we can also state
that:

V (x+ L) = V (x)

V (x+ d) = V (x)

Previously, for our flat line we had the restriction that
∫ L

0
ψ2(x)dx = 1 . We

extending this flat line L out towards infinity, meaning
∫∞
−∞ ψ2(x)dx = 1 which

further has the consequence that the ends of our wave function must go towards
zero (ψ(−∞) = ψ(∞) = 0 ).

However, with the circle, we no longer have this restriction on the ends, yet,
when making the length L go to ∞, this circle turns into a flat line at any point
anyways.

............................................................................................................

Definition of ”Bound”

Before, we had one or multiple attractive potentials, and said the wave
function was ”bound” thus it didn’t exist at the edges (approaching −∞ and
∞). Now, with this model on a circle, ”bound” refers simply to attractive
centers existing.

............................................................................................................

Going back to the modified wave equation we used previously but this time

looking for solutions of the type ψ(x, t) = e
−iE
ℏ tϕ(x) (Notice we are no longer

changing the sign of E as we did previously):

− ℏ2

2m

d2

dx2
ϕ(x)− V (x)ϕ(x) = −Eϕ(x)

=⇒ − ℏ2

2m

d2

dx2
ϕ(x) = V (x)ϕ(x)− Eϕ(x)

Where Energy = E and E > 0
Our periodic boundary conditions due to the geometry of the circle are:

ϕ(x) = ϕ(x+ L)

dϕ

dx
(x) =

dϕ

dx
(x+ L)

V (x) = V (x+ L)

Given the first condition, plugging x into the left hand side of the above
Schrodinger wave equation should give the same result as plugging in x+L,
meaning:

d2ϕ

dx2
(x) =

d2ϕ

dx2
(x+ L)
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In addition to these periodic boundary conditions for this circle, we have a
set of conditions for the particular problem type we want to solve:

V (x) = V (x+ d)

Nd = L

This all begs the question of whether ϕ(x) = ϕ(x+ d)?
Comparing:

− ℏ2

2m

d2

dx2
ϕ(x) = V (x)ϕ(x)− Eϕ(x)

And:

− ℏ2

2m

d2

dx2
ϕ(x+ d) = V (x+ d)ϕ(x+ d)−Eϕ(x+ d) = V (x)ϕ(x+ d)−Eϕ(x+ d)

It is apparent that ϕ(x+ d) = ϕ(x)

∴ ϕ(x+ 2d) = Cϕ(x+ d) = C2ϕ(x)

ϕ(x+ kd) = Ckϕ(x)

ϕ(x+Nd) = CNϕ(x) = ϕ(x)

=⇒ CN = 1 = ei2πk

=⇒ C = e
i2π
N k

Where k=0,1,2,..,N-1
Therefore, for ϕ(x+Nd) when N=1,

ϕ(x+ d) = Cϕ(x) = e
i2πk
N ϕ(x)

dϕ(x+ d)

dx
= e

i2πk
N
dϕ(x)

dx

Looking once more at the wave equation:

d2ϕ

dx2
− 2m

ℏ2
V (x)ϕ(x) =

−2mE

ℏ2
ϕ(x)

We can define two values for total energy in natural units depending on
whether the energy is negative or positive:

E < 0 : α2 =
−2mE

ℏ2

E > 0 : −β2 =
−2mE

ℏ2

If x ̸= 0:
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E < 0 :
dϕ

dx
= α2ϕ

E > 0 :
dϕ

dx
= −β2ϕ

And at x = 0 we have the following δ-function condition:

dϕ

dx
|x=0− − dϕ

dx
|x=0+ = 2ϕ(0)

And:

ϕ(x = 0−) = ϕ(x = 0+)

For E < 0, to the left of a given delta potential we have (just like before):

ALe
−αx +BLe

αx

And on the right:

ARe
−αx +BRe

αx

Using this we can apply the previously established conditions to our wave
function:

ϕR

(
d

2

)
= CϕL

(
−d
2

)
∴ ARe

−α d
2 +BRe

α d
2 = C(ALe

−α d
2 +BLe

α d
2 )

We rewrite this in a nicer notation such that v = eα
d
2

1)
AR

v
+BRv = C(

AL

v
+BLv)

Similarly for the rest of our conditions:

dϕ

dx
(x) =

dϕ

dx
(x+ d)

=⇒ −Ar�α

v
+BR�αv = C(−�αALv +�α

BL

v
)

=⇒ 2)
−Ar

v
+BRv = C(−ALv +

BL

v
)

ϕ(x = 0−) = ϕ(x = 0+)

=⇒ 3) AL +BL = AR +BR

dϕ

dx
|x=0− − dϕ

dx
|x=0+ = 2ϕ(0)

=⇒ 4) [−ALα+BLα]− [−ARα+BRα] = 2[AL +BL]

12



Now we can add 1) and 2):

2BRv = 2C
BL

v
=⇒ BR =

C

v2
BL

And Subtract 1) and 2):

2AR

v
= 2CALv =⇒ AR = Cv2AL

Substitution these values for BR and AR into 3):

AL +BL = C(v2AL +
1

v2
BL)

=⇒ (Cv2 − 1)AL = (1− c

v2
)BL

Converting 4) and substituting values for BR and AR thus becomes:

ARα−BRα = (2 + α)AL + (2− α)BL = C(v2αAL − 1

v2
αBL)

=⇒ (
2

α
+ 1)AL + (

2

α
− 1)BL = C[v2AL − 1

v2
BL]

=⇒ (Cv2 − 1− 2

α
)AL = (

2

α
− 1 +

C

v2
)BL

Using 3):

=⇒ (Cv2 − 1− 2

α
)(1− C

v2
) = (

2

α
− 1 +

C

v2
)(Cv2 − 1)

=⇒ Cv2 − 1
�
��− 2

α
− C2 +

C

v2
+

2C

αv2
=

2Cv2

α
− Cv2 + C2

�
��− 2

α
+ 1− C

v2

=⇒ 2C2 + 2 = 2Cv2 +
2C

v2
+

2C

αv2
− 2Cv2

α

=⇒ C2 + 2 = Cv2 +
C

v2
+

C

αv2
− Cv2

α

=⇒ 1

2

[
ei

2πk
N + e−i 2πk

N = eαd + e−αd − 1

α
(eαd − e−αd)

]
Finally, by converting this through identities we arrive at the equation for

the solutions:

cos

(
2πk

N

)
= cosh(αd)− 1

α
sinh(αd)

Let’s examine this equation a bit further by trying to plot both the left-
hand-side (LHS) and the right-hand-side (RHS) with respect to alpha.

The LHS is just going to be a straight line, since it does not depend on alpha
but rather just on which k we are examining.

An example of this solution plotted looks as follows:
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The RHS can be understood better by taking the derivative with respect to
alpha:

d

dα
(RHS) =

1

2
d(eαd − e−αd) +

1

2α2
(eαd − e−alphad)− d

2α
(eαd + e−alphad)

= (d+
1

α2
)sinh(αd)− dcosh(αd

α

= (d+
1

α2
)(αd+

α3d3

6
+ ...)− d

α
(1 +

α2d2

2
+ ...)

If d< 1, we only have < N solutions.
If d> 2, we will have ≥ N solutions.
As N→ ∞, more lines from the LHS, meaning more continuous.

Extending to Unbound States

We can also extend this same idea to the unbound states (so far we’ve just
looked at alpha not beta). Both of our wave functions look like this:

Bound States :

Can be conceptualized as ”valence e-” for a metal:

−d
2

≤ x ≤ 0 : ϕ(x) = ALe
αx +BLe

−αx

0 ≤ x ≤ d

2
: ϕ(x) = ARe

αx +BRe
−αx

Equation of Solutions:
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cos

(
2πk

N

)
= cosh(αd)− 1

α
sinh(αd)

Unbound States :

Can be conceptualized as ”conduction band e-” for a metal

−d
2

≤ x ≤ 0 : ϕ(x) = ALe
iβx +BLe

−iβx

0 ≤ x ≤ d

2
: ϕ(x) = ARe

iβx +BRe
−iβx

Equation of Solutions:

cos

(
2πk

N

)
= cos(βd)− 1

β
sin(βd)
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By defining this β term, where if we wanted to write it instead still as α
would be α = iβ, we can solve for the ”unbound” states. This means that for
any given d and N, we should be able to solve for all αk and all βk.

Understanding the trajectory of bound equation better

So, to understand the slope of our bound state RHS solution better, we’ll
examine solutions where β is ”large”. Looking at our solution equation one
more in terms of β:

cos

(
2πk

N

)
= cosh(βd)− 1

β
sinh(βd)

In this case:

−1 ≤ cos(βd) ≤ 1

−1 ≤ sin(βd) ≤ 1

Additionally:

| 1
β
sin(βd)| ≤ |cos(βd)|

=⇒ cos(βd)− 1

β
sin(βd) ≈ cos(βd)

∴ cos

(
2πk

N

)
= cos(βd)

=⇒ βd =
2πk

N
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∴ β =
2πk

Nd
=

2πk

L

Since the wave function for β is defined as e±iβx this becomes ϕ = e±
2πk
L

which is called the ”free particle/wave limit” and whether it is more particle-like
or wave-like (aka whether it will disperse or not) is dependent on its mass.

Going back to analyzing the derivative of the RHS for bound states. We
already established:

0 = (d+
1

α2
)sinh(αd)− d

α
cosh(αd)

=⇒ tanh(αd) =
d
α

d+ 1
α2

=
αd

α2d+ 1

We will call this f(α):

df

dα
=

d

α2d+ 1
− 2α2d2

(α2d+ 1)1

We’ll set this equal to 0 to find our maximum location:

df

dα
= 0

=⇒ d(α2d+ 1) = 2α2d2

=⇒ α =
1√
d

Plug this maximum location back into f(α):

tanh(
1√
d
d) =

√
d

2

This shows that for small d the RHS of the bound state is monotonic (mean-
ing it keeps on increasing or keeps on decreasing. Alternatively, it has one
minimum for large d’s:
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Rewriting functions as Taylor’s series

Even:

cos

(
2πk

N

)
= cosh(αd)− 1

α
sinh(αd) =

[
1 +

α2d2

2
+
α4d4

24
+ ..

]
− 1

α

[
αd+

α3d3

6
+
α5d5

120
+ ...

]

= (1− d) +
α2d2

6
(3− d) +

α4d4

120
(5− d) + ...

Odd:

cos

(
2πk

N

)
= cos(βd)− 1

β
sinh(βd) =

[
1− β2d2

2
+
β4d4

24
− ..

]
− 1

β

[
βd− β3d3

6
+
β5d5

120
− ...

]

= (1− d)− β2d2

6
(3− d) +

β4d4

120
(5− d) + ...

Rewriting these equations in terms of these Taylor’s series shows a few things.
First it shows what happens when alpha or beta are 0. The function starts at
1-d. Furthermore, comparing even and odd states shows more clearly why the
odd states’ RHS fluctuates from top to bottom as we increase β.

1.5 Examples of Graphing the Solutions for Evenly Spaced
Delta Function Potentials on a Circle

Solutions to the resulting solution equations for bound and unbound states were
coded and examples of some of the resulting plots are shown below:
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1 Quantum Harmonic Oscillator

1.1 Review of Newton’s Harmonic Oscillator

The harmonic oscillator in classical mechanics has this potential energy related
to the spring constant k:

V (x) =
1

2
kx2

And some force:

F (x) = −kx

This k is defined as:

k > 0

k units : kg
sec2

k
m units: 1

sec2

From the force we find the equation of motion:

m
d2x

dt2
= −kx

=⇒ d2x

dt2
= − k

m
x

We define angular frequency or ”natural frequency” of the harmonic oscilla-

tor as ω =
√

k
m or k = mω2

Thus the acceleration becomes:

d2x

dt2
= −ω2x

A known solution to this spring equation is:

x(t) = Asin(ωt) +Bcos(ωt)

We can take the derivative of this with respect to time to get velocity:

v(t) = Aωcos(ωt) −Bωsin(ωt)

Typically we set x(0) = x0 and V (0) = V0.
Therefore:

B = x0

A = 0

1



Therefore the position and velocity equations simplify to:

x(t) = x0cos(ωt)

v(t) = −x0ωsin(ωt)

Thus we can rewrite the potential energy of this harmonic oscillator with
respect to time instead of position:

V (t) =
1

2
kx2(t) =

1

2
kx20cos

2(ωt)

The kinetic energy will therefore also change in time as:

KE(t) =
1

2
mv2(t) =

1

2
mx20ω

2sin2(ωt) =
1

2
kx20sin

2(ωt)

The total energy is thus:

TE(t) =
1

2
kx20

[
cos2(ωt) + sin2(ωt)

]
=

1

2
kx20 = constant ≥ 0

1.2 Quantum Harmonic Oscillator

Now, in quantum mechanics, instead of directly finding the value of the total
energy, we use an operator (the Hamiltonian) that when operating on a given
wave function yields a value for the energy of that state. The potential energy
of the harmonic oscillator is nonetheless the same:[

−ℏ2

2m

d2

dx2
+

1

2
kx2(x)

]
ϕ(x) = Eϕ(x)

We switch this over to natural units by setting y = x
b =⇒ x = by

This b is chosen as the length in x units at which the kinetic energy and
potential energy are the same, and is dictated by the mass and spring constant

of the particular model: ℏ2

2mb2 = 1
2kb

2.
The units of b should indeed be length, in this case meters, as shown:

2mb2 =
1

2
mω2b2

=⇒ b4 =
ℏ2

m2ω2
=⇒ b2 =

ℏ
mω

=⇒ units :
��kg

m2

�s

��
kg
s

The wave equation using a different wave function, which we will call χ,
which is natural units of y thus becomes:

ℏ2

2mb2
d2χ(y)

dy2
+

1

2
kb2y2χ(y) = Eχ(y)

2



−ℏ�2

2��m �ℏ
�mω

d2χ(y)

dy2
+

1

2
(��mω �

2)
ℏ

��mω
y2χ(y) = Eχ(y)

=⇒ −1

2
ℏω

d2χ

dy2
+

1

2
ℏωy2χ(y) = Eχ(y)

Therefore E is proportional to ℏω, which is also in units of Joules. We can
therefore define the energies in terms of the unitless α where E = αℏω =⇒ α =
E
ℏω . Furthermore, we know that this wave equation has n solutions of different
functions χn with different energies therefore:

=⇒ −1

2

d2χn

dy2
+

1

2
y2χn = αnχn

This can also be written in the format of an operator as previously shown:[
−1

2

d2

dy2
+

1

2
y2
]
χn(y) = [αn]χn(y)

If αn ̸= αm, then for two different functions:∫ ∞

−∞
χ∗
n(y)χm(y)dy = 0

In order to solve this equation we’ll define some operator a:

a =
1√
2

[
d

dy
+ y

]
********************************************************************

Before continuing let’s take a small detour to understand a common property
taught in linear algebra classes, namely:

(AB)† = (B†A†)

In Dirac notation, it is clear to see where this comes from:

⟨w|AB |v⟩ = ⟨(AB)†|w |v⟩ = ⟨w|(A(B)v)⟩ = ⟨A†w|Bv⟩ = ⟨B†A†w|v⟩

********************************************************************

Now, returning to the operator above, we will try to understand it better by

first examining just the d
dx part of it. We can show that

(
d
dx

)†
= −d

dx based on
the following proof:

∫ ∞

−∞
ϕ∗(x)

[
d

dx
ψ(x)

]
dx =

∫ ∞

−∞

[
d

dx
(ϕ∗(x)ψ(x)) − (

d

dx
ϕ∗(x))ψ(x)

]
dx

3



=(((((((
ϕ∗(x)ψ(x)|∞−∞ +

∫ ∞

−∞

[
−d
dx

ϕ∗(x)

]
ψ(x)dx =

∫ ∞

−∞

[
−d
dx

ϕ(x)

]∗
ψ(x)dx

This shows that d
dx acting on the unconjugated wave function is the same

as conjugated −d
dx acting on the conjugated wave function. In other words, this

is an example of a complex conjugate that is Hermitian. If you apply † on this
operator twice, you end up where you started.

Therefore, based on the above proof we thus know that:

a† =
1√
2

[(
d

dy

)†

+ y†

]
=

1√
2

[
−d
dy

+ y

]
Let’s apply both a† and a to a function and see what happens:

(a†a)f(y) =
1√
2

[
−d
dy

+ y

]
1√
2

[
d

dy
+ y

]
f(y)

=

[
−1

2

d2

dy2
+

1

2
y2 − 1

2

]
f(y)

As you can tell, this is quite similar to the wave equation and the operator
we are looking for. In fact, we can define α as:

α = a†a+
1

2

Additionally we’ll define:

N = a†a =⇒ N† = N

With this definition, we can rewrite the wave equation as:

Nχ = (α− 1

2
)χ

Now let’s look at aa†:

aa† =
−1

2

d2

dy2
+

1

2
y2 +

1

2

=⇒ aa† − a†a = 1

In other words aa†−a†a = I (where I is the Identity Matrix) if a is a matrix.
We haven’t really defined what a is but we can look at how it works if we

define it as a 2x2 matrix:

a =

(
a11 a12
a21 a22

)
Therefore:

aa† − a†a = I
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(
a11 a12
a21 a22

)(
a∗11 a∗12
a∗21 a∗22

)
−
(
a∗11 a∗12
a∗21 a∗22

)(
a11 a12
a21 a22

)
= I

=⇒
(

a12a
∗
12 − a∗21a21 a11a

∗
21 + a12a

∗
22 − a∗11a12 − a∗21a22

a21a
∗
11 + a22a

∗
12 − a∗12a11 − a∗22a12 a21a

∗
21 − a∗12a12

)
= I

Since this has to equal the identity matrix, the diagonal values must be
equal to 1. This means that the implication if we make a a 2x2 matrix is that
a12a

∗
12 − a∗21a21 = 1 and a21a

∗
21 − a∗12a12 = 1.

Additionally, based on the fact that aa†−a†a = 1, the following commutators
simplify as follows:

[N, a†] = Na† − a†N = a†aaa† − a†a†a = a†(aa† − a†a) = a†

[N, a] = Na− aN = a†aaa− aa†a = (a†a− aa†)a = −a

[a, a†] = aa† − a†a = 1

We’re going to use these properties of a to try to solve for the set of solutions
to our wave equation:

Starting once more with:

Nχ = (α− 1

2
)χ

We apply the operator/matrix a to this function to get:

aNχ = (α− 1

2
)aχ

Using the previous properties discussed we know that Na − aN = −a =⇒
aN = a+Na. So the wave function becomes:

(a+Na)χ = (α− 1

2
)aχ

=⇒ N [aχ] = (α− 3

2
)[aχ]

What this is really showing us is that we have found a new solution to this
wave equation, where the wave function is aχ and the eigenvalue that represents
the energy is α− 3

2
Alternatively, if we apply the hermitian conjugate of a (a†) to the wave

function we obtain:

a†Nχ = (α− 1

2
)a†χ

(−a+Na†)χ = (α− 1

2
)a†χ

=⇒ N [a†χ] = (α+
1

2
)[a†χ]
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Thus, we have found a new solution where the wave function is a†χ and the
eigenvalue that represents the energy is α+ 1

2
This process of applying either a or a† can be repeated meaning there is

some set of solutions such that as you apply a, the next solution is 1 less than
the previous and as you apply a† the next solution is 1 more than the previous.

Now we have a continuum of solutions to the wave equation and the corre-
sponding energies of these solutions. We know that there should be an infinite
number of solutions because we are dealing with energy, however it is still pos-
sible that there are restrictions in either of the two directions.

For this we can look at what happens when we normalize the function.
Our normalization condition is that

∫∞
−∞ χ∗χdx must equal some finite, positive

value because it represents the total probability of the particle existing (which we
typically normalize to be 1). We will use this our advantage to better understand
the limits on the possible solutions and energies by taking the following integral:∫ ∞

−∞
(aχ)∗(aχ)dx =

∫ ∞

−∞
χ∗a∗aχdx

=

∫ ∞

−∞
χ∗Nχdx = (α− 1

2
)

∫ ∞

−∞
χ∗χdx ≥ 0

=⇒ (α− 1

2
) ≥ 0

=⇒ α ≥ 1

2

This has the implication that the last non-zero energy value/wave function,
χ0 has the property that aχ0 = 0. If this weren’t the case, α ≥ 1

2 would not be
upheld because it would still be possible to find new α values that are negative.

This means that the ”eigenvector” χ0 and its ”eigenvalue” α are the stopping
point (lowest energy state) for our solution set. The overall solution set would
look like this:
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The implication of this restriction on χ0 is that we can solve for it as follows:

aχ0 =
1√
2

(
d

dy
+ y

)
χ0 = 0

=⇒ d

dy
χ0 + yχ0 = 0

=⇒
∫ χ(y)

χ(0)

dχ0

χ0
= −

∫ y

0

ydy

=⇒ ln(χ0(y)) − ln(c0) =
−y2

2

=⇒ χ0(y) = c0e
−y2

2

We find the value for χ0 at y = 0 as follows:∫ ∞

−∞
χ2
0dy = 1 =⇒ c20

∫ ∞

−∞
e−y2

dy = 1

=⇒ c20
√
π = 1 =⇒ c0 =

1

π
1
4

=⇒ χ0 =
1√
2π
e−

y2

2

χ0 α =
1

2

a†χ0 α =
3

2

a†a†χ0 α =
5

2

a†a†a†χ0 α =
7

2

Now we will find the relationship between one solution (energy state) of the
wave equation and the next state that is higher in energy.

