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Chapter 1
Classical Mechanics

1 Introduction

Like in quantum mechanics I, we will begin by considering a classical
problem and then using these results to compare its quantum mechanics
counterpart. We ended quantum mechanics I with the one dimensional har-
monic oscillator, and because of the importance of the harmonic oscillator
in nature, (since oscillations near an equilibrium point can be modeled as
such) it will be of interest to consider how the problem changes as we move
to higher dimensions.

2 Simple Harmonic Oscillator

To begin we will first consider 2 dimensions, the harmonic oscillator in 2
dimensions is defined by

1
Vip) = 5kp2 (1)

Where p? = x> + y2. Notice how this is a central-force problem similar to
the one considered in quantum mechanics I, as such angular momentum, L
will be conserved. This is because,

. dL
T=FxXF=— 2
T=r i )
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7=0 3)
Z = Constant 4)

Now r is defined as ¥ = pp and L = 7 X p so we can write the angular
momentum as

L =mpp x (pp +pdd) = mp>é2 = constant )

Now since L is constant we can fix both the direction and magnitude. We
will pick the Z for L and the plane perpendicular to L to be defined in polar
coordinates.

This problem may also be worked out in Cartesian coordinates and the
benefit there lies in the fact that 6 = 0 same for the y coordinate. This
allows the problem to be separates into the two coordinates where each co-
ordinate acts like a one-dimensional harmonic oscillator. However since we
will not gain any new information from this since we have already solved the
one-dimensional harmonic oscillator we will consider how polar coordinates
changes the problem.

Since the potential is of the form V (p), the force is conserved and energy
is conserved. So let us consider the energy equation

1
E = constant = Em\_z’ v+ V(p) (6)
1 . 1
E = sm(p? +p¢%) + Skp? (7
1, L* 1, ,
E=—-mp”+ + -k 8
2P 2 T2 p 3

Where equation (8) just takes into account the effect of the angular momen-

.. 2
tum. Now p? > 0 so it is useful to look at the plot of 2an2 + %k,o2 as a

function of p and see what types of solutions will be allowed.
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In figure 1 we can see that E = 0 is not allowed, however this is only in
the case that L # 0. When L = 0 we have the case of a simple harmonic
oscillator in one dimension along g, where 6p = 0. So we will be interested
in the case where L # 0. From figure 1 we can also see that the motion of
the particle is bounded so we should be able to find pin, Pmax-

Now let us go about solving for the equations of motions. Again consider
the energy equation

1, L* 1, .,

E=— + + —k 9
2P omp? T2 P ©
We can solve for p to obtain the following expression
w 1 E \*
)= — E? - L2w?) - |p? - — 10
p=" —a w?) (p ma)2) (10)
Where we used the angular frequency of the harmonic oscillator is w? = %,

this can be seen from the quadratic term in E as well as the equations of Force.

Now since we have terms of the order p* it might be useful to consider

d d
p? and for this reason we will let u = p® so d—b; = Zpd—lt). As for the intuition
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behind this substitution we are considering u = 7 - 7 = p? as opposed to 7
because u is invariant making it an important quantity to consider. Now we
also want to consider natural units, in such a way that will make our problem
dimensionless. In this case since angular momentum is conserved and w as
well as mass are constant, we may use these quantities to come up with units
that make our problem dimensionless. Now the left term in the square root
in equation (10) suggests that E = aLw, let us check the units of Lw

2
1
Lo =281

so it seems like the natural units of Energy are Lw, now let us consider
what units we should use for u again let us look at our equation (10), and

notice that the right term in the square root is u — —£5, so it seems natural to

mw?’
say u = 8 # =p mL—w again it must be checked that mL—w has the appropriate
2

J = [E] (11D

S N

units, in this case we want units of m~. Dimensional analysis shows that
[mL—w] = m?. After incorporating the appropriate substitutions we obtain the
equation

iﬁ’ = (@2~ 1) - (B-a) (12)

Which is unit-less as we wanted when choosing natural units. Now
another substitution we will do to simplify the algebra will be 7 = 2wt so
we obtain the following result

i—f:\/(az—l)—(ﬁ—a)z (13)

This equation may be solved explicitly however it would make more
sense to consider B(¢) instead of B() since we want to have a clear relation
between the angle and the position of the particle which seems to be in closed

. ) ) d
orbit. Therefore we need one more relation specifically —d¢. However, we
T

already know this relation from the angular momentum, L = p?¢. So let us
put this expression in our natural units

L= mu—t = fm— —2w (14)
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dgp 1

ar - 28 (15)
so we obtain the following expression for S(¢)
d
5= =) - (- (16)

An elegant equation due to the use of appropriate natural units, had we
left everything in terms of E and L we would not see the simple underlying
structure of our equation of motion. From this it is clear the effect that o
and B have and it is clear that @ > 0 so that E};;;, = Lw.

Now we will solve equation (16)

/ ! dB = 2/ d (17)

By(a? 1)~ (B~ )

The solution of the right hand side is clear so we will focus on the left
hand side. To solve this integral we will use a clear substitution, letting
b= /%, so db = —-dB, I found this substitution to lead to a nice simple result
which I found to be elegant, there are other ways to solve such an integral,
however my other approaches did not lead to such nice equations. So to
continue solving the R.H.S. of equation (17)

—/ ! db (18)

b\/(az—l)—(%—a)z

|
_ _/ db
V=b%2 -1+2ab

(19)

(20)

:—/ ! db
\/(042—1)—(b—a)2

This integral is already easily solvable but to make the integral clear let
us use another substitution y = b — a so that dy = db

Classical Mechanics 1-9
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1
:—/\/mdy

This integral is —sin~!(===) This can be easily shown by using the
Va2-1
substitution y = Va2 — 1sinf. Now using this result we get the expression

8= (a — Va2 - 1sin[2(¢ + ¢0)])_1 (22)

But we are interested in u, so we can use u = ,Bm—Lw to find u and u = p?

to find p(¢). Giving us our equation of motion which is elliptical. This can
2

be shown by showing that you can get to the form Z—i + % = 1. To show

this I suggest using p(¢) and using p?> = x> + y* and then diagonalizing

the equation so that we only have quadratic terms and all the cross terms

disappear. As a hint this can be done by doing a rotation so that

x| x
L’] = R(0) L" (23)
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Chapter 2
Quantum Mechanics

Now we will begin to consider how to deal with these types of problems
in quantum mechanics. First we begin by writing the Schrodinger wave
equation

o¥(x,t) 12 (7P (x,y,1) 0*¥(x,y,1)

N _
o 2m \~ ox2 dy?

+ V()Y y,0) (D

Now we will assume solutions of the form W(x, y,t) = T(t)¢(x,y) so
then T(z) = e~'%'. This was shown in quantum mechanics I. So we have
in general ¥(x, y,t) = e '#'¢(x, y) when energy is conserved. Substituting
this solution into the wave equation lets us separate the spacial and time
coordinate giving us

R (Egxny) | Pelxy)
2m dx? dy?

) SV EY) = Eo(xy) ()

Now let us consider the case of a harmonic oscillator potential.
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1 Cartesian Coordinates

First we will consider the harmonic oscillator in Cartesian coordinates but
we will later consider the problem in polar coordinates and see the benefit
to each parameterization.

In Cartesian coordinates the wave equation is equation (2), where V(x, y) =
%k(x2 + y?) giving us

h_z(d2¢(x,y) , PO

1
Tom \ T dx2 dy? ) + Ek(xz +)¢(x,y) = E¢(x,y) ()

Now we will consider the natural units of the problem. Let x = bu and
y = bv solet y(u,v) = ¢(x = bu,y = bv) substituting these into equation
(3) give us

72 (dzt//(u, V) . d?y (u,v)

1
omb? |\ du? 1,2 )+ gbzk(uzwz)w(u,v) = Ey(u,v) (4)

Now let b2 = %

2 2
_lhw(d vy Py

3 Q2 02 ) + %hw(uz + v (u,v) = Ey(u,v) (5)

So it seems natural for Energy to be £ = ahiw. If you refer back to the
classical case this is the same substitution that we used before except now
instead of L we are using 7 this leads to the question is L o /2? They do have
the same units so it seems like it could be the case that we can say 7 are the
natural units of frequency. So now let us substitute our expression for E

1 (P (u,v) d*y(u,v)| 1
2 ( du? * dy2 + E(uz + vy (u,v) = ay(u,v)  (6)

Where we will now require ¥ (u, v) to be normalized rather then ¢(x, y)
this is because we will be working in terms of (u, v) for the duration of
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the problem however the normalization of ¢(x, y) can be used by doing a
change of variables. So we require

/W/mw*(u,v)w(u, v)dudv =1 @)

Let us quickly show the normalization of ¢(x, y) from equation (6) we
will use the relation ¥ (u,v) = ¢(x = bu,y = bv)

/00 /°° ¢*(x = bu,y =bv)p(x = bu,y = bv) dudv =1 (8)

/_ / ¢ (x,y)p(x,y) = b* 9)

So then ¢(x, y) just picks up a factor of % from the substitution. Now to
solve the problem without the need of assuming we may separate x and y we
will use the algebra of operators. In the one dimensional harmonic oscillator
we found that we could let a,, = % [(’% + u] and simplify the problem so
we will use this same operator, however since we are now working in two
dimensions we need another operator a, which operates on the v component.
The expression for a, follows directly from a, since a, only pertains to the
u variable and since u and v are orthogonal and don’t vary with time we can
separate the the operates into a, and a,. So we have

1|0

a, = @ [a +M] (10)
1 |0

avzﬁ E-FV (11)

Now we will need to find a' to do so we will need to show that {y|ay) =
(a’ y|y). This is equivalent to saying

/Oo/w)(*(u,v)aw(u,v) dudv (12)
B /W/m(“%(uw»w(u,v) dudy (13)
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So using the constraint that ¢ (u,v) — 0 as u, v — +oo we can find
that aZ = % [—% + v] same for a,. For now I will work with only u since

v follows directly from u due to the fact that u and v are orthogonal and i, ¥
do not vary. Now we define N, = alau.
1d> 1, 1
———+-u--= 14
2a2 " 2" T2 (14)
This can be found by acting N, on ¢ (u, v) this was done in quantum me-
chanics L.