We start with the premise that a given solution χn there will be some value
eigenvalue n that corresponds to the operator H (where n = α− 1

2 )
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Nχn = nχn

χn can be rewritten as a†...a†χ0 (with n number of a†):

N(a†...a†χ0) = n(a†...a†χ0)

We also know that when we apply a† to one solution/eigenvector, the result
is the eigenvector that is one step higher in energy multiplied by some constant:

a†χn = Cχn+1

Using these facts we can perform the normalization integral for χn+1 (we
presume that χn is already normalized)

C2

∫ ∞

−∞
χ2
n+1dy =

∫ ∞

−∞
(a†χn)(a†χn)dy =

∫ ∞

∞
χn(aa†χn)

=

∫ ∞

∞
χn((a†a+1)χn) =

∫ ∞

∞
χn[a†aχn]dy+

∫ ∞

−∞
χ2
ndy = (n+1)

∫ ∞

−∞
χ2
ndy = n+1

=⇒ C2

∫ ∞

−∞
χ2
n+1dy = (n+ 1)

∫ ∞

−∞
χ2
ndy =⇒ C2 = n+ 1

=⇒ C =
√
n+ 1

So we arrive at (repeating the same process for a operator as well:

a†χn =
√
n+ 1χn+1

aχn =
√
nχn−1

Therefore, the normalized χn+1 becomes:

χn+1 =
1√
n+ 1

a†χn

Now, looking once more at our solution for the lowest energy state χ0:

χ0 =
1√
π
e

−y2

2

We know the following is true:

d

dy
(

1√
π
e

−y2

2 ) = − 1√
π
ye

−y2

2

If we think of this as a polynomial 1√
π

multiplying e
−y2

2 , then what happens

upon taking the derivative is we end up with a new polynomial of +1 higher

order multiplying e
−y2

2 .
We can generalize this for any polynomial as follows:

8



d

dy

{
Hn(y)e

−y2

2

}
=
dHn(y)

dy
e

−y2

2 − yHn(y)e
−y2

2

=

[
dHn(y)

dy
− yHn(y)

]
e

−y2

2

Now we have our previous definition of χn and our new definition for nor-
malized χn+1. :

χn =
Hn(y)√

2π
e

−y2

2

χn+1 =
1√
n+ 1

(
1√
2

)[
− d

dy
+ y

]
χn =

1√
2(n+ 1)

[
−dχn

dy
+ yχn

]

χn+1 =
1√

2(n+ 1)
√

2π

[
− d

dy
(Hn(y)e

−y2

2 ) + yHn(y)e
−y2

2

]
From here we can substitute χn+1 = Hn+1(y)√

2π
e

−y2

2 :

Hn+1(y)

�
��√
2π

�
��

e
−y2

2 =
1√

2(n+ 1)���√
2π

[
− d

dy
(Hn(y)�

��
e

−y2

2 ) + yHn(y)�
��

e
−y2

2 + yHn(y)�
��

e
−y2

2

]
What we’re left with is a relationship from one ”Hermite polynomial” to the

next:

Hn+1(y) =
1√

2(n+ 1)

[
−dHn(y)

dy
+ 2yHn(y)

]
Let’s examine what these polynomials are when H0 = 1 (even function):
n=0:

√
2H1 =

−dH0

dy
+ 2yH0 = 0 + 2y

=⇒ H1 =
√

2y

(H1 is odd function)
n=1:

2H2 =
−dH1

dy
+ 2yH1

=⇒ 2H2 =
−d
dy

(
√

2y) + 2
√

2yy = 2
√

2y2 −
√

2

=⇒ H2 =
√

2y2 − 1√
2
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(H2 is even function)
n=2:

√
6H3 =

−dH2

dy
+ yH2

√
6H3 =

−d
dy

(
√

2y2 − 1√
2

) +
√

2y3 − y√
2

=⇒ H3 =
1√
3
y3 −

(
2
√

2 +
1√
2

)
1√
6
y

(H3 is an odd function)
As you can tell, these Hermite polynomials alternate between being odd and

even functions and increase order each time.
Another interesting thing to note is that the wave functions are orthonormal,

meaning that given our chosen inner product:∫ ∞

−∞
χn(y)χm(y)dy = δnm

If we rewrite this in terms of the Hermite polynomials:

1

2π

∫ ∞

−∞
e−y2

Hn(y)Hm(y)dy = δnm

Therefore we can state that the Hermite polynomials are orthonormal poly-
nomials under a Gaussian weight.

1.3 2-D Classical Harmonic Oscillator

We can expand the harmonic oscillator to 2 dimensions by defining a potential
energy that depends on the radius from a point:

r2 = x2 + y2

V (x, y) =
1

2
kx2 +

1

2
ky2 =

1

2
k(x2 + y2) =

1

2
kr2

Therefore the total energy (refer to central force chapter) becomes:

E =
1

2
m

(
dr

dt

)2

+
L2

2mr
+

1

2
kr2

The first two terms are our radial kinetic energy and rotational kinetic energy
respectively and L is angular momentum.

=⇒ dr

dt
=

√
2

m

(
E − L2

2mr2
− 1

2
kr2
)
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By defining k = mω2 where m is mass and ω is angular frequency we arrive
at:

r

ω

dr

dt
=

√
2E

mω2
r2 − L2

m2ω2
− r4

Now we define r2 = u and k = mω2 where m is mass and ω is angular
frequency such that du

dt = 2r drdt . Through some manipulation and by defining
r2 = u we arrive at:

2r
dr

dt
=

√
1

m2ω4
(E2 − L2ω2) − (u− E

mω2
)2

From here, we just notice that everything under the square root must be
greater than or equal to zero, which therefore implies that:

1

m2ω2
(E2 − L2ω2) ≥ 0

=⇒ E ≥ Lω

Well, what happens if E = Lω? If E = Lω then that necessitates that
u − E

mω2 = 0, meaning that u = E
mω2 and du

dt = 0 but this is only in this
particular case, the lowest energy possible.

To simplify this problem it is useful to perform a change of variables for
energy and time:

E = αLω

τ = ωt

This α defined for energy has a range of α ≥ 1 because of the restriction we
just demonstrated above where E ≥ Lω.

Furthermore, since we already established that u ≥ E
mω2 , we will rewrite u

as follows where β ≥ 1 and where β is a function of time:

u = β
E

mω2
= βα

Lω

mω2
=
βαL

mω

So, having defined all this we rewrite our energy equation once more:

1

2ω

du

dt
=

√
1

m2ω4
(E − L2ω2) − (u− E

mω
)2

=⇒ αL

mω

1

2

dβ

dτ
=

√
L2ω2

m2ω4
[α2 − 1] − α2L2

m2ω2
[β − 1]2

=⇒
�
��αL

mω

1

2

dβ

dτ
=

�
��αL

mω

√
(1 − 1

α2
) − (β − 1)2
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=⇒ 1

2

dβ

dτ
=

√
(1 − 1

α2
) − (β − 1)2

This is now solvable by converting this β(τ) function into a function r(t):

dβ

dt
= 2

√
(1 − 1

α2
) − (β − 1)2

We can set u = β − 1, meaning du = dβ:

=⇒ 1

2

∫
du√

(1 − 1
α2 ) − u2

=

∫
dτ

=⇒ 1

2
sin−1

(
u

1 + 1
α2

)
= τ

=⇒ u

1 + 1
α2

= sin(2τ)

=⇒ β − 1

1 + 1
α2

= sin(2τ)

β(τ) = sin(2τ)(1 +
1

α2
) + 1

Now, we also set our angular momentum to be in the z direction, mean-
ing that based on the definition of angular momentum as a cross product (in
cylindrical coordinates) we can see that:

L = mr2
dϕ

dt
= mu

dϕ

dt
= mαβ

L

mω

dϕ

dt
= αβ  L

dϕ

dt

=⇒ β =
m2ωr2 dϕ

dt

αLdϕ
dt

=
m2ωr2

αL

=⇒ dϕ

dt
=

1

αβ(τ)
=

1

αsin(2τ)(1 + 1
α2 ) + 1

And we can use this to solve for the function ϕ(t).

1.4 2-D Quantum Harmonic Oscillator

Once more defining our 2-D harmonic oscillator:

V (x, y) =
1

2
kx2 +

1

2
ky2 =

1

2
k(x2 + y2) =

1

2
kr2

We will define k = mω2 just as before. From our potential energy we can
also define a field of the force:
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F⃗ = −∇⃗V = −kxx̂− kyŷ = −krr̂

Now, we will write the wave equation using this established set-up:

−ℏ2

2m

[
∂2ϕ(x, y)

∂x2
+
∂2ϕ(x, y)

dy2

]
+

1

2
mω2(x2 + y2)ϕ(x, y) = Eϕ(x, y)

To convert to natural units of the problem we’ll perform a change of variable
where:

y = bu

x = bv

We will also have to convert the wave function to be in these new units:

ϕ(bu, bv) → χ(u, v)

With all these changes our wave equation becomes:

−ℏ2

2mb2

[
∂2χ(u, v)

∂u2
+
∂2χ(u, v)

dv2

]
+

1

2
mω2b2(u2 + v2)χ(u, v) = Eχ(u, v)

To define our natural units we choose b2 = ℏ
mω . Additionally, energy is

proportional to ℏω, thus we can change to natural energy units where α = E
ℏω .

Once more rewriting the wave equation:

��ℏω
2

[
∂2χ(u, v)

∂u2
+
∂2χ(u, v)

dv2

]
+

��ℏω
2

(u2 + v2)χ(u, v) = α��ℏωχ(u, v)

=⇒ −1

2

[
∂2χ(u, v)

∂u2
+
∂2χ(u, v)

dv2

]
+

1

2
(u2 + v2)χ = αχ

=⇒
[
−1

2

∂2χ

∂u2
+

1

2
u2χ

]
+

[
−1

2

∂2χ

∂v2
+

1

2
v2χ

]
= αχ

We will assume that this wave function is separable in this way even though
this is not always true, but we will operate under this assumption and then
prove it later:

χ(u, v) = χ1(u)χ2(v)

Based on this assumption we thus know that:

∂χ

∂u
=

(
∂χ1

∂u

)
χ2

∂χ

∂v
=

(
∂χ2

∂v

)
χ1
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∂2χ

∂u2
=

(
∂2χ1

∂u2

)
χ2

∂2χ

∂v2
=

(
∂2χ2

∂v2

)
χ1

What this means is that we can rewrite the wave equation in the following
way;

1

χ1χ2

[[
−1

2

d2χ1

du2
+

1

2
u2χ1

]
χ2 +

[
−1

2

d2χ2

dv2
+

1

2
v2χ2

]
χ1

]
= α

Now we can separate this into two terms where one involves only u and χ1

and one involves only v and χ2:

1

χ1

[
−1

2

d2χ1

du2
+

1

2
u2χ1

]
+

1

χ2

[
−1

2

d2χ2

dv2
+

1

2
v2χ2

]
= α

Therefore, this problem in essence simplifies into two separate problems:

=⇒ 1

χ1

[
−1

2

∂2χ1

du2
+ u2χ1

]
= α1

=⇒ 1

χ2

[
−1

2

∂2χ2

dv2
+ v2χ1

]
= α2

We can solve these two above just as we solved for the 1-D harmonic Oscil-
lator

α = α1 + α2

=⇒
∫ ∞

−∞
du

∫ ∞

−∞
dv χ2

1(u)χ2
2(v) = 1

=

[∫ ∞

−∞
duχ2

1(u)

] [∫ ∞

−∞
dvχ2

2(V )

]
= 1

(If each of the integrals in the bracket is 1, the total is also 1)
Using the same logic and math as in the 1-D Harmonic Oscillator, the solu-

tions would thus look like this:

α1 = n1 +
1

2
, n1 = 0, 1, 2, ...

α2 = n2 +
1

2
, n2 = 0, 1, 2, ...

α = α1 + α2 = 1 + n1 + n2

The energy levels for the 2-D Harmonic Oscillator would thus look like this:

n1 n2 α

14



0 0 1

1 0 2

0 1 2

1 1 3

2 0 3

0 2 3

2 1 4

1 2 4

3 0 4

0 3 4

*******************************************************

Side Note: Using the same idea, the energy levels for 3-D Harmonic Oscillator
would be:

α = α1 + α2 + α3 =
3

2
+ n1 + n2 + n3

n1 n2 n3 α

0 0 0
3

2

1 0 0
5

2

0 1 0
5

2

0 0 1
5

2

1 1 0
7

2

0 1 1
7

2

1 0 1
7

2

2 0 0
7

2

0 2 0
7

2

0 0 2
7

2
This demonstrates how degeneracy increases the more dimensions you go

into. Heat will also affect the particle or object less because there are more
energy states than can be occupied at lower energies before reaching higher
ones. In other words, ”If you want to be cool go to higher dimensions!”

15



*******************************************************

Now let’s look at the solutions for these separated wave functions χ1 and χ2

when we change the energy level in a given dimension. As we might recall from
the 1-D harmonic oscillator solution, the two lowest Hermite polynomials are
H0 = 1 and H1(y) =

√
2y

n1 = 0

χ1(u) =
1√
2π
e

−u2

2

n2 = 0

χ2(v) =
1√
2π
e

−v2

2

n1 = 1

χ1(u) =
1√
2π

(
√

2u)e
−u2

2

n2 = 1

χ2(v) =
1√
2π

(
√

2v)e
−v2

2

We could continue this pattern using the same relationship derived for the
1-D harmonic oscillator:

Hn+1(y) =
1√

2(n+ 1)

[
−dHn(y)

dy
+ 2yHn(y)

]
Now, combining these separate n1 and n2 values leads to many degenerate

states (wave functions for each value of n. Looking back at our table of states
and including the wave function now:

n1 n2 α χ

0 0 1 1
2π e

−r2

2

1 0 2 1
2π

√
2rsinθe

−r2

2

0 1 2 1
2π

√
2rcosθe

−r2

2

1 1 3 2uv√
π
e

−r2

2

2 0 3 1
2π2 r

2sin2θe−r2

0 2 3 1
2π2 r

2cos2θe−r2

These graphs can then be plotted, demonstrating the radial symmetry of
some solutions and not others.
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Let’s now try to understand the 2-D harmonic oscillator in the language
of eigenvectors and eigenvalues. We are already familiar with the operator H
that extracts the energy of the wave function/eigenvector. But how about an
operator that allows us to find eigenvectors of higher energy states? And how
about finding higher energy states in both the u direction and the v direction?

Well, since we already showed how the 2D harmonic oscillator in essence
simplifies into two 1D problems, it may not be surprising that the operators
work in the same way, and are as follows:

au =
1√
2

[
∂

∂u
+ u

]

av =
1√
2

[
∂

∂v
+ v

]

a†u =
1√
2

[
−∂
∂u

+ u

]

a†v =
1√
2

[
−∂
∂v

+ v

]
By looking at these operators we know that similar to the 1D operators:[

au, a
†
u

]
= 1[

av, a
†
v

]
= 1

17



Any other commutators between u operators and v operators are zero, so in
this way also the problem splits into two separate problems:

[au, av] = 0[
au, a

†
v

]
= 0[

a†u, av
]

= 0[
a†u, a

†
v

]
= 0

Just like in the 1-D harmonic oscillaotr, we will also define N operators for
each dimension:

Nu = a†uau

Nv = a†vav

And again like the 1-D harmonic oscillator, we can prove the following in
the same exact way:

[Nu, au] = −au[
Nu, a

†
u

]
= a†u

[Nv, av] = −av[
Nv, a

†
v

]
= a†v

And once more, when we try to find the commutators for crossed operators
between u and v, the result is zero. For example:

[Nu, av] = 0[
N†

v , au
]

= 0

...

The total wave equation is thus:

(Nu +Nv)χ = (α− 1)χ

Now, (just like in the 1-D H.O.!!) we will use our operators au, av, a
†
u, a

†
v to

uncover all the different energy states. Applying a†u:

(Nu +Nv)(a†uχ) =
[
a†uNu + a†u

]
χ = a†u(α− 1 + 1)χ = α(a†uχ)

(Nu +Nv)(a†uχ) = α(a†uχ)

Therefore the energy of this new eigenvector a†uχ is α compared to the energy
of χ which was α− 1. The operator a†u thus changes from one eigenvector to a

18



higher energy one. The same is true for a†v, the only difference being that the
energy of the state is increased in a different dimension.

To discover a lower energy state, we can apply either au or av. For example:

(Nu +Nv)(avχ) = (α− 1 − 1)(auχ)

So with these operators we can uncover all the different energy eigenvectors.
In order to not have eigenvectors with negative eigenvalues (just like in 1D

H.O.!!) we know that there must be some χ00 where:

(a†ua+a
†
vav)χ00(u, v) = 0

auχ00(u, v) = 0 and avχ00(u, v) = 0

Let’s find this χ00: (
∂

∂u
+ u

)
χ00 = 0

=⇒ χ00

[
∂lnχ00

∂u
+ u

]
= 0 =⇒ χ00

∂

∂u

[
lnχ00 +

1

2
u2
]

= 0

This implies that lnχ00 + 1
2u

2 is a function of v which we will call f(v),
meaning lnχ00 = f(v) − 1

2u
2. We will substitute this below:(

∂

∂v
+ v

)
χ00 = 0 =⇒ χ00

∂

∂v

[
lnχ00 +

1

2
v2
]

= 0

=⇒ χ00
∂

∂v

[
f(v) − 1

2
u2 +

1

2
v2
]

= 0

=⇒ ∂

∂v

[
f(v) +

1

2
v2
]

= 0

Finally we end up with a solution for the lowest energy wave function:

lnχ00 +
1

2
u2 +

1

2
v2 = constant

=⇒ χ00 =
1√
π
e−

1
2 (u

2+v2)

From this lowest energy state what we end up with is branches in each of
the two dimensions for moving to a higher energy state using these operators:

So, let’s try to find some of these wave functions. Starting with χ10:
α = 1 :

n10 χ10 = a†uχ00 =
1√
2π

[
2ue

−(u2+v2)
2

]
=

√
2

π
ue

−(u2+v2)
2

19



In this equation n10 is the normalization constant for χ10 which we can solve
for as follows:

n210 =
2

π

∫ ∞

−∞
du

∫ ∞

−∞
dvu2e−(u2+v2)

We set u = rsinθ and v = rcosθ and then solve:

n210 =
2

π

∫ ∞

0

rdr

∫ 2π

0

dθr2sin2θe−r =
1

π

[∫ ∞

0

r3e−r2dr

] [∫ 2π

0

(2sin2θ)dθ

]

=
1

π

1

2
2π = 1

=⇒ n∗10n10 = 1

Therefore, if we repeat the process for χ01 we would find that the constant
is the same, 1. This also makes sense in that our decision to decide u = rsinθ
and v = rcosθ is arbitrary and we could have easily done vice versa. The final
result for these two is thus:

χ10 =

√
2

π
ue

−(u2+v2)
2

χ01 =

√
2

π
ve

−(u2+v2)
2

Experimentalist’s Perspective

We have been so far talking about discrete quantum states, but an experi-
mentalist’s quantum states may be linear combinations of what we have.

So, an experimentalist will see a linear combination and measure the energy
such as:

H(c1χ10 + c2χ01) = c1(Hχ0, 0) + c2(Hχ1,0)

This means that c1χ0,0 +2c2χ1,0 is not proportional to c1χ0,0 + c2χ1,0 which
means that the sum of two eigenvectors does not give you another eigenvector!

In order to solve for what the experimentalist really measured we first can
normalize like this:∫ ∞

−∞
[(c1χ1,0 + c2χ0,1)(c1χ1,0 + c2χ0,1)] dudv = 1

=⇒ c21 + c22 = 1 =⇒ c1 =
√

1 − c21

We will use this relationship between coefficients to solve later. First though
let’s look back at a proof from earlier:
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Hχ1 = α1χ1 =⇒ χ†
1H = α1χ

†
1

Hχ2 = α2χ2 =⇒ χ†
2H = α2χ

†
2

χ†
1Hχ2 = α1χ

†
1χ2 = α2χ

†
1χ2 =⇒ (α1 − α2)(χ†

1χ2) = 0

χ†
2Hχ1 = α2χ

†
2χ1 = α1χ

†
2χ1 =⇒ (α1 − α2)(χ†

2χ1) = 0

If α1 ̸= α2, then in order for this to be 0, χ†
1χ2 = 0

Now let’s assume the experimentalist knows the coefficients:

2

π
[c21u

2 + 2c1c2uv + c2v
2]e−(u2+v2)

=⇒ 2

π
[c21sin

2θ + 2c1c2sinθcosθ + c22cos
2θ]r2e−r2

=
2

π

[
1

2
+
c1 + c2

2
cos2θ + c1c2sin2θ

]
From here the experimentalists can use ”partial wave decomposition” to find

the coefficients of each of the terms. Different combinations of the coefficients
will lead to different types of waves.

Now we will Solve this problem once more but in polar coordinates!

This is the change of variables we will make:

u = cosθ

v = rsinθ

du = drcosθ − rsinθdθ

dv = drsinθ + rcosθdθ

=⇒ dr = ducosθ + dvsinθ

=⇒ dθ =
−dusinθ

r
+
dvcosθ

r

Now we want to change the entire wave equation to be in terms of θ and r
and their partial derivatives. So, we’ll start by taking the partial derivatives of
each of these:

∂

∂u

∣∣∣∣∣
v

[
χ(U,V )

χ(r,θ)

]
=

(
∂

∂θ

∣∣∣∣∣
r

∂θ

∂U

∣∣∣∣∣
v

+
∂

∂r

∣∣∣∣∣
θ

∂r

∂U

∣∣∣∣∣
v

)
χ(r, θ)

=

[
−sinθ

r

∂

∂θ
+ cosθ

∂

∂r

]
χ(r, θ)
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∂

∂v
=

∣∣∣∣
u

[χ(r,θ)] =

(
∂

∂θ

∣∣∣∣
r

∂θ

∂v

∣∣∣∣
u

+
∂

∂r

∣∣∣∣
θ

∂r

∂V

∣∣∣∣
u

)
χ(r, θ)

=

[
cosθ

r

∂

∂θ
+ sinθ

∂

∂r

]
χ(r,θ)

Then we can take the second partial derivatives and sum the two together,
notice that many of the terms cancel out, and then end up with the wave
function: (

∂2

∂U2
+

∂2

∂V 2

)
χ(r,θ) =

1

r2
∂2χ

∂θ2
+

1

r

∂χ

∂r
+
∂2χ

∂r2

This means that the Hamiltonian operator thus becomes:

H = −1

2

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
+

1

2
r2

Looking at this new Hamiltonian operator, we can presume that the first
two terms are probably linear kinetic terms (they only derive with respect to r
thus depend on r), the third term is probably angular kinetic energy, and the
last is our potential energy.

We define the operator Lz = ∂
∂θ and thus the Hamiltonian can be rearranged:

H = −1

2

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
L2
z − r2

)
Now, let’s check that this new operator we defined commutes with the Hamil-

tonian:

(HLz)χ = −1

2

[
∂2

∂r2
+

1

r

d2

dθ2
− r2

] [
dχ

dθ

]

(LzH)χ = −1

2

∂

∂θ

[
∂2χ

∂r2
+

1

r

∂χ

∂r
+

1

r2
∂2χ

∂θ2
− r2χ

]
These two are the same so we know that:

(HLz − LzH)χ = 0 = [H,Lz]

If χ is an eigenvector with eigenvalue α, then Lzχ is also an eigenvector with
an eigenvalue α. This means Lz can help with finding degenerate states. So,
states will need to be defined in terms of the H and Lz exam.