N, =

Now then we can write N, similarly as such

Ny=—z—+-v"—= (15)

So then substituting N,,, N, into equation (6) we have

[N, + N, + 1]y (u,v) =ay(u,v) (16)
or

[Nu+ Ny (u,v) = (@ = D (u,v) 17)

And since Ny, N, are semi-positive definite, meaning
/Oo/oolﬂ*(u,v)Nu + Ny (u,v) dudy (18)
= /oo /°° v (u,v) (ala + aIa) W (u,v) dudv (19)
:/m/wf*(u,v)f(u,v)dudvzo (20)
—a-1 /00 /mw*(u,v)w(u,v) dudv > 0 (21

So we can conclude that @ — 1 > 0. So the lowest energy is proportional
to @ = 1 like in the classical case. Now an interesting implication of this
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result is that the lowest energy level of a harmonic oscillator in R" is propor-
tional to a = %n forn € Z*.

Now then since N, N, are semi positive definite and @ = 1 corresponds
to the lowest energy state let us find the solution to ¢/,—(u, v). From equation
(17) it follows then that

[Nu+ Nyl (u,v) =0 (22)

Now using the fact that N, and N, are both semi-positive definite we can
say

apo(u,v)=0 (23)
same for a,
ayo(u,v) =0 (24)
So we get
0
(— + u) Yo=0 (25)
ou
0
(— + v) Yo=0 (26)
ov
We can rewrite equation (25) as such
0 1
— |1 ~u*| = 2
¢06u(nlﬂo+2u) 0 (27)

So then for the non-trivial solution of ¥

Inyo + %uz = f(v) (28)

Now similarly for equation (26) we get

0 1
1//05 (ln Wo + Evz) =0 (29)
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However now we can substitute In ¢

f(v)— Su +;v2 =0 (30)

Again since we want the non-trivial solution of ¢ and % =0 we get

) + %vz =C (31)
Where C is some constant.
Inyo + %(uz +v}) =0 (32)
or
Wo(u,v) = C'e~2(w+7) (33)

Where C’ = ¢ We can find C’ via the requirement that iy must be normalized
to 1 over all space. Meaning

/°° /°° Yo (u, v)o(u,v) dudv =1 (34)
- c? / " / ) dudy = 1 (35)
2r ) s
=C"? / / e pdpdg =1 (36)
0 0
= CPn (e ) = CPr =1 (37)

So then C’ = #, giving us

u,v —e —3(w?+7%) 38
Yol(u,v) = N (38)
Now to get to move through energy states we will apply the a' and a

operators. This is because [N;, a;] = —a;6;; wherei, j = 1,2 here I am using
the notation that u = 1, v = 2 for simplicity. We also know [N}, aj] = ach‘)‘, |

2-16 AIP Publishing Books



these commutators were shown in quantum mechanics I, the addition of 7, j
is due to the fact that now we are in two dimensions and ¢;; comes from the
fact that u, v are orthogonal, in other words the operator passes through since
(';9_14% = %(;9_1,{ because we are assuming that ¢ (u, v) is smooth. In addition

we also have the commutator [a;, a;] = ¢;;. To list them we have

[ai,a;] = 0 (39
[Ni.a}] = aj6y; (40)
[Ni,a;] = —a;0;; (41)

These were all explicitly shown in quantum mechanics I. Now let us
denote ¥ (u, v) by ¥ (u, v)n, n, Where nj, ny denote the number of times we
acted on ¢ with a:ﬂ and aI respectively. Now let us consider a,t operating on
equation (17)

al [Ny + N1y (u, v) = al(a@ = D)y (u, v) (42)
=[N+ N, aly(u,v) = (a-1+Da yu,v) (43)

Therefore aZ effectively raises the energy level by 1, where a+1 is the eigen-
value for our Hamiltonian and aj,w is its corresponding eigenvector. Also
since the Hamiltonian is hermitian we know that eigenvectors with different
eigenvalues are orthogonal, this was also shown in quantum mechanics L.
Same applies for al' and to go to lower energy states we can use a; where
i = 1 corresponds to u and i = 2 corresponds to v.

Now let us go about figuring out ¥ (u, v),, n,- To do so let azwnl,nz =
Chy+1.mWn +1,n, and aj,z//nl,n2 = Cy,.ny+1¥n, .np+1, here we are just trying to
figure out the normalization that comes about when applying the operators.
To figure out that normalization we apply the normalization constraint

2 2 *
/ Cn1+1,n2¢n1+1,n2 dudy = / alwnl,nzazwm,nz (44)
=Crvim = | Vmmud, (45)
T Mmp+lny T wnl,ngauauwnl,m
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Here the integral on the L.H.S. vanishes since we are requiring ¢/, +1,,, to
be normalized

= / ‘/’Zl,nz (1 + aZau) Ynyn, (46)

This follows from the commutator in equation (39)
=1+m 47)

Here we are saying N (u, v)n, n, = 1y (4, v)n, n, Where nj is an eigenvalue
of Ny.

So we find that Cy, 41, = V1 + ny, from this since [N,, N,] = 0 which
follows from the fact that # and v are independent and the operators pass
through, we can say that C,,, ,,+1 = V1 + ny. Now since these operators are

. _124,2
linear we can assume ¥, p, = #Hm,nz (u,v)e~ 2 50 then
1
al

u'\/T—nll/Inl’nz = wn1+l,n2 (48)

1 0 1 1 2
V2 [_5 ¥ ”] T (e 35 =g 49
1

1 : 6 ny,n 5 .
Now to calculate this we will need to know what Wnymy (V) 1’65(14 ") is. We can
find it as such
12,00
OHp, nye 20 — OHy, n, —u e_%(uzﬂfz) (50)
ou ou

So we get equation (49) to be

[— (—aHnl’nz) e 3@ Loy (Hnl ns (U, V)e_%(uzwz))} !

———— =¥+,
u 20+ "

&1y

1

\/2(1 +np)

= n1+1,n2(ua V) (52)

0H,, n,
l— (T) +2u (Hnl,nz(u, V))]
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Giving us

(aHnlle

™ ) +2u (Hpy ny (u,v)) = V2(1 + n1)Hp 41, (1, v) (53)

Where we found Hy o = 1 and since v is orthogonal and v does not change
with time we get,

(8Hy,a,
4

) +2v (Hpy oy (u,v)) = V2(1 + n2) Hy, pys1 (1, v) (54)
This can be easily checked.

So we get that y,,, ,,, = #Hm,nz (u, v)e‘%("z”z)

Notice also that H,, ,,(u,v) = Hp,,, (v,u)) so then ¢, »,(u,v) =
Ynyn, (v,u). By deriving H,, ,, we were able to show a very cool sym-
metry.

Here are a few H,, ,,,

Hopo =1 (55
Hyo=V2u (56)
H1,1 =2uvy (57)
2
Hao = g (—1 + 2u2) (58)

Where using Hy, n, (4, v) = Hp, », (v, u)) we can find the corresponding
Hy,; terms, because of the power of this relation I will also list it

Hnl,nz (Lt, V) = an,nl (V’ l/t)) (59)

Also like in the one dimensional harmonic oscillator where we had in-
stead H, our H,, ,, 1s even or odd depending on the values of n, ny by even
or odd I mean in the corresponding direction. so a reflection about the u or
v direction causes H,, ,, to change directions depending on whether H,, ,,
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is even or odd with respect to that axis.

Notice also how the ¢ o solution is a two-dimensional Gaussian centered
at u,v = 0. Also notice that @ = n; + ny and that starting at @« = 1 we have
degeneracy. So looking at the simplest case of degeneracy @ = 1, we have
the two states ¢1 o and ¥ 1, are these two states orthogonal?

To answer this question first remember that a hermitian operator requires
the eigenvectors of different eigenvalues to be orthogonal but does not re-
quire the same for eigenvectors of the same eigenvalue, but they can be
made orthogonal. Now to consider whether these two states are orthog-
onal it is just a matter of considering H;o and Hp ;. Notice that in this
simple case HjoHp1 = Hj, so we can see from this that 1,0 and 0, 1
are not orthogonal. To form an orthogonal subspace for a given eigenvalue
we could simply make a new | (u,v) = Ci1o(u,v) + Coto,1(u,v) and
Wy (u,v) = Biyio(u, v) + Bapo,1(u, v) which are orthogonal for a given a
so in general we can form orthogonal eigenvectors for a given eigenvalue or
energy.