We want to find these degenerate states through:

Lχ(r, θ) =
∂

∂θ
χ(r, θ)

We know that θ and θ+ 2π must label the same point so we need a function
such that f(θ) = f(θ + 2π). The functions cos(nθ) and sin(nθ) do not work
because the are not valid eigenvectors. So instead we will use:
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einθ = cos(nθ) + isin(θ)

e−inθ = cos(nθ) − isin(θ)

Instead of calling this integer n we will instead call it m, using the operator:

∂

∂θ
(eimθ) = imeimθ

Therefore the result of the operator, which we were previously just calling
l, is im. Furthermore we might have some function that does not depend on θ
such that:

χ(r, θ) = R(r)eimθ

Now we have fixed energy and angular momentum, just like in classical
mechanics but instead it is now like:

Hχ = χχ

Lzχ = imχ

**Note: it can be useful to instead define Lz = i ∂
∂θ so that it is hermitian

and we get values of m instead of im but we’re not doing that.
Therefore H becomes:

H =
1

2

(
d2

dr2
+

1

r

d

dr
− m2

r2
− r2

)
The wave function thus becomes HR = αR where R is some function that

depends on r.
We can therefore rewrite the wave equation:[

d2

dr2
+

1

r

d

dr
− m2

r2
− r2 + 2α

]
R(r) = 0

This R function can be written as:

R(r) = P (r)e−
r2

2

Now let’s rewrite the wave equation in these terms and it becomes:

d2P

dr2
+

(
1

r
− 2r

)
dP

dr
+

(
2α− 2 − m2

r2

)
P = 0

Also with this new definition of R, the wave function becomes:

χ(r, θ) = R(r)P (r)e
−r2

2 eimθ

We can normalize this wave function as follows:
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∫ ∞

0

rdr

∫ 2π

0

dθχ∗(r, θ)χ(r, θ) = 1

In order to perform this normalization, we require P (r) to be a finite poly-
nomial.

So let’s assume P (r) = rβ for r → 0, then dP
dr = βrβ−1

Plugging this into the wave function our end result will be:

[β(β − 1) + β −m2]rβ−2 + [2α− 2 − 2β]rβ = 0

Since both of these terms are positive real values, then examining the first
term:

β(β − 1) + β −m2 = 0 =⇒ β2 = m2

=⇒ β = |m|

So, β, which is the power of P (r), is the same as the absolute value of m,
where im is our eigenvalue of the operator L.

However, we only approximated that P (r) = rβ . In reality, an accurate way
to represent it may be that P (r) = r|m|U(r) where U is another polynomial.

Once more we can substitute this into our wave equation in terms of P and
manipulate to obtain:

0 = (m2−|m|+|m|−m2)r|m|−2U(r)+(2α−2−2|m|)r|m|U(r)+[(2|m|+1)r|m|+1−2r|m|+1]+r|m| d
2U

dr2

=⇒ d2U

dr2
+ (

2|m| + 1

r
− 2r)

dU

dr
+ 2(α− 1 − |m|)U = 0

Now, let’s consider this U(r) as a sum:

∞∑
n=1

Unr
n

With this in my mind, we can manipulate and rewrite our wave equation
one more to end up with:

0 =
2|m| + 1

2
U1+

∞∑
n=0

[Un+2[(n+2)(n+1)+(2|m|+1)(n+2)]+Un(2(α−1−|m|)−2n)]rn

Now we know that in order for this expression to equal 0 at any r that all
the coefficients of every term must be 0:

U1 = 0

Un+2[(n+ 2)(n+ 1) + (2|m| + 1)(n+ 2)] + Un(2(α− 1 − |m|) − 2n) = 0
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=⇒ Un+2 =
2[1 + |m| + n− α]

(n+ 2)(2|m| + n+ 2)
Un

For some N, we thus know that UN = 0, meaning that:

1 + |m| +N − α = 0

=⇒ α = N + 1 + |m|

This is our restriction on α and shows that only some values of α are allowed.
Final note, when it comes to finding solely linear or rotational kinetic energy

or potential energy, this can be done through integrating the wave function as
follows and since it separates into multiple integrals, each part of the total energy
can be solved for separately, like so:∫

χ∗(−1

2
(
∂2

∂r2
+

1

r

∂

∂r
)χ+

∫
χ∗[−1

2

1

r2

∂2

∂r2
]χ+

∫
χ∗
[

1

2
r2
]
χ

In this integral the first term is linear kinetic energy, second term is rotational
kinetic energy, and third term is potential energy.
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1 Understanding and Defining an Angular Mo-
mentum Operator in Cartesian Coordinates

1.1 Centered Potentials

In quantum mechanics there are various models of potentials that are used such
as the following:

V (r) =
1

2
kr2 (spring) (1)

V (r) =
α

r
, α > 0 (electric) (2)

V (r) = Kr (confining) (3)

V (r)
α

r
e−mr (Higgs) (4)

V (r) = ”Evolving” nuclear potential

such as Reid potential or Cornell potential
(5)

Based on one of these potentials that are proportional to radius, it is useful
to define an angular momentum operator in each of our directions in Cartesian
coordinates.:

L⃗ = r⃗ × p⃗ (6)

Lx = ypz − zpy = −iℏ
[
y
∂

∂z
− z

∂

∂y

]
(7)

Ly = zpx − xpz = −iℏ
[
z
∂

∂x
− x

∂

∂z

]
(8)

Lz = xpy − ypx = −iℏ
[
x
∂

∂y
− y

∂

∂x

]
(9)

Likewise, we recall that for wave functions of the form we use, the momentum
operators are:

px = −iℏ ∂

∂x
(10)

py = −iℏ ∂
∂y

(11)

pz = −iℏ ∂
∂z

(12)
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1.2 Commuting Angular Momentum Projection Opera-
tors

Let’s understand better by seeing whether these angular momentum operators
commute with each other. Let’s first try [Lx, Ly]:

(LxLy)ψ = −ℏ2
[
y
∂

∂z
− z

∂

∂z

] [
z
∂

∂x
− x

∂

∂z

]
ψ = −ℏ2

[
y
∂

∂z
− z

∂

∂y

] [
z
dψ

dx
− x

dψ

dz

]
= −ℏ2

[
y
∂z

∂z

∂ψ

∂x
+ yz

�
�
�∂2ψ

∂z∂x
− z2

�
�
�∂2ψ

∂y∂x
− yx

�
��∂2ψ

∂z2
+ zx

�
�
�∂2ψ

∂y∂z

]

= −ℏ2y
∂ψ

∂x
(13)

(LyLx)ψ = −ℏ2
[
z
∂

∂x
− x

∂

∂z

] [
y
∂

∂z
− z

∂

∂y

]
ψ = −ℏ2

[
z
∂

∂x
− x

∂

∂z

] [
y
∂ψ

∂z
− z

∂ψ

∂y

]
= −ℏ2

[
zy
�
�
�∂2ψ

∂x∂z
− xy

�
��∂2ψ

∂2z2
− z2

��������∂2ψ

∂x∂y
+ x

∂z

∂z

∂ψ

∂y
+ xz

�
�
�∂2ψ

∂z∂y

]

= −ℏ2x
∂ψ

y
(14)

The commutator is thus:

(LxLy − LyLx)ψ = −ℏ2
[
x
∂ψ

∂y
− y

∂ψ

∂x

]
= (iℏ)(−iℏ)

[
x
∂ψ

∂y
− y

∂ψ

∂x

]
= iℏLzψ

(15)

[Lx, Ly] = iℏLz (16)

So these operators do not commute!
Now let’s try [Ly, Lz]:

(LyLz − LzLy) = {
[
z
∂

∂x
− x

∂

∂z

] [
x
∂

∂y

]
− y

[
∂

∂x

]
−
[
x
∂

∂y
− y

∂

∂x

] [
z
∂

∂x
− x

∂

∂z

]
}

= −ℏ2{z ∂
∂y

− y
∂

∂z
} = (iℏ)(−iℏ)

[
z
∂

∂z
− z

∂

∂x

]
= iℏLy

(17)
These don’t commute either!
The results of all three combinations is:

[Lx, Ly] = iℏLz (18)
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[Ly, Lz] = iℏLx (19)

[Lz, Lx] = iℏLy (20)

This can be summarized as:

[Li, Lj ] = iℏEijk (21)

where:

Eijk =


0, if i = j or j = k or i = k

1, if odd permutation (such as i = 1, j = 2, k = 3)

−1, if even permutation

(22)

***************************************************************************

Side note: This Eijk is used in the definition of the cross product

A⃗× B⃗ = C⃗ (23)

EijkAjBk = Ci (24)

Other examples of its use:

1) Volume differential

(dyŷ)× (dzẑ) = (dydz)x̂ (25)

(dxx̂) · [(dyŷ)× (dzẑ)] = dxdydz (26)

1

6
[Eijk ˆdxi ˆdxj ˆdxk] (27)

2) Determinant

Ei1i2A1i1A2i1 = detA2×2 (28)

Ei1i2i3A1i1A2i1A3i3 = detA3×3 (29)

Ei1i2i3...inA1i1A2i1A3i3 ...Anin = detAn×n (30)

***************************************************************************

***************************************************************************
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Note 2: Here are some useful commutator proofs for upcoming math we will
do in this chapter:

[A,BC] = ABC −BCA = ABC −BAC −BCA+BAC

= [A,B]C +B[A,C]
(31)

[A+B,C] = [A,C] + [B,C] (32)

[AB,C] = ABC − CAB −ACB +ACB = A[B,C] + [A,C]B (33)

***************************************************************************

1.3 Commuting Total Angular Momentum Operator

If Lx, Ly, Lz yield the projections of the angular momentum in x, y, z directions,
then the total angular momentum operator L is understood through L2 = L2

x+
L2
y + L2

z

So, does Lx commute with L2
x?

[Lx, L
2
x] = LxL

2
x − L2

xLx = L3
x − L3

x = 0 (34)

Yes.
Does Lx commute with L2

y? To figure this out we use the property defined
in (31) and the commutator (18).

[Lx, L
2
y] = [Lx, Ly]Ly + Ly[Lx, Ly] = iℏ(LzLy + LyLz) (35)

No, and we will use this information to understand how the total angular
momentum commutes

Similarly, using (20):

[Lx, L
2
z] = −iℏ(LyLz + LzLy) (36)

With this information we can see if Lx commutes with the total angular
momentum squared L2 where, as we said L2 = L2

x+L
2
y +L

2
z so we just sum the

separate commutators (32) to find:

[Lx, L
2
x + L2

y + L2
z] = 0 (37)

We can do the same process for Ly to find that it also commutes with the
total angular momentum:

[Ly, L
2] = [Ly, Lx]Lx+Lx[Ly, Lx]+[Ly, Lz]Lz+Lz[Ly, Lz] = iℏ(Lxz−Lzx) = 0

(38)
In conclusion:

[Lx, L
2] = 0 (39)

[Ly, L
2] = 0 (40)

[Lz, L
2] = 0 (41)
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1.4 Simultaneously diagonalizing (finding a solution set)
total angular momentum operator and its projection
in one direction.

We want to simultaneously diagonalize one angular momentum projection op-
erator and the total angular momentum operator but in order to do that we’ll
first show that it is even possible.

We define the effect of these two operators on a ket/wave function and the
eigenvalues they extract as follows:

L2 |l,m⟩ = l2 |l,m⟩ (42)

Lz |l.m⟩ = m |l,m⟩ (43)

The commutator of the total angular momentum squared and one of the
projections is as follows:

[L2, Lc] =

[
3∑

a=1

L2
a, Lc

]
=

3∑
a=1

[LaLa, Lc] =

3∑
a=1

{La[La, Lc] + [La, Lc]La}

=

3∑
a=1

{
Laiℏ

3∑
b=1

EacbLb + iℏ
3∑

b=1

EacbLb

}
= iℏ

3∑
a,b=1

{EacbLaLb + EacbLbLa}

= iℏ
3∑

a,b=1

EacbLaLb +

3∑
a,b=1

EacbLbLa = iℏ
3∑

a,b=1

(Eacb + Ebca)LaLb

= iℏ
3∑

a,b=1

(0)LaLb = 0

(44)
Since we just showed that L2 and Lc commute with each other, we can

simultaneously diagonalize them. In our case, we will set Lc = Lz but we could
have instead chosen Lx or Ly.

Now, we want simultaneously diagonalize L2 and Lz, let’s first denote the
eigenvalues of each but this time, remembering that these operators extract an
ℏ every time they are applied we will denote:

L2 |l,m⟩ = ℏ2l2 |l,m⟩ (45)

Lz |l,m⟩ = ℏm |l,m⟩ (46)

Additionally we remember that these operators in each direction (where
L1, L2, L3 are in our case equivalent to Lx, Ly, Lz) are hermitian:

L†
1 = L1 (47)

L†
2 = L2 (48)

L†
3 = L3 (49)
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Now, let’s use this to try to better understand these components of the
angular momentum. The expectation value of L2

1 is:

⟨l,m|L2
1|l,m⟩ = ⟨l,m|L1(L1|l,m⟩) = (L1 |l,m⟩)†(L1 |l,m⟩) ≥ 0 (50)

Likewise:
⟨l,m|L2

2|l,m⟩ ≥ 0 (51)

⟨l,m|L2
3|l,m⟩ ≥ 0 (52)

=⇒ m2 ≥ 0 (53)

So the squared eigenvalues of L2
1,L

2
2, and L

2
3 will be positive, meaning they

must be real. In the case of L3, m must be real.
If we add two together we get:

⟨l,m|L2
1 + L2

2|l,m⟩ = ⟨l,m|L2 − L2
3|l,m⟩ ≥ 0 (54)

ℏ2l2 ⟨l,m|l,m⟩ − ℏ2m2 ⟨l,m|l,m⟩ = ℏ2l2 − ℏ2m2 = ℏ2(l2 −m2) (55)

=⇒ l2 ≥ m2 (56)

This means that the total angular momentum is more than or equal to its
projection in a particular direction.

Now we will define some new operators that will help in diagonalizing our
L2 and LZ operators:

L+ = L1 + iL2 (57)

L− = L1 − iL2 (58)

We can see that:

(L+)
† = (L1 + iL2)

† = L†
1 + (iL2)

† = L†
1 − iL†

2 = L1 − iL2 = L− (59)

This will be helpful later.
Now let’s look into how these new operators commute, first with L3:

[L3, L+] = [L3, L1] + i[L3, L2] = iℏL2 + i(−iℏL1) = ℏL1 + iℏL2

= ℏ(L1 + iL2) = ℏL+

(60)

[L3, L−] = [L3, L1]− i[L3, L2] = iℏL2 − i(−iℏL1) = −ℏL1 + iℏL2

= −ℏ(L1 − iL2) = −ℏL−
(61)

And let’s look into how they commute with each other:

[L+, L−] = [L1 + iL2, L1 + iL2]

=����[L1, L1]− i[L1, L2] + i[L2, L− 1] +����[L2, L2] = −i(iℏL3) + i(iℏL3)

= 2ℏL3

(62)
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Finally let’s look into how they commute with L2:

[L2, L+] = [L2, L1] + i[L2, L2] = 0 (63)

[L2, L−] = 0 (64)

Let’s see what happens when we try to apply L2 to the vector created after
applying L+, remembering that we now know that these two operators commute
so we can change their order:

L2(L+ |l,m⟩) = L+L
2 |l,m⟩ = ℏ2l2(L+ |l,m⟩) (65)

This shows that (L+ |l,m⟩) is also an eigenvector of L2 with an eigenvalue
of ℏ2l2.

Similarly we can apply L3 after applying L+:

L3(L+ |l,m⟩) = (L3L+) |l,m⟩ = (ℏL+ + L+L3) |l,m⟩
= ℏL+ |l,m⟩+ ℏmL+ |l,m⟩ = ℏ(m+ 1)(L+ |l,m⟩)

(66)

This shows that L+ |l,m⟩ is also an eigenvector of L3 with eigenvalue of
ℏ(m+ 1).

If we do these same two operations with L− we find the following:

L2(L− |l,m⟩) = ℏ2l2(L− |l,m⟩) (67)

L3L− |l,m⟩ = −ℏL− |l,m⟩+ ℏmL− |l,m⟩ = ℏ(m− 1)(L− |l,m⟩) (68)

We can make a table for these results:
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The restriction we found (m2 ≤ l2 =⇒ |m| ≤ |l|) means that at some point
this set of eigenvectors produced by L+ and L− must be finite, meaning that:

L+ |l,mmax⟩ = 0 (69)

L− |l,mmin⟩ = 0 (70)

So, we can write (no one is stopping us):

L−L+ |l,mmax⟩ = 0 = (L1 − iL2)(L1 + iL2) |l,mmax⟩
= [L2

1 + L2
2 + i(L1L2 − L2L1)] |l,mmax⟩ = [L2

1 + L2
2 + i(iℏL3)] |l,mmax⟩

= [L2 − L2
3 − ℏL3] |l,mmax⟩

= [ℏ2l2 − ℏ2m2
max − ℏ2mmax] |l,mmax⟩ = 0

(71)

=⇒ l2 = m2
max +mmax (72)

We would have guessed that l2 = m2
max (because at max we say all angular

momentum is in one direction and think they behave like typical vectors we are
used to in classical mechanics) but this is not the case.

Similarly we can use the lower bound to solve:

L+L− |l,mmin⟩ = 0 = (L2
1 + L2

2 + i(L2L1 − L1L2)) |l,mmin⟩
= [ℏ2l2 − ℏ2m2

min + ℏ2mmin] |l,mmin⟩ = 0
(73)

=⇒ l2 = m2
min −mmin (74)

Remembering that l is fixed (we are finding the set of solutions for a given
total angular momentum):

m2
max +mmax = m2

min −mmin (75)

Two solutions to this equations are:

1) (((((((((
mmax = mmin − 1 (76)

2) mmax = −mmin (77)

However, only the second solution is physically valid because mmax ≥ mmin.
We now understand that if we have an eigenvector of a certain value of m,

L+, in essence, brings us to a new eigenvector of L2 and L3 with m+1 = m+ 1
and L− brings us to an eigenvector of L2 and L3 with m−1 = m− 1.

This all leads us to conclude:

mmax −mmin = 2mmax = some non-negative integer (78)

Let’s recall that L1 = Lx = −iℏ[y ∂
∂z − z ∂

∂z ], L2 = Ly = −iℏ[z ∂
∂x − x ∂

∂z ],

and L3 = Lz = −iℏ[x ∂
∂y − y ∂

∂x ], yet we did not solve a differential equation to
find this solution set!
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From now on, we will denote mmax ≡ j and we know that 2j must be some
integer so:

j = 0,
1

2
, 1,

3

2
, 2,

5

2
, ... (79)

2 Diving deeper into the physical meaning of
these operators

We know now that L2 operates on wave function with a resulting eigenvalue of
l2 which we can rewrite as the following based on our new definition of j:

L2 |j,m⟩ = ℏ2j(j + 1) |j,m⟩ (80)

This is a hermitian operator, which implies the following based on the proof
at the top of page 21 of QN 4:

=⇒ ⟨j1,m1|j2,m2⟩ = 0 if j1 ̸= j2 (81)

Similarly for L3:

L3 |j,m⟩ = ℏm |j,m⟩ (82)

=⇒ ⟨j1,m1|j2,m2⟩ = 0 if m1 ̸= m2 (83)

Combining these two:

⟨j1m1|j2m2⟩ = 0 if j1 ̸= j2 or m1 ̸= m2 (84)

We will also set the normalization such that ⟨jm|jm⟩ = 1.

2.1 Understanding the difference between classical and
quantum angular momentum, the nuance of the oper-
ator

Classical Mechanics angular momentum looks like the following:

L⃗ = L1î+ L2ĵ + L3k̂ (85)

dL⃗

dt
= 0 so we can pick L⃗ = Lk̂ (86)

Given this intuition from classical mechanics, we would expect that in quan-
tum/wave mechanics L⃗× L⃗ = 0 but let’s try it:

L⃗× L⃗ = (L1î+ L2ĵ + L3k̂)× (L1î+ L2ĵ + L3k̂)

= L1L2k̂ − L1L3ĵ + L2L3î− L2L1k̂ + L3L1ĵ − L3L2î

= (L2L3 − L3L2)̂i+ (L3L1 − L1L3)ĵ + (L1L2 − L2L1)k̂

= iℏL1î+ iℏL2ĵ + iℏL3k̂ = iℏL⃗

(87)
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Does not match expectations! So let’s dive more closely into what this
angular momentum ”L⃗” really is, how it compares to l and what that really
means for an experimentalist.

2.2 Experimentalist’s Perspective

Let’s say an experimentalist measures angular momentum of some particle
whose wave function we will call s. They would measure l⃗ as follows:

l⃗ = Measurement of operator = ⟨s|L⃗|s⟩

= (⟨s|L1|s⟩)̂i+ (⟨s|L2|s⟩)ĵ + (⟨s|L3|s⟩)k̂
(88)

Taking this measured value of angular momentum, l⃗, and crossing it with
itself:

l⃗ × l⃗ = 0 (89)

Therefore, the experimentalist is not confused at all!
Now, let’s think about the dot product of the angular momentummeasurement(⃗l)

with itself (a bit different from in classical mechanics where we would be think-

ing about L⃗ · L⃗ = L2):

l⃗ · l⃗ = (⟨s|L1|s⟩)2î+ (⟨s|L2|s⟩)2ĵ + (⟨s|L3|s⟩)2k̂ (90)

Let’s try to solve this. First, understanding what the operator L2
1 is and

what it does:

⟨s|(L1(L1|s⟩)) = ⟨s|L2
1|s⟩ (91)

The question is: Is this equal to = (⟨s|L1|s⟩)2? Let’s try to find out. First
applying the operator one time:

⟨jm|L3|jm⟩ = ⟨jm|(ℏm|jm⟩) = ℏm ⟨jm|jm⟩ (92)

Then, if we apply the operator twice, we simply extract ℏm from the eigen-
vector twice, and are left with only ℏ2m2. This is the same as having found this
expectation value twice and multiplied them together, so it is indeed the same
as (⟨jm|L3|jm⟩)2:

⟨jm|L2
3|jm⟩ = ℏ2m2 = (⟨jm|L3|jm⟩)2 (93)

The expectation value of L2 is as follows (found previously):

⟨jm|L2|jm⟩ = ℏ2j(j + 1) (94)

Now, we can write the addition of the square of the other two angular mo-
mentum projections through these other two known operators:

⟨jm|L2
1 + L2

2|jm⟩ = ⟨jm|L2 − L2
3|jm⟩ = ℏ2[j(j + 1)−m2] (95)
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To find more eigenvectors that satisfy this system it will help to remember
these operators:

L+ = L1 + iL2 (96)

Where L+ |j,m⟩ ∝ |j,m+ 1⟩
And:

L− = L1 − iL2 (97)

Where L1 |j,m⟩ ∝ |j,m− 1⟩
We can thus write the angular momentum projection L1 in terms of these

operators:

⟨jm|L1|jm⟩ = 1

2
(⟨jm|L+|jm⟩+ ⟨jm|L−|jm⟩) = 1

2
(0 + 0) = 0 (98)

Since L1 and L2 can be rewritten in terms of L+ and L−, there value must
be zero:

l1 = 0 (99)

l2 = 0 (100)

l3 = ℏm (101)

So, What does l2 (or l⃗ · l⃗ equal? Is it ⟨jm|L2|jm⟩ or ⟨jm|L|jm⟩ · ⟨jm|L|jm⟩?
The answer that it is not ⟨s|L2|s⟩ because this is the ”measured value of x2”

which is not the same as ”(measured value of x)
2
”

Going back to what we did before:

Measured value of x =
1√
2π

∫ ∞

−∞
xe

−x2

2 dx = 0 (102)

=⇒ (Measured value of x)2 = 0 (103)

So, this is why the experimentalist still sees the correct dot product of the
angular momentum they measured, where l⃗ · l⃗ = 0. But, the operator L2 when
applied does not result in 0 but rather in ℏ2j(j + 1).