Now like in the classical case we will look at the problem using polar

coordinates, the benefit of this will be seeing the effect of angular momentum
on the problem.
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2 Polar Coordinates

To consider the problem in polar coordinates we will need to make the change
of basis u, v — r, 0. This can be done by parameterizing u, v as such

u=rcosd (60)
vy =rsinf (61)
from this is follows that
du = dr cos @ — rdf sin 6 (62)
dv =drsinf +rdfcosb (63)

Now let us define ¢ (u, v) = ¥ (rcos 8, rsiné) = y(r, 0) so that

2 )
/ / x (r,0)x(r,0)r drdd =1 (64)
0 0

This is actually a natural equivalence since to find the infinitesimal area
element we do dxdy = |dx X dy| = rdrd6 = |dr x d#)|.
Now we will also need dr, df so we can find these using equations (62) and
(63)

dr =ducos+dvsinf (65)
1

df = — (dvcos 0 — du sin §) (66)
r

so with these we can now find X 5;’9) and & 6(1’9) , this is done as such,

Oy 00 0 oOr o0
o (a%*%a)){ ©7)
115% sinf 0 0
_B_M_(_ - %+COSHE))( (68)
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0x(r,0)
Now for =5

(9)( 00 0 (9r 0
v (av 00 odv (9r) ©9)
ox cosé 0 0
=4 = — 0— 70
v ( r 60+Sm ar)X 70)
Now we want 82)(;}52’6) and £ £ (r 9 50 we need to consider
9y siné 0 0 sinf 0 0
—= = 0 0 71
ou? ( r 09 % Gr) ( r 09 % 8r))( D
and 5
0y cos 6 8 0\ [cosf 0 0
— = né— 0— 72
av? ( r a0 ar)( g TS0 ar)X (72)
So starting with equation (71) consider the first term in the left parentheses
—sinf 0 sinf 0 0
T (_7% C"S%r) 7
—sin@ [ cos@ 0 —sin9 9? ) d 0
= ——— —sinf— 0—— 74
r ( r 00 o2 Vo %% ar) (74)

The right term in the left parentheses in equation (71) gives us

0 sind 0 0
COSGE (— Py COSHE) (75)
sinf 9 sinf 0 9 9?
= — — 7
COS@( 2 00 r 9rdé +C0808r2) (76)

Now to do the same thing for equation (72) notice the only difference
in these equation from (71) is that —sin® — cos # and cos § — sin 8 so
taking this into consideration we get

9 cos8L +sing L2
;a6 T ggr TOSOG tsintgs

2
cos@( sinf O cosH 0 0 0 8) 77

r
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From the effect of the left operator in the left parenthesis of equation (72) as
for the right operator in the left parenthesis in equation (72) we can see use
the same relation where —sin & — cos 6 and cos § — sin 6 so we get

cosf 9 cosf 0 0 d?
— —— +sinf— 78
r2 60+ r 6r89+sm or? (78)
So then equation (71) = equation (74) + (76) and equation (72) = equation
(77) + (78). So that equation (71) + (72) gives us

=sinf |-

0%  9? 19> 18 92
+ = — +-——+— (79)

ou>  ov: r200> rar Or?
So let us now rewrite our wave equation in polar coordinates for a two-
dimensional harmonic oscillator which are already in natural units since we

went from u, vtor,0

1(0> 10 108*) 1,
——_= e+ =—+=r"= ,0 80
[ 2((’);’2 ror r2602) 2" T x(r.9) (80)

From this we want to relate it to the classical case where we had an
angular momentum term which was tied to the 6 coordinate, as such let us

define the L, operator as

0
L,=— 81
© 00 e
So then we have
1{0> 10 1 _,\ 1,
[—5 (ﬁ'l‘;g'i‘r—zlnz)'i'ir :Cl’:| X(rag) (82)

or

x(r,0) (83)

1(6> 10 1 _, ,
[‘z(mtwr—z%”):“

Now from this it is clear that [H, L,] = 0 where H is defined as

H=-- +=r (84)

1{6> 10 1%\ 1,
or2 ror r?2062
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This is because % passes through each term in our Hamiltonian. Intu-
itively this has to do with the rotational symmetry of the problem, like in the
classical case. Now since [H, L;] = 0 we can diagonalize both operators at
the same time, meaning

L.Hy=aL.x (85)

=HLx =alx (86)

So that each eigenvalue « also has an eigenvector L, y this already proves
that we must have degeneracy for certain @. Now let us diagonalize L,

L.xo =Cxa (87)

0
= %Xa(r’ 9) = f)(a(r’ 0) (88)

This is only true for periodic functions meaning y(r, 8) = y(r, 0 + 2n)
so then y must have solutions of the form
Xa(r.0) = R(r)e™” (89)
Where m must be an integer since we require the function to be periodic
meaning

eim(9+2ﬂ') — eimH (90)

so that m € Z. Also notice how equation (89) showed that y must
split into two functions of each variable, this was a result without the need
to assume that our solution must be seperable. Instead it came out of the
operators. So now we have

L.x(r,0) =imy(r,0) On
Hy(r,0) =ay(r,0) 92)

Now let us plug in our form for y into our Hamiltonian, in doing so we
can expect the ¢/? term to vanish since it is present in both sides. So we
have
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1[d 1d m* ,
——|—=+-——-—-r"+2a|R(r)=0 93
2 |dr2 2dr r2 ' a| R(r) ©3)
Where we moved over « to the other side to show that for the non-trivial
solution of R(r) the inside term must vanish and we no longer have partial

derivatives since R is a function of r alone.

Now we will do a clear change of variables and say

R(r) = P(r)e T 94)

We know this from the Cartesian coordinate case however, if we didn’t this
wouldn’t be a far assumption to make since we expect the particle to behave
like the one-dimensional oscillator for the lowest energy @ = 1. So now
substituting this in our Hamiltonian we get

aer 1 dpP m?
T s 2e-2-"p=0 5
dr2+(r )dr+(a/ ,,2) )

Here similarly the e‘é term vanishes since it is everywhere. Now we
turn to the normalization of y for more information. Remember that for y
to be normalized the r term must go to O at infinity. The 6 term is unaffected
since we are only working with r now. So we need to think about the term

/ rPX(r)e™ dr (96)
0
It must be finite so then

. 2 —r2

lim rP“(r)e”” =0 97)

Therefore P(r) must be a polynomial in r and it must be a finite polyno-
mial. Now let us consider what happens as r — 0 since we are approach 0
we are only concerned with the smallest power of r in P(r) as all other terms
will approach 0 much faster. So then let P(r) o r# then plugging this term
in our Hamiltonian expression of equation (96) gives us
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[BB-1)+B-m*|rP2+CrP 4+ .. (98)

However again we are only concerned with the lowest power of r. So that
would be the 7#~2 term. We require that the lowest term in r does not blow
up as r — 0 so this means that we require the lowest term in r to go to 0 as
r — 0. Meaning

BB-1)+p-m*=0 (99)
or
B-m?=0 (100)

So we have the constraint that 8 = +m but 8 > 0 for 7% - ccasr — 0
so then 8 = |m|. This can also be seen when looking at the normalization in
equation (96) near 0

/erPZ(r) dr (101)
0

Since near 0, e™" * 5 1 50 now inputing the lowest term in P(r) we get

€ 2(1+8)
/ P o (102)
0 2(1+p)

Which for this to be true S > —1 and since m can only be integers, we
get that 8 = |m| > 0. So now knowing this let us implement this into P(r),
we will do this as such

P(r) = r™u(r) (103)

Where u(r) is a polynomial in r which we can write as

Z " (104)

Now plugging this into our Hamiltonian in the form of equation (95) we
get
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o 5+2(a—1—|m|)u:0 (105)

Now plugging in our form for u(r) in equation (104) we get

r

d’u (2|m|+1 )du
- 2r

2lm| + 1

N
i+ [tz [(+2)(n+ 1) + (2lm] + 1) (n +2)] + 0y [2( = 1 = |m]) = 2n]] 7"
n=0

0=

(106)
Since each power of r cannot cancel out any other power of r we get that

u =0 (107)

e [2(a ~ 1 = |m]) - 2n]
a—-1-|m|)-2n
=— 108
2 T I+ )+ D+ Qml+ D(n+2)] " (108)
[(@ —1—|m]) —n] 4
[(n+2)(n+ 1)+ 2m|+ D(n+2)] "
Equation (109) implies that the even terms are proportional to one another
and the same for the odd terms. However we know that u; = 0 so then every
odd term disappears since each one is proportional to #1. Now to figure out
the upper bound of our polynomial in terms of powers of r we will require
that Uy,;p = 0. Where we chose the N+2 term since it is the most convenient.
Now since this term must be O it is equivalent to saying the numerator of
equation (109) must be 0. So we get

(109)

=Up+2 = —

unp2=0=a—-1—-|m|-N (110)

or

N=a-1-|m| (111)

equivalently we can say

a=N+1+|m| (112)
From this we get then that
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N

2.
x(r,0) = Z [t,r"] rMe™T ™0 (113)
n=0

Where u,,, is defined by

) [2(a = 1 = |m]) = 2n]
Upy2 = — [(I’Z +2)(l’l + 1) + (2|m| + 1)(71 +2)] Uy

(114)

and

up =0 (115)
We may find uq by considering the lowest energy state @ = 1 in this case we
have uge . Which for this to be the case ug = # since we require y to be

normalized.
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Now then let us make a table of our important quantum numbers: N, m,
« and see what comes out.

N m «
0 0 1
1 0 2
0 =1 2
2 0 3
1 =1 3
0 2 3
3 0 4
2 1 4
1 2 4
0 3 4

From this figure it is clear that for any a the allowed values of N are
N = 0,...,a — 1 where N increases by 1. Similarly the allowed |m| are
|m| =0, ..., — 1 in increments of 1.

So let us write y (7, 0) = yn.m (7, 0) since knowing N, m specifies & from
equation (112).

Let us now consider y* y since this is tied to the probability distribution.

* -2 i(m-
X (PO XNk (7, 0) = Py P (r)e™ e h) (116)

So when m = k we have a rotationally invariant probability distribution,
this is due to the rotational symmetry of the problem.

Since u, for n odd is 0 we may write u(r) = Z,L(]Z(J)(MZerk). Here we just
did 2k = n and now the upper limit is the floor function of N because the
odd terms in N vanish.