We’ll now focus on solutions for j = 1. It has the vectors/functions |j,m⟩ =
|1,−1⟩ , |1, 0⟩ , |1, 1⟩

⟨j2,m2|L1L
2|j1,m1⟩ = ℏ2j1(j1 + 1) ⟨j2,m2|L1|j1,m1⟩

= ⟨j2,m2|L2L1|j1,m1⟩ = ℏ2j2(j2 + 1) ⟨j2,m2|L1|j1,m1⟩
(104)

Subtracting these two equivalent expressions we find:

⟨j2,m2|L1|j1,m1⟩ ℏ2[j1(j1 + 1)− j2(j2 + 1)] = 0 (105)

=⇒ ⟨j2,m2|L1|j1,m1⟩ = 0 if j1 ̸= j2 (106)
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So we must have the same j value in order to find a value for the angular
momentum projection.

The same process can be repeated for L2 to find:

=⇒ ⟨j2,m2|L2|j1,m1⟩ = 0 if j1 ̸= j2 (107)

Recalling operators (96) and (97), we remember these are proportional to
new eigenvectors and we will now define the proportionality constants as follows:

L+ |j,m⟩ = n+jm |j,m+ 1⟩ (108)

L− |j,m⟩ = n−jm |j,m− 1⟩ (109)

Where n+j,m and n−j,m are some real and positive constants. This is a
choice we make. We can also write the conjugate of these:

⟨j,m|L†
± = n±jm ⟨j,m+ 1| (110)

Using this conjugate we find:

(⟨j,m| |L∓)(L± |j,m⟩) = n2±jm ⟨j,m± 1|j,m± 1⟩ (111)

=⇒ ⟨j,m| (L1 ∓ iL2)(L1 ± iL2) |j,m⟩ = ⟨j,m|L2
1 + L2

2 ∓ ℏL3|j,m⟩ (112)

=⇒ ⟨j,m|L2
1+L

2
2± i(L1L2−L2L1) |j,m⟩ = ⟨j,m|L2 − L2

3 ∓ ℏL3|j,m⟩ (113)

=⇒ ⟨j,m|ℏ2j(j + 1)− ℏm2 ∓ ℏ2m|j,m⟩ = ℏ2[j(j + 1)−m2 ∓m] ⟨j,m|j,m⟩
(114)

∴ n2±jm = ℏ2[j(j + 1)−m(m± 1)] (115)

So now we have a value for this constant!
Let’s check that this constant makes sense for L+ when m=j:

L+ |j,m⟩ = ℏ
√
j(j + 1)−m(m+ 1) |j,m+ 1⟩ (116)

L+ |j, j⟩ = 0 (117)

This 0 is the expected result (because at j⃗, j we reach the max value of m
allowed for a given j so performing L+ should result in 0). So we did not make
a mistake in the algebra.

Similarly for L−:

L− |j,m⟩ = ℏ
√
j(j + 1)−m(m− 1) |j,m− 1⟩ (118)

L− |j,−j⟩ = 0 (119)

We can use L+ and L− to rewrite our L1 and L2:

L1 =
L+ + L−

2
(120)

L2 =
L+ − L−

2i
(121)
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L1 |j,m⟩ = 1

2
L+ |j,m⟩+ 1

2
L− |j,m⟩

=
ℏ
2

√
j(j + 1)−m(m+ 1) |j,m+ 1⟩+ ℏ

2

√
j(j + 1)−m(m− 1) |j,m− 1⟩

(122)

L2 |j,m⟩ = −i
2
L+ |j,m⟩+ i

2
L− |j,m⟩

=
−iℏ
2

√
j(j + 1)−m(m+ 1) |j,m+ 1⟩+ iℏ

2

√
j(j + 1)−m(m− 1) |j,m− 1⟩

(123)

........................................................................................................................................

Note: Unitary Operators
Let’s imagine an operator O acting on a vector u:

O |u⟩ = |v⟩ (124)

Where:

|u⟩ = ui |i⟩ (125)

|v⟩ = vi |i⟩ (126)

We know that in this basis:

⟨j|i⟩ = δij (127)

O |u⟩ =
∑
i

uiO |i⟩ =
∑
j

vj |j⟩ (128)

⟨k|O|u⟩ =
∑
i

ui ⟨k|O|i⟩ =
∑
j

vj ⟨k|j⟩ =
∑
j

vjδkj = vk (129)

In conclusion: ∑
i

(⟨k|O|i⟩)ui = vk (130)

⟨k|O|i⟩ looks like a matrix that’s multiplying ui, so we’ll call it Oki.

........................................................................................................................................
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Applying what we learned above to the L3 operator:

⟨j1m1|L3|j2m2⟩ = ℏm ⟨j1m1|j2m2⟩
= ℏm2δj1j2δm1m2 = (L3)j1m1,j2m2

(131)

So we’re left with a matrix (L3)j1m1,j2m2
(diagonal matrix in this case) with

which we can represent what this operator does.
Similarly for L1:

⟨j1,m1|L1|j2,m2⟩

=
ℏ
2

√
j2(j2 + 1)−m2(m2 + 1) ⟨j1,m1|j2,m2 + 1⟩+ ℏ

2

√
j2(j2 + 1)−m2(m2 − 1) ⟨j1,m1|j2,m2 − 1⟩

=
ℏ
2

√
j2(j2 + 1)−m2(m2 + 1)δj1,j2δm1,m2+1 +

ℏ
2

√
j2(j2 + 1)−m2(m2 − 1)δj1,j2δm1,m2−1

(132)
And finally for L2:

⟨j1,m1|L2|j2,m2⟩ =
−iℏ
2

√
j2(j2 + 1)−m2(m2 + 1)δj1,j2δm1,m2+1+

iℏ
2

√
j2(j2 + 1)−m2(m2 − 1)δj1,j2δm1,m2−1

(133)
In summary:

(L1)j1m1,j2m2 =
ℏ
2

√
j2(j2 + 1)−m2(m2 + 1)δj1,j2δm1,m2+1+

ℏ
2

√
j2(j2 + 1)−m2(m2 − 1)δj1,j2δm1,m2−1

(134)

(L2)j1m1,j2m2 =
−iℏ
2

√
j2(j2 + 1)−m2(m2 + 1)δj1,j2δm1,m2+1+

iℏ
2

√
j2(j2 + 1)−m2(m2 − 1)δj1,j2δm1,m2−1

(135)
(L3)j1m1,j2m2

= ℏm2δj1j2δm1m2
(136)

3 Matrix Solutions

3.1 j=1 and m=-1,0,1

If j=1, our solutions above simplify to:

(L1)m1,m2 =
ℏ
2

√
2−m2(m2 + 1)δm1,m2+1 +

ℏ
2

√
2−m2(m2 − 1)δm1,m2−1

(137)

(L2)m1,m2 =
−iℏ
2

√
2−m2(m2 + 1)δm1,m2+1 +

iℏ
2

√
2−m2(m2 − 1)δm1,m2−1

(138)
(L3)m1,m2

= ℏm2δm1m2
(139)

Plugging in various values for m1 and m2 (j1 and j2 must be the same for all
of these operators) into the expressions of each and making that into a matrix:
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(L1)m1m2
=

 0 ℏ√
2

0
ℏ√
2

0 ℏ√
2

0 ℏ√
2

0

 (140)

(L2)m1m2 =

 0 iℏ√
2

0
−iℏ√

2
0 iℏ√

2

0 −iℏ√
2

0

 (141)

(L3)m1m2
=

−ℏ 0 0
0 0 0
0 0 ℏ

 (142)

(L1)
2
m1m2

=

ℏ2

2 0 ℏ2

2
0 ℏ2 0
ℏ2

2 0 ℏ2

2

 (143)

(L2)
2
m1m2

=

 ℏ2

2 0 −ℏ2

2
0 ℏ2 0

−ℏ2

2 0 −ℏ2

2

 (144)

(L3)
2
m1m2

=

ℏ2 0 0
0 0 0
0 0 ℏ2

 (145)

(L)2m1m2
=

2ℏ2 0 0
0 2ℏ2 0
0 0 2ℏ2

 = 2ℏ21 (146)

From this last matrix we can see that j(j + 1)ℏ2 = 2ℏ2 when j = 1, as we
expected so it seems this matrix is correct.

So, why are L2
1 and L2

2 not diagonal?

[L2, L1] = 0 (147)

[L2, L2
1] = 0 (148)

[L2
1, L3] ̸= 0 (149)

[L2
2, L3] ̸= 0 (150)

Now, another thing we can do with these matrices to see if they are consistent
is check commutators. Checking that [L1, L2] = iℏL3:

L1L2 = ℏ2
−i

2 0 i
2

0 0 0
−i
2 0 −i

2

 (151)
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L2L1 = ℏ2
 i

2 0 i
2

0 0 0
−i
2 0 −i

2

 (152)

[L1, L2] = L1L2 − L2L1 = ℏ2
−i 0 0

0 0 0
0 0 i

 = iℏ

−1 0 0
0 0 0
0 0 1

 = iℏL3 (153)

Indeed, [L1, L2] = iℏL3!

3.2 j=1/2 and m=-1/2,1/2

If j = 1/2, our solutions above simplify to:

(L1)m1,m2 =
ℏ
2

√
3

4
−m2(m2 + 1)δm1,m2+1 +

ℏ
2

√
3

4
−m2(m2 − 1)δm1,m2−1

(154)

(L2)j1m1,j2m2 =
−iℏ
2

√
3

4
−m2(m2 + 1)δm1,m2+1+

iℏ
2

√
3

4
−m2(m2 − 1)δm1,m2−1

(155)
(L3)m1,m2 = ℏm2δm1m2 (156)

So, our matrices are:

(L1)m1m2
=

(
0 ℏ

2
ℏ
2 0

)
(157)

(L2)m1m2
=

(
0 iℏ

2
−iℏ
2 0

)
(158)

(L3)m1m2
=

(
−ℏ

2 0
0 ℏ

2

)
(159)

(L1)
2
m1m2

=

(
0 ℏ

2
ℏ
2 0

)(
0 ℏ

2
ℏ
2 0

)
=

(
ℏ2

4 0

0 ℏ2

4

)
(160)

(L2)
2
m1m2

=

(
0 iℏ

2
−iℏ
2 0

)(
0 iℏ

2
−iℏ
2 0

)
=

(
ℏ2

4 0

0 ℏ2

4

)
(161)

(L3)
2
m1m2

=

(
−ℏ

2 0
0 ℏ

2

)(
−ℏ

2 0
0 ℏ

2

)
=

(
ℏ2

4 0

0 ℏ2

4

)
(162)

L2 = L2
x + L2

y + L2
z =

3

4
ℏ21 (163)
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3.3 j=3/2 and m=-3/2,-1/2,1/2,3/2

If j = 3/2, our solutions above simplify to:

(L1)m1,m2
=

ℏ
2

√
15

4
−m2(m2 + 1)δm1,m2+1 +

ℏ
2

√
15

4
−m2(m2 − 1)δm1,m2−1

(164)

(L2)j1m1,j2m2
=

−iℏ
2

√
15

4
−m2(m2 + 1)δm1,m2+1+

iℏ
2

√
15

4
−m2(m2 − 1)δm1,m2−1

(165)
(L3)m1,m2

= ℏm2δm1m2
(166)

(L1)m1m2 =


0

√
3ℏ
2 0 0√

3ℏ
2 0 2ℏ

2 0

0 2ℏ
2 0

√
3ℏ
2

0 0
√
3ℏ
2 0

 (167)

(L2)m1m2
=


0 i

√
3ℏ
2 0 0

−i
√
3ℏ

2 0 i2ℏ
2 0

0 −i2ℏ
2 0 i

√
3ℏ
2

0 0 −i
√
3ℏ

2 0

 (168)

(L3)m1m2 =


−3ℏ
2 0 0 0
0 −ℏ

2 0 0
0 0 ℏ

2 ℏ
0 0 0 3ℏ

2

 (169)

(L1)
2
m1m2

=


0

√
3ℏ
2 0 0√

3ℏ
2 0 2ℏ

2 0

0 2ℏ
2 0

√
3ℏ
2

0 0
√
3ℏ
2 0


2

=


3ℏ2

4 0
√
3ℏ2

2 0

0 7ℏ2

4 0
√
3ℏ2

2√
3ℏ2

2 0 7ℏ2

4 0

0
√
3ℏ2

2 0 3ℏ2

4


(170)

(L2)
2
m1m2

=


0 i

√
3ℏ
2 0 0

−i
√
3ℏ

2 0 i2ℏ
2 0

0 −i2ℏ
2 0 i

√
3ℏ
2

0 0 −i
√
3ℏ

2 0


2

=


3ℏ2

4 0 −
√
3ℏ2

2 0

0 7ℏ2

4 0 −
√
3ℏ2

2
−
√
3ℏ2

2 0 7ℏ2

4 0

0 −
√
3ℏ2

2 0 3ℏ2

4


(171)

(L3)m1m2
=


−3ℏ
2 0 0 0
0 −ℏ

2 0 0
0 0 ℏ

2 ℏ
0 0 0 3ℏ

2


2

=


9ℏ2

4 0 0 0

0 ℏ2

4 0 0

0 0 ℏ2

4 ℏ
0 0 0 9ℏ2

4

 (172)
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L2 = L2
x + L2

y + L2
z =

15

4
ℏ21 (173)

3.4 j=2 and m=-2,-1,0,1,2

(L1)m1,m2
=

ℏ
2

√
6−m2(m2 + 1)δm1,m2+1 +

ℏ
2

√
6−m2(m2 − 1)δm1,m2−1

(174)

(L2)j1m1,j2m2
=

−iℏ
2

√
6−m2(m2 + 1)δm1,m2+1+

iℏ
2

√
6−m2(m2 − 1)δm1,m2−1

(175)
(L3)m1,m2 = ℏm2δm1m2 (176)

(L1)m1m2
=


0 ℏ 0 0 0

ℏ 0
√
6
2 ℏ 0 0

0
√
6
2 ℏ 0

√
6
2 ℏ 0

0 0
√
6
2 ℏ 0 ℏ

0 0 0 ℏ 0

 (177)

(L2)m1m2
=


0 iℏ 0 0 0

−iℏ 0 i
√
6

2 ℏ 0 0

0 −i
√
6

2 ℏ 0 i
√
6

2 ℏ 0

0 0 −i
√
6

2 ℏ 0 iℏ
0 0 0 −iℏ 0

 (178)

(L3)m1m2 =


−2ℏ 0 0 0 0
0 −ℏ 0 0 0
0 0 0 0 0
0 0 0 ℏ 0
0 0 0 0 2ℏ

 (179)

(L1)
2
m1m2

=


0 ℏ 0 0 0

ℏ 0
√
6
2 ℏ 0 0

0
√
6
2 ℏ 0

√
6
2 ℏ 0

0 0
√
6
2 ℏ 0 ℏ

0 0 0 ℏ 0


2

=


ℏ2 0

√
6
2 ℏ2 0 0

0 5
2ℏ

2 0 3
2ℏ

2 0√
6
2 ℏ2 0 3ℏ2 0

√
6
2 ℏ2

0 3
2ℏ

2 0 5
2ℏ

2 0

0 0
√
6
2 ℏ2 0 ℏ2


(180)

(L2)
2
m1m2

=


0 iℏ 0 0 0

−iℏ 0 i
√
6ℏ 0 0

0 −i
√
6ℏ 0 i

√
6ℏ 0

0 0 −i
√
6ℏ 0 iℏ

0 0 0 −iℏ 0


2

=


ℏ2 0 −

√
6

2 ℏ2 0 0
0 5

2ℏ
2 0 −3

2 ℏ2 0
−
√
6

2 ℏ2 0 3ℏ2 0 −
√
6

2 ℏ2
0 −3

2 ℏ2 0 5
2ℏ

2 0

0 0 −
√
6

2 ℏ2 0 ℏ2


(181)
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(L3)
2
m1m2

=


−2ℏ 0 0 0 0
0 −ℏ 0 0 0
0 0 0 0 0
0 0 0 ℏ 0
0 0 0 0 2ℏ


2

=


4ℏ2 0 0 0 0
0 ℏ 0 0 0
0 0 0 0 0
0 0 0 ℏ 0
0 0 0 0 4ℏ2

 (182)

L2 = L2
x + L2

y + L2
z = 6ℏ21 (183)

.........................................................................................................

Let’s say our experiments can measure j but not m, a ”Rotor Model.”

Remember eigenvectors depend on time like e
−iE
ℏ t

At time t = 0:

c1 |E1⟩+ c2 |E2⟩ (184)

c1 |j1,m1⟩+ c2 |j2,m2⟩ (185)

Over time this will become:

c1e
−iE(j1)

ℏ t |E1⟩+ c2e
−iE(j2)

ℏ t |E2⟩ (186)

c1e
−iE(j1)

ℏ t |j1,m1⟩+ c2e
−iE(j2)

ℏ t |j2,m2⟩ (187)

This new state is not proportional to the state at time t = 0 if j1 ̸= j2.

.........................................................................................................

3.5 Changing basis of our Matrix Solutions

Now, for our solution set where j = 1, let’s switch to finding eigenvalues of
(L1)m1m2

in order to find a new basis for this solution set. Taking the determi-
nant and setting to 0: ∣∣∣∣∣∣∣

λ −ℏ√
2

0
−ℏ√
2

λ −ℏ√
2

0 −ℏ√
2

λ

∣∣∣∣∣∣∣ = 0 (188)

=⇒ λ

[
λ2 − ℏ2

2

]
+

ℏ√
2

(
−ℏ√
2
λ

)
= 0 (189)

=⇒ λ

[
λ2 − ℏ2

2
− ℏ2

2

]
= 0 (190)

=⇒ λ[λ2 − ℏ2] = 0 (191)

=⇒ λ = 0, λ = ±ℏ (192)
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We want to find new transformation matrices and show that the ones we
had are arbitrary based on the basis. Our previous basis was:

[La, Lb] = LaLb − LbLa = iℏEabcLc (193)

We want to find a change of basis matrix based on the eigenvectors of
(L1)m1m2 that we just found. This matrix u will be unitary, meaning it satisfies
u†u = 1 because that will allow us to find the new transformation matrix L

′

a:

L
′

a = uLau
† (194)

This new set of transformation matrices will operate just like the previous
set did:

L
′

aL
′

b − L
′

bL
′

a = uLau
†uLbu

† − uLbu
†uLau

†

= u(LaLb − LbLa)u
† = uiℏEabcLcu

† = iℏEabcuLcu
†

(195)

∴ [L
′

a, L
′

b] = iℏEabcLc (196)

So, let’s try to diagonalize L1. Currently we have:

L1 =
ℏ√
2

0 1 0
1 0 1
0 1 0

 (197)

L2 =
ℏ√
2

 0 i 0
−i 0 i
0 −i 0

 (198)

L3 =
ℏ√
2

−1 0 0
0 0 0
0 0 1

 (199)

From the matrix (L1)m1,m1 for j = 1 we get the following eigenvector equa-
tion (ignoring the ℏ√

2
): 0 1 0

1 0 1
0 1 0

ab
c

 =

ab
c

λ (200)

From this we find that:

b = aλ (201)

a+ c = bλ (202)

b = cλ (203)

=⇒ aλ+ cλ = bλ2 (204)

=⇒ b+ b = bλ2 =⇒ λ2 = 2 (205)
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=⇒ λ = ±
√
2 (206)

From looking at these equation, λ = 0 is also a solution.
If λ = 0, then b = 0 and a+ c = 0:ab

c

 =

 1√
2

0
−1√
2

 (207)

If λ =
√
2, then a+ c =

√
2b and c = b√

2
:ab

c

 =

 1
2
1√
2
1
2

 (208)

If λ = −
√
2, then a = −b√

2
and a+ c = −

√
2b:ab

c

 =

−1
2
1√
2

−1
2

 (209)

Now let’s check that these eigenvectors are correct. If we are adding back
the ℏ√

2
that we have so far been ignoring, the eigenvalues become 0, ℏ, and −ℏ:

 0 ℏ√
2

0
ℏ√
2

0 ℏ√
2

0 ℏ√
2

0




−1
2

1√
2

1
2

1√
2

0 1√
2

−1
2

−1√
2

1
2

 =


−1
2

1√
2

1
2

1√
2

0 1√
2

−1
2

−1√
2

1
2


−ℏ 0 0

0 0 0
0 0 ℏ

 (210)

Therefore our diagonalized L1 is:−ℏ 0 0
0 0 0
0 0 ℏ

 (211)

We will denote this matrix of the eigenvectors of this diagonalized L1 as u
and see that u†u = I:

−1
2

1√
2

−1
2

1√
2

0 −1√
2

1
2

1√
2

1
2




−1
2

1√
2

1
2

1√
2

0 1√
2

−1
2

−1√
2

1
2

 =

1 0 0
0 1 0
0 0 1

 (212)

L1u = u

−ℏ 0 0
0 0 0
0 0 ℏ

 =⇒ u†L1u =

−ℏ 0 0
0 0 0
0 0 ℏ

 = L′
1 (213)

What about u†L2u?
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u†L2u =
ℏ√
2


−1
2

1√
2

−1
2

1√
2

0 −1√
2

1
2

1√
2

1
2


 0 i 0
−i 0 i
0 −i 0




−1
2

1√
2

−1
2

1√
2

0 −1√
2

1
2

1√
2

1
2




−1
2

1√
2

1
2

1√
2

0 1√
2

−1
2

−1√
2

1
2


(214)

=
ℏ√
2


−1
2

1√
2

−1
2

1√
2

0 −1√
2

1
2

1√
2

1
2




i√
2

0 i√
2

0 −i
√
2 0

−i√
2

0 −i√
2

 =

0 −i 0
i 0 i
0 −i 0

 ℏ√
2
= L′

2 (215)