If we look at the x¢ (7, 0) = L3 plot in figure 1 we see that is the

N
same as we expect as Yo o(u, v).
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Fig. 1 Plot of xo0(r, 0)

3 Change of Basis

To change basis let us denote ¥, n, (4, v) = |ny, n2) and Yy m(r,0) = [N, m).
From this we can then write any wave function as

W= buymlni,na) (117)
ni,ny
and also as
W= cnmlN,m) (118)
N,m

Suppose we want to get b;, ;, this can be done by doing the following
operation

<j1’j2|\P = Z bn1,n2<j1’j2|nl’n2> = Z bnl,n26j1+j2,n1+n2 (119)

ni,nz ni,ny
= bnl,n25j1+j2,nl+n2 (120)
In addition
1o 721¥ = enm{jts jalN,m) (121)
N,m
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So that

bﬂl,n25j1+j2,n1+n2 = Z CN,m<j1a J2|N, m)
N,m

Now suppose ¥ = by, »,|n1,n2) then we get that

bum = Y N1 j2IN, m)
N,m

Since |ny, na) is normalized b, ,, = 1 so we get

1= enmir, j2IN.m)
N,m

In this case it might be more useful to calculate (N;, m;|'¥ which is

CNimj = Z Cnymy{Ni,mjlnyg, na)

np,nz

Now from this we can express ¥ = |ny, ny) as

2y = > enmINomy = 303" (N, miny, n2) [N, m)

N,m N,m ny,ny
However since ny, n; are fixed in this case we get
CNim; = (Ni,mj|ny, na)
and

1,2y = D enmINom) = 3 (N, mln, no) N, m)
N,m N,m

(122)

(123)

(124)

(125)

(126)

127)

(128)
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4 Central Force Problems

The problems we have been working on are all considered central force
problems since the force is only depended on the radial component, 7. These
problems are of importance in physics because many forces of interest are
central forces between particles, so let us now try to solve this group of
problems as general as possible in 3 dimensions.

4.1 Angular Momentum

Like in the classical case, central force problems have a rotational symme-
try with the angular momentum. Remember that in the classical case we
showed L = Const. This allowed us to simplify the problem and reduce
the dimensionality of the problem. Let us find the angular momentum now
in quantum mechanics and see if we can use this symmetry for central forces.

Classically, angular momentum is defined as

L=Fxp (129)
Or written more explicitly,
Ly =yp;—zpy (130)
Ly =zpx—xp; (131)
L;=xpy—ypx (132)

Now remember from quantum mechanics I that we defined the wave
function such that its momentum p is

—ihi‘l‘(x) = k¥ (x) (133)
ox

where 7ik 1s our momentum, but remember we are working in 3 dimen-

sions so p
Py = —ih— (134)
ox
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Py = —ih@ (135)
P, = _ind (136)
0z

Now plugging in these equations into our angular momentum equation
gives us the following

0 0
L.=—-ih|ly— —z7— 137
x t(y(9Z Zay (137)
0 0
Ly=—ih|z— - x—
y ih (Zc?x x62 (138)
0 0
L,=—-i — —y— 1
2 lh(xay yax (139)

We could have also worked these out in spherical coordinates but Carte-
sian coordinates are nice for what we are doing now. Now that we have the
angular momentum operator, let us see if these commute with each other.
This will be of importance because it will tell us the algebra of our group.
So let us find [Lx, Ly] first.

[Ly,Ly| = LiLy— Ly, L, (140)
o a\( o 9
L,L)¥=-1||y—-z20—||ze= —x—|| ¥ 141
(Lely) ¥ = [(yaz Zay)(zax ’“az) (4
g 9\(oY oY
— _%2 sz _, = - 2
(LLy) ¥ = -h [(yaZ Z@y) (z oz )] (142)

2
(LyLy) ¥ = -1 [y (@Hﬁﬁ) _ oY ,0 0% 0 alp]

JEE— + _
ox oz ox) ez " ayax oy oz
(143)
. . 9 9¥ _ 9 9¥
Were going to assume ¥ is smooth such that 3y ox = 9% dy
0 0 0 0
LyL )W = -1 |[z0— —x=—]||y— —z—|| ¥ 144
R (v o [ 7 A
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0 oY 0°Y 0 oY oY 0 oY
LyL )Y = - |zy—— —xy— — 22— — 4+ x(— + z— —
(LyLs) Yoxay Va2 T % ox oy +x(6y+z(9z0y)]
(145)
Now let us work out (LyLy — LyLy) ¥
oY oY
(LyLy — LyLy) ¥ = -1 [xE -y (146)
or we can rewrite this so that it looks more familiar as
0 0
h(—ih) |[x— —y— |V 147
w2 2] i
Notice this is just iiL, so that
[Ly, Ly] =inL, (148)

Let us shortly discuss what this means, since these two operators don’t
commute we cannot simultaneously diagonalize them. Meaning we cannot
pick a frame in which we know both the angular momentum in the x and
y directions to infinite precision, there will be some error and this error is
proportional to the angular momentum in the z direction.

Let us now work out [Ly, Lz], one may guess that it will look like a
permutation of eq. but let us check this to make sure the pattern holds.

o d\( o 8
L,L,=-1||z— —x—| [x— - y— 14
tem e by o) 0w

o a\( o o
L.L,=-1||lx— - y— | [z— —x— 1
o= g (e ge) | o

Now notice that in equation eq. and eq. all the operators will
”’pass through” meaning that when we do the commutator [ Ly, Lz] they will
cancel, apart from za‘g—y from eq. (149|and ya% from eq. (150, So then we have

o ]
[Ly,Lz] = -1 [za - ya—z] = ihL, (151)
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So this pattern does seem to hold and it makes sense since Ly, Ly, L, can
all be obtained from one another as permutations in the x, y, z coordinates.
This can be seen in the set of equations So then finally let us calculate
the commutator [Lz, Lx]

_ 2|2 00 (00
e = I

L.L, = -1 ﬁ—zi i—ya
e Yo: " “ay) Moy " Vox

Now using the same logic as before the only operators that don’t pass
through will be x - from eq. |152)and z ~ from eq. |153| giving us

(153)

L..L.=-h
[ Vel ] 82

Now let us write our results in a more compact form

0 0 .
xX— — Zax] ihL, (154)

[Ll,L ] = ihe;

L (155)

Since the commutator of these operators is another operator in our group,
we say that these operators are closed under commutation, this is called the
algebra of commutators.

Let us now work out the commutators

[Ly, L7] (156)
[L. L] (157)
[Ly, L] (158)

The reason being that we are trying to find an invariant operator in our
algebra, an operator which commutes with the rest of our angular momentum
operator and since we only have L., L,, L, in our algebra we can only
consider these operators. Then let us first work out eq. this one is
trivial since L, commutes with itself so we get
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[Le,L3| =L,L}-LiL,=L}-L}=0 (159)

Then to work out the other commutators it will be useful to remember
the property of commutators, consider [A, BC]

[A,BC] = ABC — BCA (160)

but we can add and remove an operator so that the expression still remains
unchanged as such

[A,BC] = ABC —BCA+BAC - BAC =[A,B]|C+B[A,C] (161)
so that we have the property

[A,BC] = [A,B] C + B[A,C] (162)
Using this now let us consider eq.

[Li, L3] = [Lx, Ly] Ly + Ly [ Ly, Ly] (163)
Then using eq. we can rewrite this as

[Li, L3] = iRL Ly +ihLyL. =ik [L.Ly+ LyL.] (164)
Now let us work out eq. similarly,

[L+. L2] = [Ly Lo] Lo+ L; [Ly, L] (165)
Where we use again eq. to get the expression

[L,L?] = =i [LyL, + L,L,] (166)
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Now notice that if we add Lg + L§ it commutes with L, since the terms

in eq. and eq. cancel out, we can also include L2 since we know it
commutes with L, as well to form an operator which will look similarly to
something we have seen before, L? = L)zc + Li + L%, where we have shown
then that

[Li, L?] = [La, LI+ L} + L2 (167)

[Leo L3+ L3 + L2] = [Ly, L7] + [Lx, L}] + [ Ly, L2] (168)

This follows from the linearly of the commutator,

[A,B+C] =A(B+C)—(B+C)A=AB+AC-BA-CA =[A,B]+][A,C]
(169)
Now using what we have just shown we have

[Le, L3+ L3+ L2] =0+iRh [L Ly + LyL| —ih [LyL. + L;Ly] =0 (170)
So then

[Le,L*] =0 (171)

Now notice that our choice of L, was not special meaning we could
have picked L, or L, and it would have worked out similarly because L?
is invariant under permutations, if we take x — y, y — z, z — x then L?
remains unchanged.

Let us show this by checking [L ys LZL, this is equivalent to taking x — y,
y — z,and z — x in [Lx, LZ], since L~ remains unchanged. Let us show

this result explicitly,

[Ly,L*| = [Ly, L} + L2+ L] (172)
(Lo L3+ L3+ L3] = [Ly, L] + [Ly, L2] + [Ly, L3] - (173)
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Ly, Ly + L2+ Ly] = [Ly, L]+ [Ly, L] + [Ly, L5] - (174)

[Ly, L3+ L2+ L} = 0+[Ly, L] L.+L; [Ly, L:]+[Ly, Ly] Ly+Ly [Ly, Ly]

(175)
Since L, commutes with itself and using eq. we get,
[Ly,L*| =0+if{L, L} —ih{L,, L} =0 (176)
Where here I have used the notation
{A,B} = AB+ BA (177)
and notice that
{A,B} = AB+BA ={B,A} (178)

where this was not the case for the commutator, this notation corresponds
to the anti-commutator. Now the same follows for [ L., L?] = 0 since it is just
a permutation where we take y — z, z — x, and x — y. This should make
sense because in the classical case L? is invariant under rotations since it is
the length squared of the angular momentum which is invariant regardless
of our choice of coordinates, this also seems to work out analogously in
quantum mechanics. Now to summarize we have the two following results,

[La, Lb] = ihe

a

peLe (179)
Here we have introduced a,b,c instead of i,j,k to avoid confusion from i =
V-1, so a,b,c all go from 1 to 3.

[LoiL?] =0, a=1,23 (180)

Now since L, and L? commute we can choose a basis in which both L,
and L? are both diagonal. This is because for two commuting operators A, B
suppose we diagonalize A so that we have the Ala) = ala) the fact that the
two commute results in the following
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(a| [A, B] |a") = {a|AB — BA|a") (181)

(a|AB — BA|d'y = {a|AB|a’) — (a|BA|a") (182)
(a|AB|a’y — {a|BA|a’y = ala|B|a’) — a’{a|B|a’) (183)

So that
(a|[A,B]|a’) = (a - a’){a|Bla’) =0 (184)

So either a = a’ or {(a|B|a’) = 0 meaning B is also diagonalized.