What about u†L3u?

u†L3u = ℏ


−1
2

1√
2

−1
2

1√
2

0 −1√
2

1
2

1√
2

1
2


−1 0 0

0 0 0
0 0 1




−1
2

1√
2

1
2

1√
2

0 1√
2

−1
2

−1√
2

1
2

 (216)

= ℏ


−1
2

1√
2

−1
2

1√
2

0 −1√
2

1
2

1√
2

1
2


 1

2
−1√
2

−1
2

0 0 0
−1
2

−1√
2

1
2

 = ℏ

 0 1√
2

0
1√
2

0 −1√
2

0 −2√
2

0

 = L′
3 (217)

These three (L′
1,L

′
2, and L

′
3) must be related through:

[L′
a, L

′
b] = iℏEabcL′

c (218)

We can perform these three operators to prove this is indeed true:

[L′
1, L

′
2] =

−ℏ 0 0
0 0 0
0 0 ℏ


 0 − iℏ√

2
0

iℏ√
2

0 iℏ√
2

0 − iℏ√
2

0

−

 0 − iℏ√
2

0
iℏ√
2

0 iℏ√
2

0 − iℏ√
2

0


−ℏ 0 0

0 0 0
0 0 ℏ


(219)

=

0 iℏ2
√
2

0

0 0 0

0 − iℏ2
√
2

0

−

 0 0 0

− iℏ2
√
2

0 iℏ2
√
2

0 0 0

 (220)

= iℏ

 0 ℏ√
2

0
ℏ√
2

0 − ℏ√
2

0 − ℏ√
2

0

 = iℏL′
3 (221)

The same can be done for L′
2 and L′

3
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[L′
2, L

′
3] =

 0 − iℏ√
2

0
iℏ√
2

0 iℏ√
2

0 − iℏ√
2

0


 0 ℏ√

2
0

ℏ√
2

0 − ℏ√
2

0 − ℏ√
2

0

−

 0 ℏ√
2

0
ℏ√
2

0 − ℏ√
2

0 − ℏ√
2

0


 0 − iℏ√

2
0

iℏ√
2

0 iℏ√
2

0 − iℏ√
2

0


(222)

[L
′

2, L
′

3] =

− iℏ2

2 0 iℏ2

2
0 0 0

− iℏ2

2 0 iℏ2

2

−

 iℏ2

2 0 iℏ2

2
0 0 0

− iℏ2

2 0 − iℏ2

2

 (223)

[L
′

2, L
′

3] = iℏ

−ℏ 0 0
0 0 0
0 0 ℏ

 = iℏL′
1 (224)

And finally for L′
1 and L′

3:

[L′
3, L

′
1] =

 0 ℏ√
2

0
ℏ√
2

0 − ℏ√
2

0 − ℏ√
2

0


−ℏ 0 0

0 0 0
0 0 ℏ

−

−ℏ 0 0
0 0 0
0 0 ℏ


 0 ℏ√

2
0

ℏ√
2

0 − ℏ√
2

0 − ℏ√
2

0


(225)

[L
′

3, L
′

1] =

 0 0 0

− ℏ2
√
2

0 − ℏ2
√
2

0 0 0

−

0 − ℏ2
√
2

0

0 0 0

0 − ℏ2
√
2

0

 (226)

[L
′

3, L
′

1] = iℏ

 0 − iℏ√
2

0
iℏ√
2

0 iℏ√
2

0 − iℏ√
2

0

 = iℏL′
2 (227)

So, these operators are related in the same way as the previous set!

3.6 Summary

These are the steps we have taken to finding the set of matrices that represent the
eigenvalues of the angular momentum projection operators in all three directions
for certain coordinates.

1) We have to pick L1, L2 or L3 as the pair to L2.
2) We decided to choose L± |j,m⟩ = n±jm |j,m+ 1⟩ Thus we ended up with

one result that satisfies [La, Lb] = iℏEabcLc.
3) u†Lau = L′

a =⇒ [L′
a, L

′
b] = iℏEabcL′

c. This results in many other sets of
La that are equivalent.
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4 Changing to spherical to find function solu-
tions

4.1 Rewriting Operators

.........................................................................................................................................

Side Note: Matrices for converting between Cartesian and spherical coordi-
nates (will be useful):dxdy

dz

 =

sinθcosϕ rcosθcosϕ −rsinθsinϕ
sinθsinϕ rcosθsinϕ rsinθcosϕ
cosθ −rsinθ 0

drdθ
dϕ

 (228)

drdθ
dϕ

 =

 sinθcosϕ sinθsinϕ cosθ
1
r cosθcosϕ

1
r cosθsinϕ

−1
r sinθ

−sinϕ
rsinϕ

cosϕ
rsinθ 0

dxdy
dz

 (229)

.........................................................................................................................................

Using the matrices above, we can rewrite our operators:

L1 = −iℏ
[
y
∂

∂z
− z

∂

∂y

]
= −iℏ

{
(rsinθsinϕ)

[
�
�
��

cosθ
∂

∂r
− 1

r
sinθ

∂

∂θ

]
− rcosθ

[
������
sinθsinϕ

∂

∂r
+

1

r
cosθcosϕ

∂

∂θ
+

cosϕ

rsinθ

∂

∂ϕ

]}

= −iℏ
{
(−sin2θsinϕ− cos2θsinϕ)

∂

∂θ
− cosϕ

cosθ

sinθ

∂

∂ϕ

}
= iℏ

[
sinϕ

∂

∂θ
+ cosϕcotθ

∂

∂ϕ

]
(230)

Similarly, for L2:

L2 = iℏ
[
−cosϕ ∂

∂θ
+ sinϕcotθ

∂

∂ϕ

]
(231)

And for L3:

L3 = iℏ
∂

∂ϕ
(232)

These three angular momentum operators do not derive with respect to r,
it becomes clear that: [

f(r)
∂

∂r
, La

]
= 0 where a=1,2,3 (233)
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For this reason it might be convenient to rewrite these operators in spherical
coordinates. So, for L+:

L+ = L1 + iL2 =

[
iℏ
(
sinϕ

∂

∂θ
+ cosϕcotθ

∂

∂ϕ

)]
+ i

[
iℏ
(
−cosϕ ∂

∂θ
+ sinϕcotθ

∂

∂ϕ

)]
= ℏ

[
(cosϕ+ isinϕ)

∂

∂θ
+ i(cosϕ+ isinϕ)cotθ

∂

∂ϕ

]
= ℏ

[
(eiϕ)

∂

∂θ
+ i(eiϕ)cotθ

∂

∂ϕ

]
(234)

L+ = ℏeiϕ
[
∂

∂θ
+ icotθ

∂

∂ϕ

]
(235)

Similarly for L−:

L− = L1 − iL2 =

[
iℏ
(
sinϕ

∂

∂θ
+ cosϕcotθ

∂

∂ϕ

)]
− i

[
iℏ
(
−cosϕ ∂

∂θ
+ sinϕcotθ

∂

∂ϕ

)]
= ℏ

[
−(cosϕ+ isinϕ)

∂

∂θ
+ i(cosϕ+ isinϕ)cotθ

∂

∂ϕ

]
= ℏ

[
−(eiϕ)

∂

∂θ
+ i(eiϕ)cotθ

∂

∂ϕ

]
(236)

For L− we could have also used the fact that we previously proved that it’s
the complex conjugate of L+.

L− = L†
+ = ℏe−iϕ

[
− ∂

∂θ
+ icotθ

∂

∂ϕ

]
(237)

4.2 Finding function solutions for integer j’s

So far we have just been talking about |j,m⟩ but we can imagine this to include
some function Yjm that depends on the angles θ and ϕ

Let’s plug this into these following expressions we have derived:

L3 |j,m⟩ = ℏm |j,m⟩ (238)

L+ |j,m⟩ = ℏ
√
j(j + 1)−m2 −m |j,m+ 1⟩ (239)

L− |j,m⟩ = ℏ
√
j(j + 1)−m2 +m |j,m− 1⟩ (240)

Plugging in for L3:

L3 |j,m⟩ = ℏm |j,m⟩ (241)

−iℏ ∂

∂ϕ
Yjm(θ, ϕ) = ℏmYjm(θ, ϕ) (242)
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=⇒ Yjm(θ, ϕ) = Pm
j (θ)eimϕ (243)

Pm
j (θ) is the integration constant for Yjm(θ, ϕ). Additionally, we know that

ϕ and ϕ+ 2π denote the same angle in these coordinates so:

Yjm(θ, ϕ+ 2π) = Yjm(θ, ϕ) (244)

eim(ϕ+2π) = eimϕ =⇒ ei2πm = 1 (245)

This has the consequence that m values have to be integers. This also means
that j at half integers aren’t allowed for this particular solution set. However,
we know that there should be half integers of this j (if j is a half integer then m
must be a half integer), first found out from experiments by Stern and Gerlach.
The solutions for these half integers we will find later.

Now plugging in for L+:

L+ |j,m⟩ = ℏ
√
j(j + 1)−m2 −m |j,m+ 1⟩ (246)

ℏeiϕ
[
∂

∂θ
+ icotθ

∂

∂ϕ

]
Pm
j (θ)eimϕ = ℏ

√
j(j + 1)−m2 −mPm+1

j (θ)ei(m+1)ϕ

(247)

�����
ℏei(m+1)ϕ

[
∂

∂θ
Pm
j (θ)−mcotθPm

j (θ)

]
= �ℏ

√
j(j + 1)−m2 −mPm+1

j (θ)����
ei(m+1)ϕ

(248)

=⇒
(
∂

∂θ
−mcotθ

)
Pm
j (θ) =

√
j(j + 1)−m2 −mPm+1

j (θ) (249)

This is the recursion relation between the different values of m for each j
Similarly, plugging in for L− leads to:

=⇒
(
∂

∂θ
+mcotθ

)
Pm
j (θ) = −

√
j(j + 1)−m2 +mPm−1

j (θ) (250)

Let’s see what happens when m=j and we plug in the first of the above
recursion relations:

∂

∂θ
P j
j (θ)− jcotθP j

j (θ) = 0 (251)

Solution is thus:

P j
j (θ) = Nj [sinθ]

j (252)

Let’s check that this makes sense:

∂P j
j (θ)

∂θ
= Njj[sinθ]

j−1cosθ = Njjcotθ(sinθ)
j = jcotθP j

j (θ) (253)
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Now let’s see what happens when we plug in m=-j into the second recursion
relation:

∂

∂θ
P−j
j (θ)− jcotθP−j

j (θ) = 0 (254)

∴ P j
j = P−j

j = Nj [sinθ]
j (255)

So the solution is of P is the same for both m=-j and m=j.
Now if we want to fix this N (the normalization constant), we follow our

typical process of integration and solve for it:

1 =

∫ 2π

0

dϕ

∫ π

0

dθ[Yjm(θ, ϕ)Y ∗
jm(θ, ϕ)]sinθdθdϕ (256)

4.3 Function solutions for j=1 and m=-1,0,1

Starting with the lowest m-value function, m=-1:

P−1
1 = Nsinθ (257)

Using recursion relation to find the next value up, m=0:

P 0
1 =

∂P−1
1

∂θ + cotθNsinθ
√
2− 1 + 1

=
Ncosθ + cotθNsinθ√

2
= N

√
2cosθ (258)

The highest m value should be the same as the lowest (proven above).
Let’s normalize Y1,−1:∫ 2π

0

dϕ

∫ π

0

N2sin2θ����
e−iϕeiϕ = 1 (259)

=⇒ N =

√
3

8π
(260)

In conclusion, writing these solutions as Yjm(θ, ϕ) = Pm
j (θ)eimϕ:

Y1,−1 =

√
3

8π
sinθe−iϕ (261)

Y1,0 =

√
3

8π

√
2cosθ (262)

Y1,1 =

√
3

8π
sinθeiϕ (263)

Using an integral calculator, I confirmed that these functions are all normal-

ized such that
∫ 2π

0
dϕ
∫ π

0
djm(θ, ϕ)∗Yjm(θ, ϕ)e−imϕeimϕ = 1

These functions squared such that they become only real are:
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Y ∗
1,−1Y1,−1 =

3

8π
sin2θ (264)

Y ∗
1,0Y1,0 =

6

8π
cos2θ (265)

Y ∗
1,1Y1,1 =

3

8π
sin2θ (266)

Plotting these with respect to Y yields:

4.4 Function solutions for j=2 and m=-2,-1,0,1,2

Starting with the lowest m-value function:

P−2
2 = Nsin2θ (267)

Using recursion relation to find the next value up:

P−1
2 =

∂P−2
2

∂θ + 2cotθNsin2θ
√
6− 4 + 2

=
2Nsinθcosθ + 2cotθNsin2θ√

4
= 2Ncosθsinθ

(268)
And the next:

P 0
2 =

∂P−1
2

∂θ + cotθ2Ncosθsinθ
√
6− 1 + 1

=
2N(−sin2θ + cos2θ) + cotθ(2N)cosθsinθ√

6
=

2√
6
N(−3sin2θ+2)

(269)
And the next:
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P 0
2 =

∂P 0
2

∂θ + 0
√
6− 0− 0

=

√
2
6 N(−6sinθcosθ)

√
6

= −2Nsinθcosθ (270)

The highest m value should be the same as the lowest (proven above).
In conclusion, writing these solutions as Yjm(θ, ϕ) = Pm

j (θ)eimϕ:

Y2,−2 = Nsin2θe−2iϕ (271)

Y2,−1 = 2Ncosθsinθe−iϕ (272)

Y2,0 =
2√
6
N(−3sin2θ + 2)e2iϕ (273)

Y2,1 = −2Nsinθcosθeiϕ (274)

Y2,2 = Nsin2θe2iϕ (275)

4.5 Rewriting L2

Now let’s rewrite L2 in terms of these spherical coordinates. First finding each
of the projections (since L2 = L2

1 + L2
2 + L2

3):

L2
1 = −ℏ2

(
y
∂

∂z
− z

∂

∂y

)(
y
∂

∂z
− z

∂

∂y

)
= −ℏ2

[
y2

∂2

∂z2
− y

∂

∂y
− 2yz

∂2

∂y∂z
− z

∂

∂z
+ z2

∂2

∂y2

]
(276)

L2
2 = −ℏ2

(
z
∂

∂y
− y

∂

∂z

)(
z
∂

∂y
− y

∂

∂z

)
= −ℏ2

[
z2

∂2

∂x2
− z

∂

∂z
− 2zx

∂2

∂x∂z
− x

∂

∂x
+ x2

∂2

∂z2

]
(277)

L2
3 = −ℏ2

(
x
∂

∂y
− y

∂

∂x

)(
z
∂

∂y
− y

∂

∂z

)
= −ℏ2

[
z2

∂2

∂x2
− z

∂

∂z
− 2zx

∂2

∂x∂z
− x

∂

∂x
+ x2

∂2

∂z2

]
(278)

Adding these:

L2 = −ℏ2
[
(x2 + y2 + z2)

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− x2

∂2

∂x2
− y2

∂2

∂y2
+ z2

∂2

∂z2

−2xy
∂2

∂x∂y
− 2zx

∂2

∂z∂x
− 2yz

∂2

∂y∂z
− 2

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)]

= −ℏ2
[
(x2 + y2 + z2)(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)−

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)2

−
(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)]
(279)
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5 Understanding Total Energy Equation of this
System and Comparing to Classical Mechan-
ics

We will work towards an equation for the total energy of this system.
Now let’s replace these partial derivatives with their equivalents in spherical

coordinates:

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
=
[
rsin2θcos2ϕ+ rsin2θsin2ϕ+ rcosθ

] ∂
∂r

+[sinθcosθcos2ϕ+ sinθcosθsin2ϕ− sinθcosθ]
∂

∂θ

(280)

=⇒ −ℏ2

2m

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
=

L2

2mr2
− ℏ2

2mr2

[(
r
∂

∂r

)2

+ r
∂

∂r

]
(281)

Let’s think about this a bit more closely. Left is kinetic energy operator,
composed of (right side, first term) angular kinetic energy operator and (right
side, second term) radial kinetic energy operator.

So, total energy H includes this operator plus a potential energy operator
(which must only depend on r):

H =
L2

2mr2
− ℏ2

2mr2

[
(r
∂

∂r
)2 + r

∂

∂r

]
+ V (r) (282)

[f(r)
∂

∂r
, La] = 0 (283)

So now we have three commuting operator and can simultaneously diago-
nalize all three: H,L, and L3

Once more so we don’t forget, these are the three operators:

L3 |E, j,m⟩ = ℏm |E, j,m⟩ (284)

L2 |E, j,m⟩ = ℏ2j(j + 1) |E, j,m⟩ (285)

H |E, j,m⟩ = E |E, j,m⟩ (286)

Looking at H:

{
−ℏ2

2mr2

[(
r
∂

∂r

)2

+

(
r
∂

∂r

)]
+ V (r) +

ℏ2j(j + 1)

2mr2

}
|E, j,m⟩ = E |E, j,m⟩

(287)
But what is this |E, j,m⟩? It is some function:

ψE,j,m(r, θ, ϕ) = RE,j(r)Yj,m(θ, ϕ) (288)
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Where RE,j(r) is simply an integration constant. Note that we did not use
separation of variables.

Therefore, rewriting again:

{
−ℏ2

2mr2

[(
r
∂

∂r

)2

+

(
r
∂

∂r

)
− j(j + 1)

]
+ V (r)− E

}
|E, j,m⟩ = 0 (289)

We might recall from classical mechanics central force problem:

1

2
m

(
dρ

dt

)2

+
L2

2mρ2
+ V (ρ)− E = 0 (290)

Comparing these two, we notice that the angular kinetic energy term is L2

2mρ2

in classical and ℏ2j(j+1)
2mr2 in quantum. The quantization of the angular kinetic

energy is apparent given that j are only certain values.
Now, we will denote:

RE,j =
UE,j(r)

r
(291)

Meaning that: [(
r
∂

∂r

)2

+ r
∂

∂r

]
RE,j(r) =

r∂2UE,j(r)

∂r2
(292)

Plugging this into total expression:

−ℏ2

2mr2

[
r2
d2UE,j(r)

dr2
− j(j + 1)

UE,j(r)

r

]
+ V (r)

UE,j(r)

r
−E

UE,j(r)

r
= 0 (293)

=⇒ d2UE,j(r)

dr2
+

2m

ℏ

(
E − V (r)− ℏ2

2m

j(j + 1)

r2

)
UE,j(r) = 0 (294)

This E − V (r)− ℏ2

2m
j(j+1)

r2 looks like the term from classical mechanics that

was crucial for analysis of the central force problem, L2

2mρ2 + V (ρ)− E.

6 Continuing to improve the form of our wave
function

Overall we discovered that the wave function looks like:

ψE,j,m(r, θ, ϕ) = RE,j(r)Yj,m(θ, ϕ) =
UE,j(r)

r
Pm
j (θ)eimϕ (295)

Additionally, the probability function looks like:
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P (r, θ, ϕ) =
U2
E,j(r)

r2
[
Pm
j (θ)

]2
(296)

In order to normalize:

1 =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ(r2sinθ)P (r, θ, ϕ) = 2π

(∫ ∞

0

drU2
E,j(r)

)(∫ π

0

dθ
[
Pm
j (θ)

]2
sinθ

)
(297)

Therefore
∫∞
0
U2
E,jdr must be finite and U2

E,j → 0 as r → ∞.

When r → 0, UE,j(r) → rP∫ ϵ

0

r2P dr =
r2P+1

2P + 1
|ϵ0 (298)

∴ 2P + 1 > 0 =⇒ P >
−1

2
(299)

When r is small:

0 = P (P − 1)rP−2 − j(j + 1)rP−2 +
2m

ℏ2
(E − V (r))rP (300)

When r is close to 0, the last term can be ignored.

=⇒ V (r)rP < rP−2 (301)

V (r) <
1

r2
(302)

=⇒ P (P − 1)rP−2 = j(j + 1)rP−2 =⇒ P (P − 1) = j + 1,−j (303)

r−j only works for j=0. We will assume V(r) has no delta function terms,
thus ruling −j out.

What if j = 0, m = 0, and P 0
0 = 1? What is the kinetic energy for this?