So let us say |/, m) is our basis in which L, and L? are diagonalized. So
then

Ly|l, m) = him|l, m) (185)

and
L*|l,m) = B*1%|l,m) (186)

Here the 7 have been added for proper units of angular momentum. It fol-
lows from the definition of angular momentum. Since [L] = [rp] = m% =h

Now let us pick L, to be L, but remember that this choice is not required.
Then eq. becomes

L.|l,m) = tim|l, m) (187)

Let us also quickly show that L, is hermitian, remember from the set of

equations 137}
0 0
L, =—ih (x— - y—) (188)

So let us check what the adjoint of xg—y is and the adjoint of y;—x follows
similarly since the coordinates are independent.
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o 0 ® 9 0
/ U x—pdxdydz = / x— [y @] dxdydz — x¢p—y " dxdydz (189)
o ay o Oy ay

oo

Then using the condition that our functions ¥, ¢ — 0 as x,y,z — oo in
each direction we have

/ U x—apdxdydz = / (Vo] |2 xdxdz —/ ¢— xdxdydz
—00 ay —00 —00 ay
(190)

/ t//*xi(/)a’xdydzz—/ (/)xi;[/*dxdydz (191)
oo dy o Oy

So we found that the adjoint of xaa—y is —xa‘a—y, the result will be the same

for yaa—x since the coordinates are indepedent so we get that

0 0 0 0
Ty - _ 2
L; lh( x(')y ( y(')x)) ih (x(')y y(')x) (192)
So then
LI=1L, (193)

This is also true for L, and L, since the coordinates are independent and
can also be obtained by permutations of x, y, z in L,. So then

(I,m|L2|l,m) >0 (194)

Since we can write this as

/ U} L Ly mdxdydz = / [Latbim| LaWimdxdydz >0 (195)

o

because LZ =L,.
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Then it also follows that

(L, m|L} + L3|l,m) > 0

Where 1,2, 3 correspond to x, y, z we can also write as this as
(L, m|L*|1,my — (I, m|L3|l,m) > 0
So then since L? and L3 are diagonalized in our basis we have
R0 - 1?m? > 0
or

12 > m?

SO

Im| < |l

(196)

197)

(198)

(199)

(200)

This should make sense since the total angular momentum squared is

L,=Li+il,

L_=L;-il,

going to be greater then or equal to the square of the projection of it onto the
z axis in the classical sense. Now to move between these levels of m it will
be convenient to define

(201)

(202)

Notice LI = L_since L,t = L, and LT = L,. Now let us work out the

commutator of these new operators with our existing operators.

[L3, L] = [L3, L1] +i[L3, Ly] = ihLly —i(ihLy) = AL,

(203)

(L3, L-] = = [L3, LT = = (LsLy = LyL3)" = =L{LI+ LIL] = [L3, L]

(204)
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Since L; = L3 and LI =L_

[L3, L] =—[L3,L,]" = ~hL] = —hL_ (205)
Then

(L, L] =[Ly+iLy, Ly —iLy] = [Ly,L1] —i[Ly, Lo] +i[La, L1] (206)

[Ly, L) =—i[Ly, Lo +i[Ly, L] = =2i [Ly, Ly] = =2i (ihL3) = 2hL3
207)
Since [A, B] = —[B, A] this can be quickly shown [A,B] = AB — BA =
—(BA - AB) = —[B, A] and using eq. Continuing with the other
commutators we have

[L?, L] = [L* L1 +iLy| = [L% L] +i [L* L2] =0 (208)

220 ]=-[t%L] =0 (209)

Since [A, B]" = (AB—- BA)" = BfAT - ATB" = —[A", Bf]and L] = L_
and (Lz)T =2

L? is trivially hermitian since L1, Lo, L3 are hermitian and L? = L% +
L3+13.

Now let us work out how these operators L., L_ operate on our function
|l, m), to do so consider

L? (L.|l,m)) = LyL?|l, m) (210)

Since L? and L, commute then it follows that
L2\, m) = 212 (Ly|l, m)) (211)
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So L,|l,m) is also an eigenvector of L? with eigenvalue %[ so 1 has
remained unchanged by L, let us now check

L3 (L+|l’ m>) = (L+L3 + hL+) |la m> (212)
From the commutator in eq. [203] this gives us

Lihm|l,m) + L h|l,m) = h(m + 1) (L|l, m)) (213)

So L, is an eigenvector of L3 as well but with eigenvalue 7(m + 1)
so we know it must be proportional to |/,m + 1) but we do not know its
normalization. Using the same process we find L_ is an eigenvector of L2
with eigenvalue 7%%[? so | remains unchanged this is trivial since L? doesn’t
care about L L+ because its commutator is the same. However as for L3 we
can work it out to see that

L3 (L-|l,m)) = (L-L3 — hL,) |, m) (214)

L_tim|l,m) — L_k|l,m) = fi(m — 1) (L4|l, m)) (215)

So L_ is an eigenvector of L3 with eigenvalue 7i(m — 1) so it must be
proportional to |/, m — 1). The reason these are proportional and not equal
to these states is because the constant depends on the normalization of these
states.

So we have shown that L, L_ are indeed the raising and lowering opera-
tors for our basis. So we can now raise and lower m while keeping [ fixed but
remember the constraint shown in eq. This says that there is a ceiling
so L, cannot go on forever and since it is the magnitude of [m| < |/| there is
also a floor so L_ cannot go on forever as well. So then our space is finite as
long as [ is finite. This implies that there is a state

|, Mnax) (216)

and
|l’ mmin> (217)
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Which must terminate the L., L_ corresponding to each one. So that

Li|l,mpyay) =0 (213)

and
L_|l,mpyin) =0 (219)

Let us abuse this result a bit and consider the following expression

L_L.|l,mpg,) =0 (220)

but also

L—L+|l> mmax> = (Ll - iLZ) (Ll + iLZ) |l’ mmax> (221)

(L1 —iLa) (L1 +iLo) |l mypay) = (L% + L%)H' (LiLy = LoLy) |l mpax) =0
(222)
Then using we can write this as

LoLoll i) = (L3 + L3) 41 GRL) [Lmpa) =0 (223)

LoLillomnae) = (L2 = L3) = (BLa) omnay =0 (224)

max

L_Li|l,myayx) = (h212 - (m2 n*+ mmaxhz)) |, mpax) =0 (225)
So then we get the result

2=m2 +myu (226)

max

Let us now consider the other end

L+L—|l, mmin> =0 (227)
LoLo\lmpin) = (L3 + L3) =i GAL3) |y mpia) =0 (228)
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LLollmpin) = (L* = L2) + (L) L mypi) =0 (229)

min

LoLollmpin) = (P12 = (2, = i) ) 1 i) =0 (230)
So then we get the result

> =m%. — mpm (231)

min
Using these two results we can equate eq{226| and eq{231| to get the
expression

2 2
My ax T Miax = My, — Mpin (232)

Which gives us the solutions
Mmax = Mpin — 1, =Mypin (233)

but by choice my,qx > Myin SO My, — 1 cannot be our solution, this
leaves us with

Mmax = —Mmin (234)
So then
Mupax — Mmax € {Z = 0} (235)
or using
2myax € {Z > 0} (236)

Let 2j € {Z > 0} then we have

2Mpay = 2] (237)

or
. .. _n
mmaxEJ;]:E’ne{ZZO} (238)
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So we have then

P=j(+1) (239)

Since 1% = Myay (Mpmax+1), then using this result it would be more useful
to label our basis with j instead of 1 so that we now have,

|7, m) (240)
L*|j,my=12j(j +1)|j, m) (242)

Where L3 and L? are hermitian operators which we showed in quantum
mechanics I have real eigenvalues and orthogonal eigenvectors meaning

(1, mulj2, ma) =85, j,0mm, (243)

Where here we have set the normalization such that (j, m|j,m) = 1.

4.2 Experiment

Let us now discuss what the experimentalists would measure. Remember
that in the classical case for central force problems we had ‘2—1; = 0 so we

could pick L =L3L > 0. Let us now compare this to our results in wave
mechanics, in wave mechanics we say we can measure L? with eigenvalue
72j(j+1) and L, with eigenvalue #im and remember that L. was a choice and
we could have picked any other direction L, Ly, L,. We just showed earlier
that m,,,, = j so from this we can only pick L, to be 7j as a maximum so
we cannot pick it so that L is in the direction L, since this would require L%
to have the corresponding eigenvalue 7% (j + 1) but we can only maximize
L such that L% has eigenvalue 72 ;% which implies L% # L? for any choice
of m. This is already a deviation from our expectations from classical
mechanics, it serves as a cautious tale as to taking analogies as truth, it is
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always necessary to confirm the intuition with the math. Now the question

“why can we not pick L to be completely along L.?” naturally arises. To
answer this con51der the trivial problem from vector calculus L x L but now
consider L = L; i1, i=1,2,3 where we are using Einstein notation to sum over
the i and L; are the operators in wave mechanics. Then

Z X Z = (L2L3 - L3L2) i + (L3L1 - L1L3) 2 + (L2L3 - L3L2) 3 (244)

Classically these are not operators so we get the trivial result LxL=0
but in wave mechanics we get the result
LxL=ihL (245)

Here we using again[I79] To further illustrate this effect, consider a hydrogen
gas, at low temperatures lets say an experimentalist can measure the angular
momentum in certain state, what they measure is

/ dxdydzy™ Oy = Measurement of O (246)

(o)

Where O is an operator. So suppose they measure the angular momentum
and of a state |s) which we write as,

(sILIs) = (s|Ly|$)2 + (s|Ly|5)$ + (s|Lcs)2 (247)

Let us call this measurement (lels) = I. Notice now that I x [ = 0
because (s|L;|s) are numbers now. Now suppose we want to take the
magnitude of this measurement squared,

[-T= ((s|Lels))? + ((sILy1s))” + ((s|L.]s))> (248)

‘We could have also have done

(s|LiL1) +(s|LaLa) + (s|L3L3) (249)

Are these two expressions the same? The answer is no, this is because
of the difference in the expressions, consider
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((s|Ly]s))? (250)

and

(s|LiL1) (251)

The first is the measurement of L, which is then being squared, whereas
the second is the measurement of L2 these need not be the same in wave
mechanics. For example in quantum mechanics I we have the wave function

2

1 s
=—e'7 252
¥ (x) N (252)

It is easily shown that the measurement of x,

[ W (O (x) = 0 (253)

since this is an odd function, whereas the measurement of x2

/ Ut (x) £ 0 (254)

This difference (le%ls) — ({(s|Ly|s))? is called the variance of our mea-
surement and it is of large importance in wave mechanics, this here shows
that any measurement will have some variance, a profound result. This is
because our wave functions are probability distributions and as such have
moments which are an important quantity in statistics, useful for calculating
the mean, variance, and other properties of our distribution. Now let us
again consider

(Gm|L?|jm) =12j(j + 1) (255)

and
I ={jm|L|jm) = hmZ (256)

Since we have picked our basis to be with respect to L?, L., now the variance
of this quantity comes out to be
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- 2
V= GmlL2jm) = (GmlLlim)) =@ [jG+ 1) -m?] @57
So our variance is at a minimum when m = m,,, = j Orm = my;,, = —j.
Ve [jG+1)-j* =) (258)

4.3 Normalization’s

Recall that we said L, and L_ raised and lowered our eigenvalue m respec-
tively while keeping j fixed, eq. and eq. Where we showed they
were eigenvectors of L2, L3 proportional to the |jm + 1) and jm — 1) states
respectively. Let us now find that proportionality constant

Li|jm) = Nyjm|jm + 1) (259)

L_|jm) = N_ju|jm = 1) (260)

Where N, j,,, N_j,, are our normalization constants. Also notice that we
can pick |jm) — e'%m|jm) since it doesn’t change the orthogonality of the
eigenfunctions. So we may pick Ny ;,, N_;,, to be real and positive. Now
consider again

Liljm) = Nojul jm +1) (261)

We can transpose this equation to get
(jm|L= = Nojm(jm +1] (262)
Since Li = L_ Now let us combine eq. and eq to get

(Jm|L-Li|jm) = Nijm(jm + 1Ny jm|jm + 1) (263)

The R.H.S. is just ijm since (jm + 1|jm +1) = 6, jOm+1,m+1 = 1. So
expanding the L.H.S. we get

(Jm|L_Ly|jm) = (jm| (L1 —iLy) (L1 +iLy) |jm) (264)
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(jml (Ly =iLa) (L +iLy) |jm) = Gjm] (L} + L3 = L) |jm)  (265)

here we have used eq. again to represent [L1, L;] in terms of L3. This
can also be written as

Gml (L2 = L3 = BLs) |jm) = hj(j + 1) = Bm® = B2mqjm) jm) - (266)

but (jm|jm) = 1 so we have the normalization

N =T [j(j+1) = m(m+1)] (267)
or
Nijm =hj(j+1) —m(m+ 1) (268)

For N_j,, we can find it the same way and from earlier we showed
(jm|L+L_|jm), starting on eq So we have

N_jm =1j(j+1) =m(m = 1) (269)

It is a good check also to verify our earlier result that

Lijjy=0 (270)

and
L |jjy=0 (271)

Let is verify the first equation

Loljjy =G +1) = j( + Djjy =0 (272)
This is trivially true so it justifies our earlier statements. Now to check
the second equation

Lolj=)=tjG+ D+ (= = Dlj=jy=hy2+j = 2= jli=j) =0
(273)
Again justifying our earlier statements so the algebra checks out.
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4.4 State Operations

We know how L2, L3, L,, L_ operate on our state |jm) but what about L,
and L,. These can be found from our other operators. We can write L; as
such

_ L, +L_ _ Li+il,+ L —ily

L 274
1 > > (274)
and
L.—-L_ Li+il,-Li+iL
L=—t— = _ 5 1Ly il 1Ly 275)
2i 2i
Now then let us apply L1, L, on our state gives us
. 1 : :
Lilj,m) = 5 [Leljm) + L-|jm)] (276)

Lalj.my = g [NGG+ D) = mGm+ Dljm o+ 1)+ G + 1) = mlm — Dl jm = 1)
277)
and

1
Lolj.m) = 5 [Lyljm) = L-|jm)] (278)

Lalj,m) = —ih% Vi G+ D =mm+ Dljm+1) =i G+ 1) = mm = Dljm = 1)
(279)
Now let us determine the “shape” of our operators, since j, m are finite
for finite j we can represent these operators as a matrix, where we can
determine the elements of the matrix by applying the operators on these
states, first let is consider L3

(Jimi|L3|joma) = ima6, j,0m,m, (280)

Now what about L2
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(Grmi|L2jama) = 25 (j + 16, jyOmmy = B j (G + DI (281)

This is because we picked our basis |j, m) such that L3, L? are diagonal.
Which we see here from the delta functions to clearly be the case. Now what
about Ly, L,. Let us first consider L

(Jimi|Ly|jama) = 5\/]2(]2 +1) —ma(ma + 1)(jimy|jama + 1)  (282)

+2V 02+ 1) = ma(my = 1)¢jimi | joma = 1) (283)

Where
<j1m1|j2m2 + 1> = 6_/1_j261n2m2+1 (284)
Gumiljamz = 1) = 8, S mmy-1 (285)

So we will have a matrix which is off-diagonal and the elements are one
row above and below the diagonal. L; will be similar since we have

ih
(jimi|La|jama) = —3\/12(12 +1) —my(ma + 1)(jim|jamz + 1) (286)

in — ) )
+ Va2 + 1) = ma(mz = )¢ jimi| jomz = 1) (287)
Where again
(Jimi|joma +1) = 5]'1j25m2m2+1 (288)
(Jimiljama = 1) =65, j,0mymr—1 (289)

so L, L, will have the same structure however, L, will have different
constants. To illustrate this let us pick j = 1 and see what comes out from
Ly, Ly, L, L?
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Table 1 L

H ml/m2 -1 0 1H

1 0 ¥
0o ¥r o0
10 ¥

Table 2 L,

H ml/m2 -1 0 1 H

1 0  i¥rn 0
0 —-i¥n 0 iLn
0

—iV2
1 0 =2

Table 3 L;

H ml/m2 -1 0
-1 —h 0
0
0

0 0
1 0

St O Off =

Table 4 L,

H ml/m2 —-h 0

-1 0 0
0 V2i 0
1 0 V2n

SO || ©

\®)
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Table S L_

H ml/m2 -1 O 1 H
1 0 V2r 0
0 0 0 +2n
1 0 0 0
Table 6 L?

1 0 0 2
Table 7 L3
H ml/m2 -1 0 1 H
1 1
-1 sh 0 3h
0 0 7 O
1 1
1 sh 0 3h
Table 8 L3
H ml/m2 -1 0 1 H
1 1
-1 sh 0 —3h
0 0 & O
1 1
1 —sh 0 3h
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Table 9 L3

H ml/m2 -1 0 1 H
-1 ” 0 0
0 0 0 O
1 0 0 #
Table10L1L2
H ml/m2 -1 0 1 H
-1 -r*E 0w
0 0 0 O
1 -r?s 0

L? can also be calculated explicitly using the other matrices, L7, L3, L3
and it will result in the same quantity. This is clearly seen from adding tables
+ q =@ Notice L% is diagonal but L2, L% are not, this is about although

L2, L,] =0sothat [L%, L2] =0, [L3, Ls] # O for a # 3 so that L2, L3 are
not diagonal since we picked L3, L? to be diagonal.

Let us now also check eq. [179] using the matrices LiLy, LoL; we get
[12] which is ifL3 as seen in table [I3] L., L_ can also be calculated almost
trivially using their equations, eq. and eq. the result of which is

Table 11 L-rL

H ml/m2 -1 0 1 H

-1 o0

0 0 0 0
21 21

1 -n*5 0 -n*
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Table 12 ifil3

H ml/m2 -1 0 1H

-1 —in® 0 0
0 0 0 O
1 0 0 K

shown in table respectively. So our commutator checks out as well.
[L1, L3] and [L,, L3] follow since they are just permutations.
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This model is called the "Rotor Model” since expirements of this model
are sensitive only to j and not m. This makes sense since j corresponds to
the invariant property whereas m depends on our choice of basis. Suppose
we have an eigenvector |E) which depends on time like e~ so that at time
t = 0 we have the state C1|E) + C»|E) but over time our states devolve into
Cle‘i%t|E) + Cze‘i%tlE). This energy E depends only on j not on m so

that we for our choice of basis we have C|jim) + C|jomy) at t= 0 and
LE(j1) -E(jp) . . .
Cre 71| jimy) + Coe™ | jym,) at time t. where this state is not the

same as our original state unless j; = j,.

Also the eigenvalues of L; can be found explicitly by considering |11 —
Li| = 0 which gives us the expression A [/12 - h—; - %2] so that A = -7, 0, 7.
The same eigenvalues as L3 this is because we could have chosen a basis
in which L; was diagonal instead and the other two become what is called

block diagonal.

4.5 Change of basis

Suppose we want to change our basis | jm) to another basis which still obeys
the same commutator algebra of eq. and eq. To change basis we
must introduce an operator U which only rotates the basis, this is because
any dilation will disrupt the algebra. So let U be defined such that UTU = I
these transformations are called unitary transformations. So we want to take
L, — L, which we can do as such

L,— L, =U'LU (290)

Let us now see if our commutator from eq still functions the same,

[L,.L,| =L,L,~L,L, =U"L,UU'LyU-U'LyUU'L,U = U" [L4, Lp] U
(291)
Here we used the properties of unitary transformations where UUT = I

ULy Lp) U = ifie,, UL U" = ifie L. (292)
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so then

|L.. L] =ine,, L. (293)

and our commutator remains unchanged. Also by definition we said
L, = U'L,U so we can rewrite this to get UL,, = UL, which can is a useful
property of unitary transformations. So we can pick a unitary transformation
U and our algebra doesn’t change. This will be helpful for understanding
[Lz, La] = 0, where we made the choice of L, = L,.