Well our kinetic energy expression is:

−ℏ2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
1

r
= ∇⃗ · (∇⃗1

r
) ∝ δ(x− 0), δ(y − 0), δ(z − 0) (304)

RE,j(r) =
UE,j(r)

r
= rjwej (r) (305)

UE,j → 0 as r → ∞ (306)

UE,j(r) ≈ rj+1 as r → ∞ (307)

P (P − 1) = j(j + 1) =⇒ P = −j and P = j + 1 (308)

P >
1

2
(309)

Change of variable:
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UE,j(r) = rj+1wE,j(r) (310)

dUE,j

dr
= (j + 1)rjwE,j + rj+1 dwE,j(r)

dr
(311)

d2UE,j

dr2
= (j + 1)jrj−1wE,j(r) + 2(j + 1)rj

dwE,j(r)

dr
+ rj+1 d

2wE,j(r)

dr2
(312)

Plug these in:

j(j+1)rj−1wE,j(r)+
2m

ℏ2
[E−V (r)]rj+1wE,j(r)+

2(j + 1)rjdwE,j(r)

dr
−j(j+1)rj−1wE,j(r)+r

j+1 d
2wE,j(r)

dr2
= 0

(313)

=⇒ d2wE,j(r)

dr2
+

2(j + 1)

r

dwE,j(r)

dr
+

2m

ℏ2
[E − V (r)]wE,j(r) = 0 (314)
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1 Hydrogen Atom

1.1 Hydrogenic Atom Potential

A hydrogenic atom has the following potential:

V (r) =
−1

4πϵ0

Ze2

r
(1)

Where ϵ0 is the permitivity of free space, Z is the atomic number (1 in the
case of hydrogen), and e is the charge of an electron

We will do the substitution r = bu where b is some unit of length.
Instead of using our wE,j(r) function, we define:

wE,j(bu) ≡ χE,j(u) (2)

Now we can rewrite our energy equation as:

1

b2
d2χE,j(u)

du2
+

2(j + 1)

b2u

dχE,j(u)

du
+

(
2m

ℏ2
E +

2m

ℏ2
Ze2

4πϵ0

1

bu

)
χE,j(u) = 0 (3)

We multiply this by b2:

d2χE,j(u)

du2
+

2(j + 1)

u

dχE,j(u)

du
+

(
2mb2

ℏ2
E +

2m

ℏ2
Ze2

4πϵ0

b

u

)
χE,j(u) = 0 (4)

We will also set:
2m

ℏ2
Ze2

4πϵ0
b = 1 (5)

And by plugging in all these constants and rearranging for b we arrive at:

b =
1

Z
2.64588603× 10−11 meters (6)

Looking at the other term in equation 4 we see that the units of 2mb2

ℏ2 are
Joules, meaning for natural units of energy we can set:

E =
−ℏ
2mb2

β2 (7)

So, rewriting equation 4:

d2χE,j(u)

du2
+

2(j + 1)

u

dχE,j(u)

du
− β2χE,j(u) +

1

u
χE,j(u) = 0 (8)
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1.2 As u approaches infinity

As u→ ∞, this equation becomes:

d2χE,j(u)

du2
∼ αχE,j(u) (9)

This implies that as u→ ∞:

χE,j(u) ∼ e−βu (10)

Therefore, the total solution will thus be in this form:

χE,j(u) = e−βuRE,j(u) (11)

We can take derivatives of this:

dχE,j(u)

du
= −βe−betauRE,j(u) + e−βu

dRE,j(u)

du
(12)

d2χE,j(u)

du2
= β2e−βuRE,j(u)− 2βe−βu

dRE,j(u)

du
+ e−βu

d2RE,j(u)

du2
(13)

And use these to plug back into equation 8, resulting in:

u
d2RE,j(u)

du2
+ (2(j + 1)− 2βu)

dRE,j(u)

du
+ (1− 2(j + 1)β)RE,j(u) = 0 (14)

Now we take this RE,j(u) and rewrite it as a polynomial which we know
would have this form.:

RE,j(u) =

∞∑
k=0

cku
k (15)

The first and second derivatives are:

dRE,j(u)

du
=

∞∑
k=0

(k + 1)ck+1u
k (16)

d2RE,j(u)

du2
=

∞∑
k=0

(k + 1)(k + 2)ck+2u
k (17)

So, using these to plug back into equation 14 results in:

∞∑
k=0

{[2(j+1)(k+1)+k(k+1)]ck+1+[(−2β)k+(1−2(j+1)β)]ck}uk = 0 (18)

Since each of these terms in the sum must be 0 in order for the total sum to
be 0, we know that the coefficient of each term must be 0:

[2(j + 1)(k + 1) + k(k + 1)]ck+1 + [(−2β)k + (1− 2(j + 1)β)]ck = 0 (19)
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=⇒ Ck+1 =
2β(k + j + 1)− 1

k(k + 1) + 2(j + 1)(k + 1)
(20)

This is our ”recursion relation.”
Furthermore Going back to our definition in equation 11, we know that

this polynomial RE,j(u) must terminate because χE,j → 0 as u → ∞ (due to
normalizability conditions):

lim
u→∞

uk

eβu
= 0 (21)

This means that in the sum in equation 18, we must reach a point where the
term is zero (because the polynomial must terminate, and for this to happen,
there must be some P for which:

2β(j + P + 1)− 1 = 0 (22)

We can rearrange for a value of β:

β =
1

2(j + P + 1)
=

1

2n
(23)

So, our solutions depend on 4 quantum numbers:

n = 1, 2, 3, ...

P = 0, 1, 2, ...

j = 0, 1, 2, ...

m = −j,−j + 1, .., j

(24)

And the energy and natural unit b look like:

b =
2πϵ0ℏ2

Ze2m
(25)

E =
−ℏ2

2mb2
=

−Z2e4m

8π2ϵ20ℏ2
β2 =

−Z2e4m

32π2ϵ20ℏ2n2
(26)

And, the total wave function, with all the changes of variable we have made
will look like:

ψn,j,m(bu, θ, ϕ) =

( ∞∑
k=0

cku
k

)
e−βu(bu)jPmj e

imϕ (27)

where β = 1
2n
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2 Hydrogen Energy Levels and States

We can rewrite the above expression to be in terms of r once more:

ψn,j,m(r, θ, ϕ) =

( ∞∑
k=0

ck

(r
b

)k)
e−

r
2bn rjPmj e

imϕ (28)

Where P is the upper limit of k and P = n− j − 1
In order to find the normalization constant we integrate over the entire

volume, set this integral to 1, and solve for N:

1 = N2

∫ ∞

0

∫ 2π

0

∫ π

0

ψ∗ψdrdθdϕ (29)

2.1 n=1 Wave Functions

j = 0,m = 0

ψ100 =

√
1

8πb3
e

−r
2b (30)

2.2 n=2 Wave Functions

j = 0,m = 0

ψ200 =

√
1

64πb3

(
−r
4b

+ 1

)
e

−r
4b (31)

j = 1,m = −1

ψ21−1 =

√
1

2048πb5
re

−r
4b sinθe−iϕ (32)

j = 1,m = 0

ψ210 =

√
1

2048πb5

√
2re

−r
4b cosθ (33)

j = 1,m = 1

ψ211 =

√
1

2048πb5
re

−r
4b sinθeiϕ (34)
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2.3 n=3

n = 3 :

P = 0, j = 2,m = −2,−1, 0, 1, 2

P = 1, j = 1,m = −1, 0, 1

P = 2, j = 0,m = 0

(35)

In a given energy level (value of n), are all the states orthogonal to each
other?

Yes, because orthogonality is independent for r, θ, ϕ. Since either P’s,j’s, or
m’s are different for each state, they’re all orthogonal

2.4 Analysis

By integrating with respect to dθ and dϕ with trespect their area we can find
the probability of finding the particle on the surface of an infinitesimal sphere:

We can also integrate with respect to dr and dϕ to find the probability
density of finding the particle at a given angle θ:
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3 Effect of Temperature on energy states

3.1 Atom

Starting at a temperature arbitrarily close to zero, what temperature would you
need to raise an atom or group of atoms to in order to have electrons exist in
the next state up?

Thanks to Boltzmann we know that:

Pn+1

Pn
= e

−1
kBT (En+1−En) (36)

P (n) ∝ e
−1

kBT En (37)

Where P (n) is the probability of a given n.
When an electron changes state and loses or gains energy, this can be due

to either the transfer of heat or of light, meaning:

En+1 − En = ℏω = kBT (38)

4 Relativistic Energy Operator

4.1 Introduction to the problem (What if j is not an inte-
ger?)

We recall that:

E =
p2

2m
= iℏ

∂

∂t
(39)

p⃗ = −iℏ∇ (40)
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We also might recall from any modern physics class that E2 = p2c2 +m2c4.
In my modern physics class we never wrote E =

√
p2c2 +m2c4 because E ≥ 0.

In order to get it in a better form we write:

E = mc2
√

1 +
p2

m2c2
= mc2(1 +

p2

2mc2
+ ...) = mc2 +

p2

2m
(41)

This becomes

E −mc2 =
p2

2m
(42)

Our goal now is to find an operator to represent this relativistic energy. The
first idea that physicists Klein and Gordon had was to find an E2 operator:[

−ℏ2
∂

∂t2
= −ℏ2c2

∂

∂x2
+m2c4

]
ψ(x, t) (43)

However in this case we find that ψ∗ψ ̸= P . Instead you can do i(ψ∗ ∂ψ
∂t −

ψ ∂ψ∂t ) but the issue is that this is not real AND positive.
Dirac was more ambitious. He proposed actually finding the square root of

this: (√
−ℏ2c2

∂2

∂x2

)
ψ(x, t) = iℏ

∂

∂t
ψ(x, t) (44)

Let’s try to rewrite this operator in a better form, such as (where α and β
are some constants):

(α
∂

∂x
+ β)2 = −ℏ2c2

∂2

∂x2
+m2c4

= α2 ∂
2

∂x2
+ β2 + αβ

∂

∂x
+ βα

∂

∂x
+ α

(
∂α

∂x

)
∂

∂x
+ α

∂β

∂x

(45)

In order to find the value of α and β we will first take a detour back to
discussing our angular momentum operators, which as we recall include:

L2 |jm⟩ = ℏ2j(j + 1) |jm⟩ (46)

L3 |jm⟩ = ℏm |jm⟩ (47)

L+ |jm⟩ = ℏ
√
j(j + 1)−m2 −m |j,m+ 1⟩ (48)

L− |jm⟩ = ℏ
√
j(j + 1)−m2 +m |j,m− 1⟩ (49)

As you might remember, we argued that solution of j = 1
2 (m = −1

2 ,
1
2 )

weren’t physically relevant because they have the consequence that eim(ϕ+2π) ̸=
eimϕ.

Nonetheless, just for fun, let’s look at the solutions to the angular momentum
operators for j = 1

2 and see what happens:
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L2 |1
2
,±1

2
⟩ = 3

4
ℏ2 |1

2
,±⟩ (50)

L3 |
1

2
,
1

2
⟩ = ℏ

2
|1
2
,
1

2
⟩ (51)

L3 |
1

2
,
−1

2
⟩ = −ℏ

2
|1
2
,
−1

2
⟩ (52)

L+ |1
2
,
−1

2
⟩ = ℏ

√
3

4
− 1

4
+

1

2
|1
2
,
1

2
⟩ = ℏ |1

2
,
1

2
⟩ (53)

L− |1
2
,
1

2
⟩ = ℏ |1

2
,
−1

2
⟩ (54)

Now we can write the expectation value of these operators in the form of
the matrix such that for L3 for example: (L3)m1m2 = ⟨j1,m1|L3|j2,m2⟩

So for these operators for j = 1
2 :

(L+)m1m2
=

(
0 0
ℏ 0

)
(55)

(L−)m1m2 =

(
0 ℏ
0 0

)
(56)

(L1)m1m2 =

(
0 ℏ

2
ℏ
2 0

)
=

ℏ
2

(
0 1
1 0

)
=

ℏ
2
σ1 (57)

(L2)m1m2
=

(
0 ℏ

2
−iℏ
2 0

)
=

ℏ
2

(
0 i
−i 0

)
=

ℏ
2
σ2 (58)

(L3)m1m2
=

(−ℏ
2 0
0 ℏ

2

)
=

ℏ
2

(
−1 0
0 1

)
=

ℏ
2
σ3 (59)

*L1 and L2 are found by remembering L1 = L++L−
2 and L2 = L+−L−

2
Based on this information, we can rewrite this equation from earlier too by

defining La = ℏ
2σa. These σ matrices are called Paul matrices.:

[La, Lb] = iℏEabcLc (60)

=⇒ ℏ2

4
[σa, σb] =

iℏ2

2
Eabcσc (61)

=⇒ [σa, σb] = 2iEabcσc (62)

What are the properties of these Paul matrices and do they commute?

σ2
1 =

(
0 1
1 0

)2

= 1 (63)

σ2
2 =

(
0 i
−i 0

)2

= 1 (64)
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σ2
3 =

(
−1 0
0 1

)2

= 1 (65)

σ1σ2 =

(
0 1
1 0

)(
0 i
−i 0

)
=

(
−i 0
0 i

)
= i

(
−1 0
0 1

)
= iσ3 (66)

Therefore, from (57) we know:

σ2σ1 = −iσ3 (67)

Similarly:

σ2σ3 =

(
0 i
−i 0

)(
−1 0
0 1

)
=

(
0 i
i 0

)
= iσ1 (68)

σ3σ2 = −iσ1 (69)

And:

σ3σ1 =

(
−1 0
0 1

)(
0 1
1 0

)
= i

(
0 i
−i 0

)
= iσ2 (70)

σ1σ3 = −iσ2 (71)

Therefore, this can be summarized through what we call ”anti-commutators”:

σ1σ2 + σ2σ1 = 0 (72)

σ2σ3 + σ3σ2 = 0 (73)

σ1σ3 + σ3σ1 = 0 (74)

Alternatively it can be summarized like this:

σaσb = iEabcσc + δab1 (75)

This was all for the special case of j = 1
2 .

Now this below is a Clifford algebra, the answer to which generalizes what
we’re going to work on into more dimensions:

{γa, γb} = 2δab (76)

4.2 1 spacial dimension and 1 time dimension

To solve for our relativisitic energy operator we will start solving with one
dimension of space and one of time. The squared operator would thus look like:

( /D)2 = −ℏ2
∂2

∂t2
+ ℏ2c2

∂2

∂x2
(77)

*By the way, this slashed D, /D, is used in honor of Dirac.
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We will try to solve for the non-squared operator by writing it in this form
and solving for γ0 and γ1:

/D = iℏγ0
∂

∂t
− iℏcγ1

∂

∂x
(78)

So, the squared operator would look like:

/D = (iℏγ0
∂

∂t
−iℏcγ1

∂

∂x
)(iℏγ0

∂

∂t
−iℏcγ1

∂

∂x
) = ℏ2γ0

∂2

∂t2
−ℏ2c2γ21

∂2

∂x2
+ℏ2c(γ1γ0+γ0γ1)

∂2

∂t∂x
(79)

Therefore, to satisfy (72) we know the following must be true

γ20 = 1, γ21 = −1, γ1γ0 + γ0γ1 = 0 (80)

Dirac had the idea of using:

γ0 = σ0, γ1 = iσ2 (81)

Using this, /D becomes :

/D = iℏ
(
0 1
1 0

)
∂

∂t
+ ℏc

(
0 1
−1 0

)
∂

∂x
=

(
0 iℏ ∂

∂t + iℏc ∂∂x
iℏ ∂
∂t − iℏc ∂∂x 0

)
(82)

4.3 2 Dimensions of Space and 1 of Time

Having understood one dimension of space, we can add a second to the solution
by adding another partial derivative to our squared operator:

( /D)2 = −ℏ2
∂2

∂t2
+ ℏ2c2

∂2

∂x2
+ ℏ2c2

∂2

∂y2
(83)

/D = iℏγ0
∂

∂t
− iℏcγ1

∂

∂x
− iℏcγ2

∂

∂y
(84)

( /D)2 = −ℏ2γ20
∂

∂t2
−ℏ2c2γ21

∂

∂x2
+ℏ2c(γ1γ0+γ0γ1)

∂2

∂t∂x
+ℏ2c(γ2γ0+γ0γ2)

∂2

∂t∂y
−ℏ2c2(γ1γ2+γ2γ1)

∂2

∂x∂y
−ℏ2c2γ2

∂2

∂y2

(85)
Therefore, the conditions of a solution of this form are:

γ20 = 1, γ21 = −1, γ22 = −1,

γ1γ0 + γ0γ1 = 0, γ2γ0 + γ0γ2 = 0, γ1γ2 + γ2γ1 = 0
(86)

Like before, we can use our Pauli matrices as solutions:

γ0 = σ1, γ1 = iσ2, γ2 = iσ3 (87)

Therefore the total operator solution is:

/D = iℏ
(
0 1
1 0

)
∂

∂t
+ℏc

(
0 i
−i 0

)
∂

∂x
+ℏc

(
−1 0
0 1

)
∂

∂y
=

(
−ℏc ∂∂y iℏ ∂

∂t + iℏc ∂∂x
iℏ ∂
∂t − iℏc ∂∂x ℏc ∂∂y

)
(88)
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4.4 3 Dimensions of Space and 1 of Time

Finally, we extend this to the z dimension. The operator thus looks like:

( /D)2 = −ℏ2
∂2

∂t2
+ ℏ2c2

∂2

∂x2
+ ℏ2c2

∂2

∂y2
+ ℏ2c2

∂2

∂z2
(89)

/D = iℏγ0
∂

∂t
− iℏcγ1

∂

∂x
− iℏcγ2

∂

∂y
− iℏcγ3

∂

∂z
(90)

( /D)2 = −ℏ2γ20
∂

∂t2
− ℏ2c2γ21

∂

∂x2
+ ℏ2c(γ1γ0 + γ0γ1)

∂2

∂t∂x
+ ℏ2c(γ2γ0 + γ0γ2)

∂2

∂t∂y

−ℏ2c2(γ1γ2 + γ2γ1)
∂2

∂x∂y
− ℏ2c2γ2

∂2

∂y2
− ℏ2c2γ23

∂2

∂z2
+ ℏ2c2(γ3γ0 + γ0γ3)

∂2

∂t∂z

−ℏ2c2(γ1γ3 + γ3γ1)
∂2

∂x∂z
− ℏ2c2(γ2γ3 + γ3γ2)

∂2

∂y∂z
(91)

Therefore, the conditions of a solution of this form are:

γ20 = 1, γ21 = −1, γ22 = −1, γ23 = −1

γ1γ0 + γ0γ1 = 0, γ2γ0 + γ0γ2 = 0, γ1γ2 + γ2γ1 = 0, γ3γ0 + γ0γ3 = 0
(92)

Now, unlike before, we cannot just use the Pauli matrices for our solutions
because there is only 3. Rather we will extend the matrices to be 4×4 matrices
such that:

γ04×4
=

(
12×2 0
0 −12×2

)
(93)

γi4×4
=

(
0 −σi
σi 0

)
, i = 1, 2, 3 (94)

Don’t forget that these Pauli matrices are specific to j = 1
2 and are as follows:

σ1 =

(
0 1
1 0

)
(95)

σ2 =

(
0 i
−i 0

)
(96)

σ3 =

(
−1 0
0 1

)
(97)

Squaring our γ matrices to find what some of the conditions look like:

γ20 = 1 (98)

γ2i =

(
−σ2

i 0
0 −σ2

i

)
=

(
−1 0
0 −1

)
= −1 (99)
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And the other conditions are of course:

γ0γi + γiγ0 =

(
1 0
0 −1

)(
0 −σi
σi 0

)
+

(
0 −σi
σi 0

)(
1 0
0 −1

)
= 0 (100)

γiγj + γjγi =

(
0 −σi
σi 0

)(
0 −σj
σj 0

)
+

(
0 −σj
σj 0

)(
0 −σi
σi 0

)
=

(
−σiσj 0

0 −σiσj

)
+

(
−σjσi 0

0 −σjσi

)
= 0 if i ̸= j (because σ2

i = 1)

(101)

The total matrix equation for 3 dimensions of space and 1 of time is thus:

( /D −mc2)Ψ =

(
1iℏ ∂

∂t −mc21 iℏc
∑3
i=1(σi

∂
∂xi

)

−iℏc
∑3
i=1(σi

∂
∂xi

) −1iℏ ∂
∂t −mc21

)
Ψ = 0

where Ψ =


ψ1(x1, x2, x3, t)
ψ2(x1, x2, x3, t)
ψ3(x1, x2, x3, t)
ψ4(x1, x2, x3, t)


(102)

*Note: when looking for this /D relativistic energy operator, we have been
ignoring the fact that the original energy equation is squared such that there
would be a positive and negative solutions:

/D
2
= E2 − p2c2 = m2c4 =⇒ /D = mc2,���−mc2 (103)

However, this negative solution is not physically sensible and doesn’t lead
to any new physics.

Furthermore, what Dirac found out is that actually he was not just describing
a particle by itself, but one in a vacuum that isn’t empty and that this vacuum
can have energy. But, we will not go into this. Instead we will focus on Dirac
wave mechanics with no potential.

With this in mind, our next goal in solving this is to find an operator that
is hermitian. /D is not hermitian as shown below:

σ†
i = σi (104)

γ†0 = γ0 (105)

γ†i = −γi (106)

∴ /D
†
= iℏγ0 + iℏc(γ1

∂

∂x
+ γ2

∂

∂y
+ γ3

∂

∂z
) ̸= /D (107)

So, instead let’s see what happens when we do γ0 /Dγ0:
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γ0 /Dγ0 = iℏγ30
∂

∂t
− iℏc

[
γ0γ1γ0

∂

∂x
+ γ0γ2γ0

∂

∂y
+ γ0γ3γ0

∂

∂z

]
= iℏγ0

∂

∂t
− iℏc

[
−γ1γ0γ0

∂

∂x
− γ2γ0γ0

∂

∂y
− γ3γ0γ0

∂

∂z

]
= iℏγ0

∂

∂t
+ iℏc

[
γ1

∂

∂x
+ γ2

∂

∂y
+ γ3

∂

∂z

]
= /D

†

(108)

We can rearrange this to find a new operator that is hermitian:

γ0 /Dγ0 = /D
†
=⇒ /Dγ0 = γ0 /D

†
= ( /Dγ0)

† (109)

Alternatively we can use this operator:

γ0 /D = /D
†
γ0 = (γ0 /D)† (110)

*Note, remembering (98), we see that instead of these solutions of γi, there
are also solutions of−γi.

Anyways, now we can write γ0( /D − mc2)Ψ(x, y, z, t) = 0, which will look
like this: (

1 0
0 −1

)(
1iℏ ∂

∂t −mc21 iℏc
∑3
i=1(σi

∂
∂xi

)

−iℏc
∑3
i=1(σi

∂
∂xi

) −1iℏ ∂
∂t −mc21

)
Ψ = 0

where Ψ =


ψ1(x1, x2, x3, t)
ψ2(x1, x2, x3, t)
ψ3(x1, x2, x3, t)
ψ4(x1, x2, x3, t)


(111)

We can also rewrite Ψ into two 2-component vectors to match the notation
style of the rest of the equation. Also, writing out the sums explicitly. This
results in:

(
1iℏ ∂

∂t −mc21 iℏc(σ1 ∂
∂x + σ2

∂
∂y + σ3

∂
∂z )

iℏc(σ1 ∂
∂x + σ2

∂
∂y + σ3

∂
∂z ) 1iℏ ∂

∂t +mc21

)(
ψL(x, y, z, t)
ψR(x, y, z, t)

)
= 0

(112)
So, let’s write the matrix equations this correlates to more explicitly:

iℏ
∂ψL
∂t

−mc2ψL + iℏc
[
σ1

∂

∂x
+ σ2

∂

∂y
+ σ3

∂

∂z

]
ψR = 0 (113)

iℏc
[
σ1

∂

∂x
+ σ2

∂

∂y
+ σ3

∂

∂z

]
ψL + iℏ

∂ψL
∂t

+mc2ψR = 0 (114)

ψL(x, y, z, t) = χLe
i
ℏ (p1x+p2y+p3z−Et) (115)

ψR(x, y, z, t) = χRe
i
ℏ (p1x+p2y+p3z−Et) (116)
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Equation (113) can thus be written as:

{EχL −mc2χL − c[σ1p1 + σ2p2 + σ3p3]χR}e
i
ℏ (p1x+p2y+p3z−Et) = 0 (117)

=⇒ (E −mc2)χL = c(σ1p1 + σ2p2 + σ3p3)χR (118)

And (114):

{−c[σ1p1 + σ2p2 + σ3p3]χL + EχR +mc2χR}e
i
ℏ (p1x+p2y+p3z−Et) = 0 (119)

=⇒ (E +mc2)χR = c(σ1p1 + σ2p2 + σ3p3)χL (120)

If we multiply (118) or (120) by = c(σ1p1 + σ2p2 + σ3p3) we end up with:

(E −mc2)(E +mc2)χR = c2(σ1p1 + σ2p2 + σ3p3)
2χR = c2p2χR (121)

(E +mc2)(E −mc2)χL = c2(σ1p1 + σ2p2 + σ3p3)
2χL = c2p2χL (122)

But let’s not forget that χR and χL are both 2-component vectors, so we
should write these as:(

E2 −m2c4 − p2c2 0
0 E2 −m2c4 − p2c2

)(
χR1

χR2

)
= 0 (123)

(
E2 −m2c4 − p2c2 0

0 E2 −m2c4 − p2c2

)(
χL1
χL2

)
= 0 (124)

Since we know that E2 = p2c2 + m2c4, the eigenvector solutions to (123)
are:

χR =

(
1
0

)
,

(
0
1

)
(125)

And we can find the correspond χL vectors corresponding to these by rear-
ranging (118):

χL =
c(
∑3
i=1 piσi)

E −mc2
χR (126)

Similarly, there will be a set of solutions:

χL =

(
1
0

)
,

(
0
1

)
(127)

Where the corresponding χR vectors would be found by rearranging (120):

χR =
c(
∑3
i=1 piσi)

E +mc2
χL (128)

This first solution set ((125) and (126)) we say is for E < 0 and the second
is for E > 0 ((127) and (128)). We say that E = 0 is unphysical because it
would be a massless particle at rest and how would you even detect that?
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As we know, the total energy equation is E2 = m2c4 + p2c2, meaning the
energy could be:

|E| =
√
m2c4 + p2c2 (129)

E =

{
+
√
m2c4 + p2c2 physical

−
√
m2c4 + p2c2 ”unphysical”

(130)

4.5 Solution of j=1/2

So, let’s figure these out completely.
We know that:

c

(
3∑
i=1

piσi

)
=

(
−cp3 cp1 + icp2

cp1 − icp2 cp3

)
(131)

If χR =

(
1
0

)
,

(
0
1

)
then finding the rest of the solution set (χL vectors

involves plugging χR vectors into (121).