Let us pick a basis in which L; is diagonalized to do so we need to
consider the expression L;C = AX Where X = (a,b, c)T. However for

simplicity let us omit for now the constant % This gives us the following
equations

b=aAd (294)

a+c=b=>bA (295)

b=cA (296)

Then by multiplying the second equation by A and substituting the first
and third equation we get

b+b=bi* (297)

assuming 4 # 0 so we will need to check if this is a solution as well.
Notice then from this that A = —V2, 0, V2. Now for the A = 0 case we simply
have

1
V2

Where the constant in front was introduced to normalize the solution Xj.
Also we have picked b = 1. For 1 = V2 we have

Xo=—(1,0,-1)T (298)
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Xp= 505" T)T (299)
and for 1 = —V2 we have

1 1 1 7

X \/5( A 1, \5) (300)
Where we also picked b = 1. Now our unitary transformation U is our
solutions (X_,, Xo, X\5). This is clear since LU = UL’ from what we
found earlier. So we have now diagonalized L to be L| = L3 once we put
back in the constant % This might give the hint that the transformation
permuted the different angular momenta Ly, L,, L3 but a quick calculation

shows otherwise. Consider U 1 LoU = L’2.

11 _1 . 0 R 1
5 12 2 % 0O ¢ O 12 2 %
LZZUTLZU:@ ;) 0 vl 0 i ;) 0 ;) (301)
1 1 0O — 0of|]-L _L 1
2 v 2 2 TV 2
A 0 - 0
Ly=—1i 0 i (302)
V210 =i 0

Here it is clear that L), is not like any of the previous matrices L1, L, L3.
however it does look similar to L, as seen in table So instead let us
consider a different transformation so that L, — L and L3 — L;. To do so
let us go back to set of egs. 294 however, instead of picking b = 1 let us say
b = €'% So that we are only introducing a phase. This tells us that U is

e g g
2 2
ei(‘)] \/E ei(‘)]
U= i 0 .3 (303)
ei91 ei@] ei91
2 T\ 2

Quantum Mechanics 2-59



4.6 Back to Central Force Problems

To tackle the central force problem in 3-dimensions it will be useful to work
out the problem in spherical coordinates when we want to so let us first
define the spherical coordinates. First Let us form a plane with the Z, # unit
vectors. Where 7 is the unit vector pointing towards our point in space. Let
6 be the angle between these two unit vectors such that 0 < 6 < x. Then
the projection of 7 onto the plane perpendicular to Z has magnitude rsind
and we say that this vector lies on a plane perpendicular to the z axis which
we will say is the x,y plane. Where ¢ is the angle from X to rsinf the
projection of the vector 7 onto the x, y plane. Then we have the components
x =rsinfcos@, y = rsinfsing, and z = rcosf. Where in our new frame we
have the unit vectors 7, é, gﬁ which form a right-handed coordinate system
in R

g ‘1 in terms of these new coordinates r, 6, ¢. To

Now let us define (%’ 3y 9z
do so first notice that this same formulation can be realized as two rotations
in space around the z-axis and the p where we say p = 7 in X,y plane. Then

we can write the relation between the two systems as such

7 sinfcos¢ sinfsing cosO | |x
0| = cosOsing cosOsing —sing| |y (304)
) —sinf cos¢ 0 Z

Which we can then use to find

dx sinfcos¢ rcosOcos¢p —rsinfsing| |dr
dy| = | sinfsing rcosOsing rsinfcos¢ | [dO (305)
dz cos6 —rsinf 0 d¢

But we want dr, df, d¢ in terms of x, y, z so let us invert the transfor-
mation matrix and to do so we must also find the determinant of the matrix
however, this is simple since it is equivalent to the volume of the column vec-
tors which forms a parallelepiped of infinitesimal volume which is 72 sin 6.
So then we have
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dr 1 sinfcos¢  sinfsing  cosO | |dx
do| = 5 rcosOcos¢ rcosOsing —rsind| |dy (306)
d¢ resinf —rsinfsing rsinfcosed 0 dz

Now we can do,

0 ord 000 0 0¢

%‘%&J“axafax 0x (307)
d 0rd 86’ 0 8 0
! ¢ (308)
dy  dydy 0y 0y dy dy
0 o0rd 09090 (9 8¢
97 920z 8707 oz 0% (309)
Which we will use to get Ly, Lo, L3 as such
0 0
Li=-ih|ly— —z— 310
1= ( e 6y) (310)

o 1 0 o 1 0 cosf 0
Ly = —ih|rsinfsing (cos0— — —sinf— | —rcos8 | sinfsing— + —cosOsinf— + —

or r 00 or r 00  rsinf 00
(311)
Which after simplification gives us
L T 0 9 ¢pcotd 9 (312)
= —ih | —sinf— — cospcotd —
! 90 Y,
or
Ly =ih|sind 9 + cos¢cotl 9 (313)
= ih | sinf— + cos¢pcotld—
! 90 9¢

Notice how L; does not depend on r. L; can be found similarly, however
since L, must be orthogonal to L we can simply obtain L, by rotating our
solution for L1 by in the ¢ direction which corresponds to our coordinates

moving in 2’ in the ¢ direction, which we found L3 to be
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0 0
L, =ih —cosr/)% + sin¢cot9w (314)
L3 can be found explicitly and from noticing that it must be orthogonal
to Ly, Ly so it must all be in the ¢ direction which makes sense since it
corresponds to a rotation about z.

. 0
Lz = —Zh% (315)

Now let us emphasis the fact that L, L,, L3 do not depend on r by stating
[f(r)%, L,] = 0. Now what about L., L_, let us first focus on L,

Ly=Li+ily=1ih [(singb —icose) % + (sing +icose) cot@i} (316)

¢
Or
s 0 - 0
L,=T [e"ﬁ% + iel%oze%] (317)
Now we use the fact that L_ = LI to find L_
O . p.
L_=h|e?— —iecotg— (318)
00 0¢

Now since L, only depends on 6, ¢ we can say |jm) =Y;,,(6, ¢) where
R(r) is an integration constant since it passes through L,, so we are able to
separate r from 6, ¢. Now let us apply L3 on our wave function Y;,,(6, ¢)

9
—zh%yjm(e, ¢) = hm¥ 1y (6. §) (319)

Solutions to this are of the form of sin, cos, €¢'?, so we have the solution

Yim(6.¢) = P (0)e™ (320)
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Where P;.” (0) is an integration constant from our solution. So the variables
6, ¢ separated as well. Now notice Y;,,(6,¢) = Y;,,(6, ¢ + 2x) from our
formulation of spherical coordinates. So then we require that

Yin(0,9) = P (0)e™? = P ()™ (321)

Meaning m must be an integer, however if m is an integer then by
definition of j, half integers are not allowed so that our solutions are only
those which satisfy j € Z. Letus now apply L., L_ to our solutionY;,,, (6, ¢),

using the equations we found, eq. and eq.

LY (0, ) = j(j + 1) —m(m + )P7(0)' ™V (322)

ig 0 . 4
L+ij(9’ ¢) =h le ¢% +1e ¢C0l9%:| ij(e’ ¢) (323)

Where the ¢ terms cancel out giving us the recursion relation

Vi +1) —m(m+ 1) P+ (0) = [%P}’?(Q) - mcot@PT(é’)] (324)

Similarly for L_ we get

Vi +1) —m(m - 1P (0) = [%P;ﬂ(e) + mcotap;f’(e)] (325)

Let us now solve again L.|jj) = 0 to find an expression for Pj:

d ,j : i (@) —
%Pj(e) - ]COIQP].(H) =0 (326)

This gives us the solution P =N i [sin6]’
Now let us also solve L_|j — j) =0

d - . -J _
i (6) — jcotdP;’(6) = 0 (327)

Notice we get the same differential equation so we have the same solution
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Pj_.j (6) = Nj [sin6]’ = ij(e) (328)

Where N; is our normalization constant which we can find using

0 0 0 0
/ / $inddgdoy;, Y, = / / sinfddo [NJZ- [sinH]zj] —1 (329
b/g 2 b/g 2r

To solve this us rewrite this as follows

T .
/ 27 sinfdf [Nf. |- cos® 6+ 1]1] =1 (330)
0
Now let u = cos 8 so du = — sin § giving us
-1 .
—/ 2rdu [N [+ 1] | =1 (331)
1
Now we can expand (u” + 1)? as such
-1 Joo
~N? / 2rdu Z Cl(-ut)k =1 (332)
1 k=0
Where CI{ = #lk), Then after integrating we have
J k
2 ;DN
N2n [22Ck2k+1 =1 (333)
k=0
Giving us the normalization
1/2
N, = [ L1 (334)
Ul gy ey
d Zi:o Cljc 2k+1

Now to go between states, since the operators L,, L_ are linear we can
say

P} = H; ()N, [[sin6]]/ (335)
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Where H| ,,(6) is some linear function in 6, for simplicity let H, ,, =
H; ,,(6). Now using this solution in eq. we have

H , +Hjycotf[j—m] = Hjma\j(j+1) —m(m+1) (336)

Or using the lowering operator one can show

H', +Hjycotf[j+m] = HimaNj(j+1) —m(m—1) (337)
Where Hj,j = HJ"_J' = 1

Now let us consider the total energy operator H in spherical coordinates

TR 0\’ L0
2mr?  2mr? |\ Or or
Since L,, L? only depend on 6, ¢ they will pass through the commutator
with H meaning [L,, H] = 0 and [L?, H] = 0. So we have 3 commuting

operators L, L?, H. This is because V(r) is only a function of r. Let us then
define a new basis |E, j, m) where

+V(r) (338)

H|E,j,m) = E|E, j, m) (339)
Li|E, j,m) = hm|E, j,m) (340)
L%|E, j,m) =1*j(j + DI|E, j, m) (341)

We can write |E, j,m) = Rg ;(r)Y;,,(0, ¢) since we mentioned earlier
R(r) comes out as integration constant since L,, L> only depend on ¢, 6.
Now pluggingin |E, j,m) = Rg ;(r)Y; n(6,¢)into H|E, j,m) = E|E, j,m)
gives us the following expression

LG d
2mr?