Similarly, if χL =

(
1
0

)
,

(
0
1

)
then finding the rest of the solution set (χR

vectors involves plugging χR vectors into (123).
Placing both of these solution sets in a table:

E > 0 E < 0
Solution 1 Solution 2 Solution 1 Solution 2

χL
1 0 −cp3

−|E|−mc2
cp1+icp2
−|E|−mc2

0 1 cp1−icp2
−|E|−mc2

cp3
−|E|−mc2

χR
−cp3

|E|+mc2
cp1+icp2
|E|+mc2 1 0

cp1−icp2
|E|+mc2

cp3
|E|+mc2 0 1

4.6 Orthogonality

Let’s now examine the orthogonality between these vectors, starting with E¿0
Solutions 1 and 2:


1
0

−cp3
|E|+mc2
cp1−icp2
|E|+mc2

 ·


1
0

−cp3
|E|+mc2
cp1−icp2
|E|+mc2


= 0 + 0 +

(
−cp3

E +mc2

)(
cp1 + icp2
E +mc2

)
+

(
cp1 + icp2
E +mc2

)(
cp3

E +mc2

)
= 0

(132)
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Likewise we find that between E > 0 and E < 0 solutions there is also
orthogonality. Between E > 0 Solution 1 and E < 0 Solution 1:


1
0

−cp3
|E|+mc2
cp1−icp2
|E|+mc2

 ·


−cp3

−|E|−mc2
cp1−icp2
−|E|−mc2

1
0

 =
−cp3

−|E| −mc2
− −cp3

|E|+mc2
= 0 (133)

And here is another example for E > 0 Solution 1 and E < 0 Solution 2
(remembering that since this is an inner product we take the complex conjugate
of the first vector):


1
0

−cp3
|E|+mc2
cp1−icp2
|E|+mc2

 ·


cp1+icp2
−|E|−mc2

cp3
−|E|−mc2

1
0

 =
cp1 + icp2
−|E| −mc2

+
cp1 + icp2
|E|+mc2

= 0 (134)

In summary:

ψ†
+1ψ+2 = 0

ψ†
+1ψ−1 = 0

ψ†
+2ψ−1 = 0

ψ†
+1ψ−2 = 0

ψ†
+2ψ−2 = 0

ψ†
−1ψ−2 = 0

(135)

4.7 Normalization

However, these wave function vectors are not yet normalized. In order to nor-
malize we find the ”length”.

For example, the ”length2” (inner product with itself) of Solution 1 of E > 0
is:

1 +
c2p23

(|E|+mc2)2
+
c2p+ 12 + c2p22
(|E|+mc2)2

= 1 +
c2p2

(|E|+mc2)2

= 1 +
|E|2 −m2c4

(|E|+mc2)2
= 1 +������

(|E|+mc2)(|E| −mc2)

������
(|E|+mc2)(|E|+mc2)

=
2|E|

|E|+mc2

(136)

The result is the same for the rest of the solutions, meaning the normalization
constant we must multiply each solution term by is:

1

length
=

√
|E|+mc2

2|E|
(137)
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So, the solutions when they are normalized look as follows:

E > 0 E < 0
Solution 1 Solution 2 Solution 1 Solution 2

χL

√
|E|+mc2

2|E| 0
√

|E|+mc2
2|E|

−cp3
−|E|−mc2

√
|E|+mc2

2|E|
cp1+icp2
−|E|−mc2

0
√

|E|+mc2
2|E|

√
|E|+mc2

2|E|
cp1−icp2
−|E|−mc2

√
|E|+mc2

2|E|
cp3

−|E|−mc2

χR

√
|E|+mc2

2|E|
−cp3

|E|+mc2

√
|E|+mc2

2|E|
cp1+icp2
|E|+mc2

√
|E|+mc2

2|E| 0√
|E|+mc2

2|E|
cp1−icp2
|E|+mc2

√
|E|+mc2

2|E|
cp3

|E|+mc2 0
√

|E|+mc2
2|E|

Between the two solutions for E > 0 we know that Solution 1 can be in-
terpreted as the negative spin state and Solution 2 can be interpreted as the
positive spin state because:

σ3

(
1
0

)
= −1

(
1
0

)
(138)

Meaning mz =
−1
2 . Likewise:

σ3

(
0
1

)
= 1

(
0
1

)
(139)

The same is true for E < 0 where Solution 1 is mz = −1
2 and Solution 2 is

mz =
1
2

Let’s now think about what happens with a particle at rest. For a particle
at rest with a certain mass, we know that pi = 0 and E = mc2. Therefore our
solutions for E > 0 become:

Solution 1 =


1
0
0
0

 (140)

Solution 2 =


0
1
0
0

 (141)

This makes the above claim about the spin state of each solution even more
clear.

4.8 Charge

It turns out, ψ†γ0ψ has a physical meaning that can be understood as telling
you about the charge (or the direction in time). We don’t need to integrate this
value over x or t because they cancel out. Furthermore, overall we find that:
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ψ†γµψ = (ρ, j⃗) (142)

Where ρ is the charge density and j⃗ is the current density which together
make the four-current.

Let’s apply this to the case of a particle at rest (ρ⃗ = 0). The solutions to
this are:

E > 0: and E < 0:


1
0
0
0

 ,


0
1
0
0



0
0
1
0

 ,


0
0
0
1

 (143)

Performing ψ†γ0ψ (γ0 defined in (93) on each of these respectively yields:

+1, +1, −1, −1

Since we want to interpret this as physical charge, we don’t want this quan-
tity to change with momentum so for the case of the first solution in (143):

ψ†
+1γ0ψ+1 = 1− c2p23

(|E|+mc2)2
− c2(p21 + p22)

(|E|+mc2)2
= 1− c2p2

(|E|+mc2)2
= 1−|E| −mc2

|E|+mc2
=

2mc2

|E|+mc2

(144)
So, unlike before where we just used ψ†ψ we use ψ†γ0ψ to normalize.

In that case our normalization constant would be
√

|E|+mc2
2mc2 .

So our normalized solution set for a particle at rest becomes:
√

|E|+mc2
2mc2

0
0
0

 ,


0√

|E|+mc2
2mc2

0
0




0
0√

|E|+mc2
2mc2

0

 ,


0
0
0√

|E|+mc2
2mc2


But we want to extend this outside of just particle at rest solutions. So we

will find some matrix of these γ0 to normalize and find orthogonality that has
components:

ψiγ0ψj (145)

This matrix looks like this:

19



ψiγ0ψj =


ψ+1γ0ψ+1 ψ+2γ0ψ+1 ψ−1γ0ψ+1 ψ−2γ0ψ+1

ψ+1γ0ψ+2 ψ+2γ0ψ+2 ψ−1γ0ψ+2 ψ−2γ0ψ+2

ψ+1γ0ψ−1 ψ+2γ0ψ−1 ψ−1γ0ψ−1 ψ−2γ0ψ−1

ψ+1γ0ψ−2 ψ+2γ0ψ−2 ψ−1γ0ψ−2 ψ−2γ0ψ−2



=


1 0 p3

mc
−p1−ip2
mc

0 1 −p1+ip2
mc

−p3
mc

p3
mc

−p1+ip2
mc −1 0

−p1−ip2
mc

−p3
mc 0 −1


(146)

As you can tell, the terms that are crossed between negative and positive
charge values are non-zero, meaning they are not orthogonal with each other in
this way. The implications of this are to be expanded on.

4.9 Adding a magnetic field

Let’s define a magnetic field in the z direction:

B⃗ = Bẑ, e(> 0) (147)

F⃗ = eV⃗ × B⃗ (148)

=⇒ dV⃗

dt
=
eB

m
V⃗ × ẑ =

eB

m
(vxx̂+ vy ŷ + vz ẑ)× ẑ = −vxŷ + vyx̂ (149)

dvx
dt

=
eB

m
vy (150)

dvy
dt

=
eB

m
vx (151)

dvz
dt

= 0 (152)

vx = v0sin(
eB

m
t) (153)

vy = v0cos(
eB

m
t) (154)

where eB
m is the cyclotron frequency and v0 = v2x + v2y

v⃗ = v0[sin(ωt)x̂+ cos(ωt)ŷ] (155)

r⃗ =
v0
ω
[−cos(ωt)x̂+ sin(ωt)ŷ] (156)

L⃗ = mr⃗ × v⃗ =
mv20
ω

[ẑ] =
mv20
eB
m

ẑ =
m2v20
eB

ẑ = e
m2v20
e2B2

Bẑ =
ev20
ω2

Bẑ (157)
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where
ev20
ω2 is a property of the charged particle.

L⃗ · B⃗ =
mv20B

ω
=
m2v20��B

e��B
=
m2v20
e

(158)

Total energy is thus the sum of the free kinetic energy, the potential energy,
and the kinetic energy due to the magnetic field:

Total Energy =
p2

2m
+ V (r) +

1

2

e

m
L⃗ · B⃗ (159)

Let’s just note that e
m is a property of the particle, L⃗ is a property of the

motion, and B⃗ is the external applied field.
We will define µ = e

2m .
So now we will look at a new hamiltonian that we will define as HB =

H + µL⃗ · B⃗. Our new wave equation becomes:

{
−ℏ2

2m
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) + V (r) + µL⃗ · B⃗

}
ψ(x, y, z, t) = iℏ

∂

∂t
ψ(x, y, z, t)

(160)

{
−ℏ2

2m
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) + V (r) + µL⃗ · B⃗

}
ψ(x, y, z) = Eψ(x, y, z) (161)

Let’s compare how this affects our energy level solutions by summarizing.
Before we had picked a set of operators that commute:

[H,L2] = 0

[H,La] = 0

[L2, La]

(162)

where a = 1, 2, 3
With this we ended up with:

[La, Lb] = iℏEabcLc (163)

With this we were able to obtain a wave function ψn,j,m(r, θ, ϕ) = |n, j,m⟩
and perform the operators on it:

Lz |n, j,m⟩ = ℏm |n, j,m⟩ (164)

L2 |n, j,m⟩ = ℏ2j(J + 1) |n, j,m⟩ (165)

H |n, j,m⟩ = En |n, j,m⟩ =

(
−1

2

[
Ze2

4πE0

]2
me

ℏ2
1

n2

)
|n, j,m⟩ (166)

Now, with the introduction of a magnetic field we have our new operator
HB = H + µL⃗ · B⃗. The operation thus becomes (if L⃗ = Lz ẑ:
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H |n, j,m⟩ = H |n, j,m⟩+ µL⃗ · B⃗ |n, j,m⟩ = En |n, j,m⟩+ eB

2me
Lz |n, j,m⟩

= En |n, j,m⟩+ eB

2me
ℏm |n, j,m⟩

(167)
The direction of the magnetic field should not matter, so we should end up

with the same result for B⃗ = Bx̂ where L⃗ · B⃗ = LxB

1

8πb3
e−

r
b r3sinθ (168)

(169)
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1 Perturbation Theory

1.1 Motivation

We defined the Hamiltonian:

Hψ(x, y, z, t) = iℏ
∂

∂t
ψ(x, y, z, t) (1)

Based on wave functions of this type we find that this Hamiltonian extracts
the energy of the wave in a stationary state:

ψ = ϕ(x, y, z)e
−iE
ℏ t (2)

Hϕ = Eϕ (3)

We can define the entire wave function based on separate functions of the
following type which we have previously defined in more detail:

|n = 1, j = 1,m = −1⟩ =
[
RJ

n(r)P
m
j (θ)eimϕ

]
e

−iE
ℏ t (4)

The question becomes, with this setup, how do we go from this state to one
of a higher value of j? The reality is that we have assumed that the state is the
same one over time. In more advanced quantummechanics courses, perturbation
theory is used to show time dependent changes in state.

Side note: H2 Experiment

In the hydrogen gas experiment, there is a current run through hydrogen
gas and the current is controlled by a switch

There is a δV (r, t) that happens whenever the switch is opened or closed
(gas is deexcited or excited). Perturbation theory shows one method for dealing
with these changes in the potential energy.

1.2 Perturbed Hamiltonian and Wave Functions

We know that H0 (with no perturbation) can be solved exactly:

H0 |n⟩ = En |n⟩ (5)

(By the way, these |n⟩’s are not necessarily referring to the n quantum num-
ber from the hydrogenic atoms solution.)

However, H (including a perturbation) cannot be solved exactly, where H is:

H = H0 + λV1(r) λ is ”small” (6)

We will denote this complete hamiltonian and solution set as:

H |ϕ⟩ = Eϕ |ϕ⟩ (7)
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(H0 + λV1) |ϕ⟩ = Eϕ |ϕ⟩ (8)

However, we can rewrite these energies and solution sets as:

|ϕ⟩ =
∞∑
k=0

λk |ϕk⟩ and Eϕ =

∞∑
k=0

λkµk (9)

With this we can rewrite (12) as:

(H0 + λV1)(|ϕ0⟩+ λ |ϕ1⟩+ λ2 |ϕ2⟩+ ...)

= (µ0 + λµ1 + λ2µ2 + ...)(|ϕ0⟩+ λ |ϕ1⟩+ λ2 |ϕ2⟩+ ...)
(10)

Since λ can be anything, equation (14) must be true for each term of λ. So
for λ to the power of 0:

λ0

H0 |ϕ0⟩ = µ0 |ϕ0⟩ (11)

We see that these |ϕ0⟩ are just the unperturbed solutions of H0, where:

|ϕ0⟩ = |n⟩ and µ0 = En (12)

Then for λ to first power:

λ1

H0 |ϕ1⟩+ V1 |ϕ0⟩ = µ0 |ϕ1⟩+ µ1 |ϕ0⟩
=⇒ (H0 − µ0) |ϕ1⟩ = µ1 |ϕ0⟩ − V1 |ϕ0⟩

= µ1 |ϕ0⟩ − V1 |n⟩
(13)

To this equation we can apply ⟨n|:

⟨n|(H0 − En)|ϕ1⟩ = µ1 ⟨n|n⟩ − ⟨n|V1|n⟩ (14)

Since we know that ⟨n|H0 = En ⟨n|. This can be rewritten as:

En ⟨n|ϕ1⟩ − En ⟨n|ϕ1⟩ = 0 = µ1 − ⟨n|V1|n⟩
=⇒ µ1 = ⟨n|V1|n⟩

(15)

These are the energy solutions for µ1 which we can use to find a closer value
to the total perturbed energy. Now let’s find the actual states (eigenvectors) of
this order λ1. First, we think about how how any vector can be rewritten as a
linear combination of eigenvectors of H0:

|ϕ1⟩ =
∑

C1m |m⟩ (16)

Where these constants C1m are complex numbers.
So (17) is rewritten as:
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(H0 − En)(
∑

C1m |m⟩) = µ1 |n⟩ − V1 |n⟩

=⇒
∑

C1m(H0 − En) |m⟩ = µ1 |n⟩ − V1 |n⟩

=⇒
∑

C1m(Em − En) |m⟩ = µ1 |n⟩ − V1 |n⟩

(17)

Then we take inner product with ⟨k|:∑
C1m(Em − En) ⟨k|m⟩ = µ1 ⟨k|n⟩ − ⟨k|V1|n⟩

=⇒ C1k(Ek − En) = µ1δkn − ⟨k|V1|n⟩

=⇒ C1k =
µ1δkn − ⟨k|V1|n⟩

Ek − En

(18)

If k ̸= n then:

C1k =
−⟨k|V1|n⟩
Ek − En

(19)

With this we can finally write our vectors |ϕ1⟩ in terms of this constant:

|ϕ1⟩ =
∑
m

C1m |m⟩ = C1n |n⟩+
∑
m̸=n

⟨m|V1|n⟩
En − Em

|m⟩ (20)

So we’re closer to knowing the perturbed states and their energies:

|ϕ⟩ = |ϕ0⟩+ λ |ϕ1⟩+ ... = (1 + λC1n) |n⟩+ λ
∑
m̸=n

⟨m|V1|n⟩
En − Em

+ ... (21)

where C1n is fixed by normalization. The energies:

Eϕ = µ0 + λµ1 + ... = En + λ ⟨n|V1|n⟩+ ... (22)

The λ to the second order:

λ2

H0 |ϕ2⟩+ V1 |ϕ1⟩ = µ0 |ϕ2⟩+ µ1 |ϕ1⟩+ µ2 |ϕ0⟩
=⇒ (H0 − µ0) |ϕ2⟩ = µ2 |ϕ0⟩+ µ1 |ϕ1⟩ − V1 |ϕ1⟩

(23)

For this order of λ we use the same trick as for λ1, rewriting the states as a
sum of other states:

|ϕ2⟩ =
∑

C2k |k⟩ (24)

For clarity we will now also refer to |ϕ1⟩ as the sum |ϕ1⟩ =
∑
C1l |l⟩

So, equation (27) becomes:∑
k

C2k(H0 − En) |k⟩ =
∑
l

C1l(µ1 − V1) |l⟩+ µ2 |n⟩ (25)
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Now we take the inner product with ⟨m|:∑
k

C2k(Ek − En)δkm =
∑
l

C1l(µ1δml − ⟨m|V1|l⟩) + µ2δmn (26)

If m = n:

0 = µ1C1n −
∑
l

C1l ⟨n|V1|l⟩+ µ2

= µ1C1n − C1n ⟨n|V1|n⟩ −
∑
l ̸=n

⟨n|V1|l⟩+ µ2

= µ1C1n − µ1C1n −
∑
l ̸=n

⟨n|V1|l⟩+ µ2

=⇒ µ2 =
∑
l ̸=n

C1l ⟨n|V1|l⟩ =
∑
l ̸=n

⟨l|V1|n⟩ ⟨n|V1|l⟩
En − El

(27)

If m ̸= n:

C2m =
µ1C1m −

∑
l C1l ⟨m|V1|l⟩

Em − En
(28)

Once more using these we end up with something closer to the perturbed
state and energies:

|ϕ2⟩ = C2k |k⟩+
∑
k ̸=m

 ⟨k|V ′|m⟩
Em − Ek

(
1− ⟨m|V ′|m⟩

Em − Ek

)
+

∑
k ̸=n

⟨k|V ′|n⟩ ⟨n|V ′|m⟩
(Em − Ek)(Em − En)


(29)

Eϕ = En + ⟨n|V ′|n⟩+
∑
l ̸=n

| ⟨l|V ′|n⟩ |2

En − El

= En + ⟨n|V ′|n⟩+
∑
l ̸=n

⟨n|V ′|l⟩ ⟨l|V ′|n⟩
En − El

(30)

If we were to continue this pattern we could look for the third order of the
perturbed states:

λ3

(H0 − µ0) |ϕ3⟩ = µ3 |ϕ0⟩+ µ2 |ϕ1⟩+ µ1 |ϕ2⟩ − V1 |ϕ2⟩ (31)

1.3 Perturbation Theory with Degenerate States

It may happen that there are unperturbed degenerate states that are affected
differently by an added potential or perturbation, making them non-degenerate.
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More specifically had assumed that all for En all m ̸= n were such that
Em − Em ̸= 0 but this isn’t necessarily true.

So, let’s assume that En = En+1 = µ0. This means that some unperturbed
|ϕ0⟩ can be any linear combination of the two of them:

|ϕ0⟩ = Cn |n⟩+ Cn+1 |n+ 1⟩ (32)

This |ϕ0⟩ will have the same energy for any choice of Cn and Cn+1 so it can
be any linear combination of |n⟩ and |n+ 1⟩.

We will do the same trick of writing the next wave function as a sum of
vectors:

|ϕ1⟩ =
∑
k

C1k |k⟩ (33)

Plugging into the equation from the first order of lambda (13):

(H0 − En)(
∑
k

C1k |k⟩) = (µ1 − V1)(Cn |n⟩+ Cn+1 |n+ 1⟩)

=⇒
∑
k

C1k(Ek − En) |k⟩ = (µ1 − V1)(Cn |n⟩+ Cn+1 |n+ 1⟩)
(34)

Then we take the inner products with both |n⟩ and |n+ 1⟩:

∑
k

C1k(Ek − En)δk,n = µ1Cn − Cn ⟨n|V1|n⟩ − Cn+1 ⟨n|V1|n+ 1⟩ (35)

∑
k

C1k(Ek − En)δk,n+1 = µ1Cn+1 − Cn ⟨n+ 1|V1|n⟩ − Cn+1 ⟨n+ 1|V1|n+ 1⟩

(36)
Finally, we can write this system of equations as a matrix and solve for the

values of µ1:(
⟨n|V1|n⟩ ⟨n|V1|n+ 1⟩

⟨n+ 1|V1|n⟩ ⟨n+ 1|V1|n+ 1⟩

)(
Cn

Cn+1

)
= µ1

(
Cn

Cn+1

)
(37)

We want to find both the eigenvalues and eigenvectors of this equation.
**Note, in order for our values of energy to make physical sense, we don’t

want them to be complex. Therefore, V1 must be hermitian:

(⟨n|V1|n+ 1⟩)∗ = ⟨n+ 1|V1|n⟩ (38)

2 Examples of Perturbation Theory

2.1 1D Harmonic Oscillator with V1 = x

We know that for our perturbed states, the new energy (to the second order)
becomes:
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Eϕ = En + ⟨n|V1|n⟩+
∑
l ̸=n

⟨n|V1|l⟩ ⟨l|V1|n⟩
En − El

(39)

We also know that x =
√
2b
2 (a† + a). With this we can find the energy of a

perturbation where V1 = x:

Eϕ = En +

√
2b

2
⟨n|a† + a|n⟩+ b2

2

∑
l ̸=n

⟨n|a† + a|l⟩ ⟨l|a† + a|n⟩
En − El

= En +

√
2b

2

[√
n+ 1 ⟨n|n+ 1⟩+

√
n ⟨n|n− 1⟩

]
+
b2

2

∑
l ̸=n

(
√
l + 1 ⟨n|l + 1⟩+

√
l ⟨n|l − 1⟩)(

√
n+ 1 ⟨l|n+ 1⟩+

√
n ⟨l|n− 1⟩)

En − El

= En +
b2

2

∑
l ̸=n

(
√
l + 1δn,l+1 +

√
lδn,l−1)(

√
n+ 1δl−1,n +

√
nδl+1,n)

En − El

= En +

√
n
√
nb2

2(En − En−1)
+

√
n+ 1

√
n+ 1b2

2(En − En+1)

= En +
n( ℏ

mω )

2ℏω
−

(n+ 1)( ℏ
mω )

2ℏω

= En +
1

2mω2
= (n− 1

2
)ℏω +

1

2mω2

(40)

2.2 1D Harmonic Oscillator with V1 = x4

Again, we use the fact that x =
√
2b4

2 (a† + a).
This means that:

x4 =
4b4

16
(a† + a)4 (41)

And the first order perturbation is:

⟨n|V1|n⟩ = ⟨n|x4|n⟩ = b4

4
⟨n|(a† + a)4|n⟩

=
b4

4
(⟨n|aaa†a†|n⟩+ ⟨n|aa†aa†|n⟩+

⟨n|a†aaa†|n⟩+ ⟨n|a†aa†a|n⟩+ ⟨naa†a†a||n⟩+ ⟨n|a†a†aa|n⟩)

=
b4

4
[(n+ 2)(n+ 1) + (n+ 1)2 + 2(n+ 1)n+ n2 + n(n− 1)]

=
ℏ2

4m2ω2
(6n2 + 5n+ 3)

(42)
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The fractional correction is thus just this perturbation divided by the total
energy:

Fractional Correction =
ℏ2

4m2ω2 (6n
2 + 5n+ 3)

En + ℏ2

4m2ω2 (6n2 + 5n+ 3)

=
ℏ2

4m2ω2 (6n
2 + 5n+ 3)

(n− 1
2 )ℏω + ℏ2

4m2ω2 (6n2 + 5n+ 3)

(43)

This shows that the correction is greater for greater values of n because this
correction approaches 1 as n→ ∞.

2.3 Proton with Uniform density

Now we will exam a proton with a radius R where R = 10−15meters. The charge
is uniformly distributed charge with density:

ρ =
e

4
3πR

3
(44)

We use Gauss’ law to convert this to values for the electric field outside and
inside the radius of the proton: ∫

E⃗ · d⃗A =
q

ϵ0
(45)

E4πr2 =
1

ϵ0
ρV =

e
4
3πR

3ϵ0

4

3
πr3

=⇒ E =
1

4πϵ0

er

R3
r ≤ R

(46)

E4πr2 =
1

ϵ0
ρV =

e
4
3πR

3ϵ0

4

3
πR3

=⇒ E =
1

4πϵ0

er

r2
r ≥ R

(47)

Then we convert these electric field values into values for electric potential
through E⃗ = −∇⃗V . Then we multiply by another e to represent the potential
energy of the proton:

V (r) =
1

8πϵ0

e2r2

R3
+ C r ≤ R

V (r) =
−1

4πϵ0

e2

r
+D r ≥ R

(48)

The part of V where r ≥ R is the same as the unperturbed state because
the proton ”looks” the same as a point particle outside that radius and also
v(∞) = 0, meaning D = 0.

At radius R:
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1

8πϵ0

er2

R3
+ C =

−1

4πϵ0

e

r

=⇒ C =
−3

8πϵ0
e
R

(49)

Therefore the potential energy really looks like:

V (r) =
1

8πϵ0

e2r2

R3
− 3

8πϵ0
e2

R

r ≤ R

V (r) =
1

4πϵ0

e2

r
r ≥ R

(50)

The perturbation that exists when r ≤ R comes from subtracting the per-

turbed and unperturbed (V (r) = −1
4πϵ0

Ze2

r ) potential energies:

V1(r) =
e2

4πϵ0

(
r2

2R3
+

1

r
− 3

2R

)
r ≤ R

V1(r) = 0 r ≥ R

(51)

For the lowest energy state of hydrogen, |n = 1, j = 0,m = 0⟩, which does
not have any degenerate states, we find the first order correction by integrating
in spherical coordinates like so:

⟨100|V1|100⟩ =
e2

4πϵ0

∫ 2π

0

∫ π

0

∫ R

0

ψ100

(
r2

2R3
+

1

r
− 3

2R

)
ψ100r

2sinθdrdθdϕ

=
e2

4πϵ0

e−
R
b ·

((
12b3 − 3R2b+R3

)
e

R
b − 12b3 − 12Rb2 − 3R2b

)
8πR3b

(2)(2π)

(52)
The states of n = 2 are all degenerate however, so we have to solve the

following matrix based on perturbation theory:


⟨200|V1|200⟩ ⟨200|V1|21− 1⟩ ⟨200|V1|210⟩ ⟨200|V1|211⟩

⟨21− 1|V1|200⟩ ⟨21− 1|V1|21− 1⟩ ⟨21− 1|V1|210⟩ ⟨21− 1|V1|211⟩
⟨210|V1|200⟩ ⟨210|V1|21− 1⟩ ⟨210|V1|210⟩ ⟨210|V1|211⟩
⟨211|V1|200⟩ ⟨211|V1|21− 1⟩ ⟨211|V1|210⟩ ⟨211|V1|211⟩



a
b
c
d

 = µ1


a
b
c
d


(53)

However, if we look at the potential it is clear that it only depends on are,
meaning that for any particular |njm⟩ we know that:

⟨nlm|V1|n′l′m′⟩ =
∫ 2π

0

∫ pi

0

Y ∗
lmYl′m′sinθdθdϕ

∫ R

0

R(r)∗V1R(r)r
2dr

= δl,l′δm,m′(2)(2π)

∫ R

0

R(r)∗V1R(r)r
2dr

(54)
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The reason we can write it this way is we know that the perturbation V1
is only dependent on r and not θ or ϕ. Thus we know that only the diagonal
terms of our matrix could survive.

When it comes to our 4 diagonal states, we know that l = 0 the radial-
dependent part of our wave function takes the form:

R(r)200 =
(
1− r

4b

)
e

−r
4b (55)

And for the l = 1 states it looks like:

R(r)21m =
r

2b
e

−r
4b (56)

For |200⟩:

⟨200|V1|200⟩ =

e2

4πϵ0

1

π(4b)3

[
1344b5 − 24R2b3 + 2R3b2

R3
−

(
2688b5 + 1344Rb4 + 288R2b3 + 36R3b2 + 3R4b

)
e−

R
2b

2R3

]
(4π)

=
e2b2

43R3πϵ0
(1344− 24R2

b2
+

2R3

b3
+ (−1344− 672

R

b
− 144

R2

b2
− 18

R3

b3
− 3

2

R4

b4
)e

−R
2b )

(57)
Looking at this it is apparent that as R → 0, the perturbation approaches

1344 − 1344 = 0. If we plug in a value of R = 10−15meters, we get a value of
-2.295221796726887e-18 Joules for the perturbation

For |210⟩ , |21− 1,⟩ , and |211⟩:

⟨210|V1|210⟩ = ⟨21− 1|V1|21− 1⟩ = ⟨211|V1|211⟩

e2

4πϵ0

1

4π(4b)3

6be−
R
2b ·

((
1920b4 − 48R2b2 + 4R3b

)
e

R
2b − 1920b4 − 960Rb3 − 192R2b2 − 20R3b−R4

)
R3

 (
4π

3
)

=
e2e

−R
2b b2

2ϵ0π43R3

[
(1920− 48R2

b2
+

4R3

b3
)e

R
2b − 1920− 960

R

b
− 192

R2

b2
− 20

R3

b3
− R4

b4

]
=

e2b2

2ϵ0π43R3

[
1920− 48R2

b2
+

4R3

b3
− (1920 + 960

R

b
+ 192

R2

b2
+ 20

R3

b3
+
R4

b4
)e

−R
2b

]
(58)

Just like above, looking at this it is apparent that as R→ 0, the perturbation
approaches 1920− 1920 = 0

Overall, the matrix representing the perturbation energies will look like:


⟨200|V1|200⟩ 0 0 0

0 ⟨21− 1|V1|21− 1⟩ 0
0 0 ⟨210|V1|210⟩ 0
0 0 0 ⟨211|V1|211⟩



a
b
c
d

 = µ1


a
b
c
d


(59)
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If we call this matrix A and take the determinant |A−λI| and set it to zero,
we find the eigenvalues are:

λ = ⟨200|V1|200⟩ , ⟨21− 1|V1|21− 1⟩ , ⟨210|V1|210⟩ , and ⟨211|V1|211⟩ (60)

Each of these eigenvalues can correspond to these eigenvectors (not normal-
ized): 

1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 (61)

Each of these eigenvalues represents the perturbation that corresponds to
that particular eigenvector, which represents to one of the degenerate states (in
the order represented in the matrix).

2.4 Applying an Electric Field to a Hydrogen Atom

We will think about how an electric field in the k̂ direction will perturb a
hydrogen atom:

E⃗ = Ek̂ (62)

This electric potential corresponding to this field, causing a perturbation,
will look like:

V1 = eEz = eErcosθ (63)

We will first understand the lowest energy hydrogen state |100⟩ and |200⟩.
Both of these wave functions depend only on r and not θ or ϕ Therefore the θ
integrals will go to zero because the functions inside are odd.

⟨n = 1, 2, j = 0,m = 0|V1|n = 1, 2, j = 0,m = 0⟩

= eE

∫ ∞

0

∫ π

0

∫ 2π

0

ψ2
n=1,2,j=0,m=0(r)r

3cosθsinθdrdθdϕ = 0
(64)

Now, we can look at the other two of the three n = 2 degenerate states. For
these states it is also clear that for ⟨21− 1|V1|21− 1⟩ and ⟨211|V1|211⟩ the term
inside the dθ integral will go to 0 because the functions inside the integrals will
be periodic between 0 and π.

⟨21± 1|V1|21± 1⟩ = eE

∫ ∞

0

∫ π

0

∫ 2π

0

ψ21,m=±1ψ21,±1r
2cosθsinθdrdθdϕ (65)

These two facts lead us to knowing the l values of the wave functions cannot
be the same to have a perturbation on that state. Additionally, we know the m

11



values must be the same for their to be a perturbation because if they are not
then the ϕ integral will go to zero because of e±iϕ part of the wave functions.

With this in mind we can form the matrix:

⟨nlm|V1|nlm⟩ =

0 −6eEb 0 0
0 0 0 0− 6eEb 0 0 0
0 0 0 0

 (66)

This matrix representing the perturbation can thus be diagonalized to find
the new states after perturbation:∣∣∣∣∣∣∣∣

−λ −6eEb 0 0
0 −λ 0 0

−6eEb 0 −λ 0
0 0 0 −λ

∣∣∣∣∣∣∣∣ (67)

This becomes: [
λ2 − (−6eE)

]
λ2 = 0 (68)

So our eigenvalues are:

λ = 0, 0,−6eEb, 6eEb (69)

We see that these two states, |200⟩ and |210⟩, have now been ”mixed” and
after applying a perturbation have been changed into being a mix of the both
of them. these two mixed states (once normalized) are understood like so:

|mixed 1⟩ = 1√
2
[|200⟩ − |210⟩] (70)

|mixed 2⟩ = 1√
2
[|200⟩+ |210⟩] (71)

Where mixed 1 corresponds to V1 = 6eEb and mixed 2 corresponds to V1 =
−6eEb. So one of these mixed states is higher energy due to the perturbation
and the other is lower energy. No longer are there 4 degenerate states for n=2
but rather 2 degenerate states and these 2 other mixed states.

This hybrid states corresponds to a 2s and 2p orbital, and this concept might
have parallels to how bonding creates sp hybridizations, with the electrons in
the bonds acting as the electric field that causes a Stark effect that accounts for
changes in the states of the electrons.
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1 The Experiment

1.1 Introduction

A hydrogen lamp was placed with a current running through it, providing it
with energy. This causes the hydrogen lamp to emit light. The quality of the
light emitted from this lamp is investigated by splitting up the wavelengths it
emits through use of a diffraction grating which reflects the light at various
angles. The wave- like nature of light means that in certain locations, there will
be constructive interference and the light will be visible very clearly.

If there are only certain wavelengths of light visible, then this may be ex-
plained through the the idea of only quantized packets of light being able to
be emitted, which would each correspond to only a certain wavelength of light,
through the transition of a electrons from a higher to lower energy state. This
transitions and the energy loss associated with it would thus correspond to the
energy and thus wavelengths of the photons being emitted by the hydrogen
lamp.

The optical axis angle (θa) of the hydrogen lamp, shown as (a) in the figure
below, the angle of the ”0th image” (θ0), shown as (b) below, and every angle
of the various wavelengths of light, represented as (c) in the figure below, must
be measured.
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1.2 Wavelength and Energy Calculations

These angle values are used to find a value for wavelength at each location.
First, the measured angles are converted into values for the incident angle (θin)
and the outgoing angle (θout):

θin =
θ0 − θa

2
(1)

θout = θ − (θa − θin) (2)

These angles are used to find the difference in path-length between two
vectors of light hitting the diffraction grating at two different locations on the
grating. Here, D is the distance between locations on the diffraction grating
and is called the grating constant for the particular diffraction grating.
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Each of these path-length differences is found by looking at the geometry:

∆in = Dcos(θin) (3)

∆out = Dcos(θout) (4)

Therefore, the total distance in the path between these rays is:

∆total = ∆in −∆out = Dcos(θin)−Dcos(θout) (5)

In order for the light to be visible, the rays must be constructive, meaning
the difference in the path-length of the rays must be an integer of the wavelength
of the light:

∆total = mdλ (6)

md = 0,±1,±2,±3, ... (7)

Therefore wavelength is described as:

λ =
Dcos(θin)−Dcos(θout)

md
(8)

These wavelengths can be converted to an energy value through the use
of some constant, which we theorize to be Planck’s constant. This constant
converts the frequency of the light into a value for energy in Joules:

E =
hc

λ
(9)

This can now be expanded on further by theorizing on the form and use of
so-called wave functions that describe the electron in the hydrogen atom (and
thus dictate the energies/wavelengths of the emitted photons). Further detail
on this will now be provided.
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1.3 Introduction to Wave Functions

Wave functions can be written in terms of functions of their separate spherical
coordinates as follows:

ψn,j,m = Rn,j(r)P
m
j (θ)eimϕ (10)

Where n is a quantum number related to the total energy, j is related to the
angular momentum, and m is related to the projection of the angular momen-
tum.

Written in detail, these wave functions are in the form:

ψn,j,m =

∞∑
k=0

Ck

(r
b

)k
e

−r
2bn rjPm

j (θ)eimϕ (11)

To find values of
∑∞

k=0 Ck

(
r
b

)k
, first we need to know how many of these

constants are nonzero for a state. So, we define some P which is the upper limit
of k. We find this P to be related to n and j through P = n− j − 1.

Furthermore, we will find in this chapter that the relationship between con-
stants is the following, allowing us to put all the constants in terms of the lowest
constant C0, which can then be found through normalization:

Ck+1

1
n (k + j + 1)− 1

(k + 1)(k + 2j + 2)
Ck (12)

The Pm
j functions can be found for different m’s by starting off with the

largest or smallest value of m possible for a given j and then using the relation-
ship below to find the functions for the rest of the states of that j:

P j
j = P−j

j = Nj [sinθ]
j (13)

(
∂

∂θ
−mcotθ

)
Pm
j (θ) =

√
j(j + 1)−m2 −mPm+1

j (14)

We find that the part of the wave function that is dependent on the angles
θ and ϕ, in other words Pm

j (θ) and eimϕ was understood through using the
angular momentum operators. However, the radial part of the wave function

and in particular the sum
∑∞

k=0 Ck

(
r
b

)k
was found by inserting a potential

energy into the wave equation, in this case the potential of a hydrogen atom,
which is dependent on r.

We will now go into detail about how this way of writing the wave function
came about.

1.4 Hydrogen Atom Potential and How It Alters the Wave
Functions

Through experiment, the potential of a hydrogen atom has been found to be:
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V (r) =
−1

4πϵ0

Ze2

r
(15)

Where ϵ0 is the permittivity of free space, Z is the atomic number (1 in the
case of hydrogen), and e is the charge of an electron.

In order to apply this potential to the previous setup, we will convert to
natural units. So, we will set b as the following in order to convert r to natural
units as in:

r = bu (16)

2m

ℏ2
Ze2

4πϵ0
b = 1 (17)

And by plugging in all these constants and rearranging for b we arrive at:

b = 2.64588603× 10−11 meters (18)

We see that the units of 2mb2

ℏ2 are Joules, meaning for natural units of energy
we can set:

E =
−ℏ
2mb2

β2 (19)

Our energy equation was:

d2ψE,j(r)

dr2
+

2(j + 1)

r

dψE,j(r)

dr
+

2m

ℏ2
[E − V (r)]ψE,j(r) = 0 (20)

So our energy equation in natural units becomes:

d2χE,j(u)

du2
+

2(j + 1)

u

dχE,j(u)

du
− β2χE,j(u) +

1

u
χE,j(u) = 0 (21)

By examining the limit as u → ∞ we find that
d2χE,j(u)

du2 ∼ αχE,j(u) and
thus χE,j(u) ∼ e−βu and so we rewrite χE,j(u) as:

χE,j(u) = e−βuRE,j(u) (22)

Where RE,j(u) is a polynomial:

RE,j(u) =

∞∑
k=0

cku
k (23)

This ultimately results in (12) being rewritten as:

∞∑
k=0

{[2(j+1)(k+1)+k(k+1)]ck+1+[(−2β)k+(1−2(j+1)β)]ck}uk = 0 (24)
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Since each of these terms in the sum must be 0 in order for the total sum
to be 0, we know that the coefficient of each term must be 0, resulting in the
recursion relation:

Ck+1 =
2β(k + j + 1)− 1

k(k + 1) + 2(j + 1)(k + 1)
(25)

Furthermore, we know that the polynomial RE,j(u) must terminate because
χE,j → 0 as u→ ∞ (due to normalizability conditions). So there must be some
value of k, which we will call P, for which:

2β(P + j + 1)− 1 = 0 (26)

We can rearrange for a value of β (energy):

β =
1

2(j + P + 1)
=

1

2n
(27)

So, our solutions depend on 3 quantum numbers:

n = 1, 2, 3, ...

j = 0, 1, 2, ...

m = −j,−j + 1, .., j − 1, j

(28)

(And P is a result of a choice of a particular j and n):

P = n− j − 1 (29)

We have been working in natural units but also, of course, if we want, we
can always bring our wave function back to units of r, in which case it would
look again like this:

ψn,j,m(r, θ, ϕ) =

( ∞∑
k=0

ck

(r
b

)k)
e−

r
2bn rjPm

j e
imϕ (30)

2 Data

2.1 Wavelength/Energy at Each Data Point

These are the values for wavelength and energy at each angle data point, com-
puted from equation (8) and (9).
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2.2 Final Wavelength and Energy Values

Using these values, we can find the weighted mean and uncertainty of each
wavelength and energy, as described in the data analysis section:

3 Conclusions of the Experiment

4 Connecting back to our lecture

We had designated β to in essence be what defines our natural unit of energy
where:

E =
−ℏ2

2mb2
β2 =

−Z2e4m

8π2ϵ20ℏ2
β2 =

−Z2e4m

32π2ϵ20ℏ2n2
(31)

(Remember we found set found that β = 1
2(j+P+1)) and set this to β = 1

2n )

This E is the total kinetic energy of the electron in a given state.
For the electron on a hydrogen atom this simplifies to:

En =
−e4me

32π2ϵ20ℏ2n2
(32)

In the experiment, we look at the Balmer series, meaning transitions from
n=3,4,5,6... down to n=2. So the wavelengths coming from the hydrogen lamp
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would have the energy of these transitions. For example, for the transition from
n=3 to n=2:

E3 − E2 =
−e4me

32π2ϵ20ℏ2

(
1

32
− 1

22

)
(33)

And for any other transition down to n=2 we find that:

En − E2 =
−e4me

32π2ϵ20ℏ2

(
1

n2
− 1

4

)
(34)

For these constants:

ϵ0 = 8.8541878128× 10−12 C
2s2

kgm3

ℏ = 1.054571817× 10−34 kgm
2

s

e = 1.602176634× 10−19C

me = 9.1093837015× 10−31kg

(35)

So the photon energies emitted by Balmer series transition are defined by:

Eγ = En − E2 =
−e4me

32π2ϵ20ℏ2

(
1

n2
− 1

4

)
= −13.6

(
1

n2
− 1

4

)
eV

= 2.17987236× 10−18

(
1

4
− 1

n2

)
Joules

= 2.17987236× 10−18 ∗
(
6.241509× 1018 eV

J

)(
1

4
− 1

n2

)
= 13.60569

(
1

4
− 1

n2

)
eV

(36)

The first four transitions would be:

ninitial = 3 : E3 − E2 = 13.60569

(
1

4
− 1

9

)
eV = 1.889680 eV (37)

ninitial = 4 : E4 − E2 = 13.60569

(
1

4
− 1

16

)
eV = 2.551067 eV (38)

ninitial = 5 : E5 − E2 = 13.60569

(
1

4
− 1

25

)
eV = 2.857196 eV (39)

ninitial = 6 : E6 − E2 = 13.60569

(
1

4
− 1

9

)
eV = 3.023487 eV (40)
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This experiment provides evidence for the ideas, mathematics, and theory
behind quantum mechanics and the quantization of the energy states of an elec-
tron. It also confirms that the wavelengths observed are coming from the Balmer
Series visible wavelengths of Hydrogen because the values are very close to the
literature and computed values and the experimentally determined Rydberg
constant is accurate when assuming these are Balmer series wavelengths (how
the Rydberg constant was determined experimentally was not presented here).
Additionally, most of the Balmer Series includes visible wavelengths, which is
what was seen experimentally.
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