2
d
(ra) +r——j(j+1)

+V(r)-E|=0 (342

dr
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Where we have moved E over to the left side and canceled out the ¢, 8
components. Now to solve this let us introduce Rg;(r) = UE-’ ©) this will

help reduce the problem. Now plugging in Rg;(r) = E’( )

above gives us the following expression

into the equation

dZU 2m 1 +1)
E — -
0= T V) 2m 2

So in total we have the solution

U (343)

EJ()

|E, j,m)y = ———P'(6)e™’ (344)

Now let us turn to our normahzatlon

) 2 n UZ
/ / / d¢d9sin9r2r—2P2 (345)
0 0 0

) 2 )
The factor we need to worry about is the Lr/—z term, to make sure it does
not blow up at r — 0, c0. So let U = r? for small r so that

/e 2pd 22p+1 |e (346)
rfdr =
0 2p +1 0

is finite, meaning 2p +1 > O or p > —% p= —% also blows up because it
goes like /nr which blows up at 0. Let us now turn back to eq. and plug
in r?

p(p—DrP 2+ 2h—';l(E VNP —j(j+D)rP 2 =0 (347)

This means that V(r)r? < r?72 so V(r) < r% because we are saying
r? — 0. Now we must also require that

P2 (p(p-1)-j(j+1)=0 (348)

So either p = —j or p = j + 1 but we said earlier p > —% so then we
have p = j + 1, p = —j being the solution only when j = 0. Now if j =0
then m = 0 and P8 = 0 so our wave function
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Ug;j 1

So that our kinetic energy
72 1
-——[V.-V]- (350)
2m r
becomes
72 1
R V-V(—)] (351)
2m r

This looks like the potential in electromagnetism, which we found the
Laplacian of % tobe V-V (%) = 4763 (r — rg). So to remove this case let us
assume the potential has no delta function term.

So now we can further restrict R(r) using the fact that U(r) — r? = r/*!
giving us

R(r) = r'Wg (r) (352)

Where Ug j(r) = r/*'Wg ;(r). Now let us plug in this solution to eq.
343l notice this will give us a differential equation in terms of W ; removing
the /*! term in U(r). For simplicity let W = Wg ;(r)

w4 2 [E-V(r)] W+ @W’ =0 (353)

To further solve the problem we will need to introduce a potential so we
will leave the mathematical foundation here and work on physics problems
next.

4.7 The Hydrogen Atom

Let us now consider the problem of an electron orbiting a nucleus of charge
+ze, with a potential of the form

1 2
. (354)

V(r)=-
(r) 4reg 1
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We know that the mass of the electron is much smaller then the mass of
the nucleus so we can say that the mass of the system m ~ m,. Where m,
is the mass of the electron. Now let us model this problem using quantum
mechanics and the mathematics we have worked out. Since V = V(r) we
know we can diagonalize the Hamiltonian of this system simultaneously
with L? and Liz, where we pick L; = L3 for convenience since we have
already worked out the mathematics for this case and we can achieve the
others from a unitary transformation. So we will denote the wave functions
as |E, j, m). There is nothing left for us to work out in terms of the angular
components since we have worked this out already so let us consider the
radial component which we had shown in the last section is reduced to the
differential equation shown in eq. Where Rg j = r/Wg ;(r). Now then
let us introduce our potential and also look for natural units of the problem,
to do so we will say » = ub. Also now let us introduce a new function y (u)
such that y = yg j(u) = Wg ;j(r = ub). We are allowed to do this since all
this will change is a factor in the normalization of the functions proportional
to b. This gives us the differential equation

1, 20+ , 2m, ze? 1
—" + + E + —)x =0 355
p2 X u X7 ( 4re bu))( (355)
This equation suggests that % = 415; 2;1';" or
ey h?
= 356
ze? 2m, (356)

Let us now check the units of b, since we said r = bu we should expect
b to have units of length [m].

(b] = Arey H? _ [eol J2s?
- ze?2 2m,t C? kg

To find the units of € recall the potential equation from eq. and that
[V] = J From this we can work out

(357)

(358)
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From this we can solve for [€y] and we get

C2
[eo] = T (359)

Plugging this back into eq we get

Js?

[b] = kg

=m (360)

Since [J] =
to put our energy E in terms of these units as well. To do so we will multiply
eq. by b?. This gives us

27 +1 2 . 2
(] )X m (EZE
4 TTEY

So it looks natural to choose the natural units of energy as

—)X 0 (361)

K2

" 2mb?
Where the negative sign is to make the problem look nicer in future steps.
Let us make sure again that the we have the correct units of energy.

(—a) (362)

J%s?

[E] = kgm?

=J (363)

So the units are correct. Now substituting these values in eq. we
have

2(j +1 I
X+ U: )/\/+(—a/+;))(:0 (364)

Now let us look at the limiting case where u — oco. This gives us the
equations

¥ —ax=0 (365)

For u near infinity. Solutions to this equation are of the form
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X = etVeu (366)

However recall that we require y — 0 as u — 0. So we do not have the
positive solution meaning

x = e Vo (367)

Also from this we get the condition that @ > 0. Now to clean up the
results let

W ’
= 2mbz(—a ) (368)
This will give us
x(u = c0) = e (369)

This will also effect eq. giving us

2(j+1 1
D e b 2o (370)
u u
So Let yg,j(u) = Rg j(u)e™ . Now eq implies that R(u) for large
n must be smaller then e** since we require this term to dominate at large u.
Meaning

lim R(u)e ™™ = e ™ (371)

We will suppose that R(u) is infinitely differentiable so that we may
express it as a power series of the form

P
R(u) = Z Cru (372)
k=0
Where P is the upper limit since eq. [372]requires R (u) to be finite. This
k
can be shown by Taylor expanding ™ =1 —ax + ... = Y;0, (_Z?) . So

R(u) is a finite polynomial of order P. Let us now introduce the solution
XE,j(u) = Rg j(u)e™™" into eq. Again we will let R = Rg ;(u).
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uR”+2((j+1)—au)R’+%[1—2a(j+1)]R:() (373)

And let us introduce eq. for R. To do this it will be useful to write
the derivatives of R

P P
R (u) = Z kCru*! = Z(k + 1) Craruf (374)
k=1 k=0

P P
R’ (u) = Z k(k - 1)Crut2 = Z(k + DkCraut™ (375)
k=2 k=0

Here we have rewritten these for convenience but all forms are equivalent.
Now substituting these into eq. we get

P
ch+1 (k(k+ D) +2(G+D(k+1)Cr (1 =2a(k+j+ 1) u* =0
= (376)

Here I have shifted the index of the final term so that all terms are of kth
order. Now since this equation must be true for all u we require
2a(k+j+1)—1

Crrt = k+1) (k+2(j + 1)) (377

with Cp = 1. Now recall that we require Rg ;(u) to be finite meaning it
must terminate at some integer P. This means

20(P+j+1) -1

Cp.1 =0= 378
it (k+1) (k+2(j +1))) G78)
Or
20(P+j+1)-1=0 (379)
Giving us the condition
1
(380)

a:2(P+j+1)
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So we have 3 degrees of freedom. Traditionally we letn = (P + j + 1)
so that

1
" 2n

Giving us the quantum numbers n, j, m corresponding to our 3 degrees
of freedom. As such we will stick with this notation. So we have solved the
problem for the hydrogen atom where our solution was

a

(381)

|I’l, j’ m> = wn,j,m (I", 9’ ¢) = Rn,](r)Y],In(e’ ¢) (382)

Also using the commutators [H, L,] =0, [H,L*] =0, [L?>,L,] = 0 we
can show that as follows

(n1, j1,mi|[H, L ]|n2, jo,m2) = (ny, j1,m[(Ey, — Ep,)L;|n2, j2, m2)
(383)
So we have
<n1,j1,m1 |(El’l1 - Enz)LZ|n2’ j2’ m2> o 6n1,n2 (384)

and

(n1, j1.mil[H, L]|n2, j2,m2) = (ny, j1,mi|a(my — ma)H|na, jo, m2)
(385)
SO
<n1’j19 mllh(ml - mZ)Hana j2’ m2> o 5n1,n25m1,m2 (386)

Similarly
(n1, j1,mi|[H, L*]|na, jo, ma) = (ny, j1, mi|W*(j1 (j1+1) = ja (ja+1)) H|na, jo, m2)

(387)
SO

(n1, j1,mi B2 (j1(jy + 1) = ja(ja + D)Hng, jo,ma) o< 85,5, (388)
Giving us

(n1, j1,my|ny, jo,my) = 5n1,n25j1,j25m1,m2 (389)
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Now for our solutions since we want to work in natural units let R, ; =
r/Wg,j(r) = Qy;(u) so that

P
Q, ;(u) = w y(u) = u e Z Cru (390)
k=0

Using this let Yy, j (7, 0, ¢) = ¥y jm(u, 6, ¢) this is fine since it will just
change the normalization by a factor of b. So we now have

lZn,j,m (Lt, 9’ ¢) = Qn,j(u)Yj,m(H, ¢) (391)
Let us quickly find this factor so we may quickly transform between ¢

and i, i will drop the quantum numbers for brevity. Suppose ¥ is normalized
meaning

/ ygu’ sin 0dudde = 1 (392)
Then using the relation » = bu we have dr = bdu Using this we can
transform the integral from u to r.
| B
7 YryYresin@drdfde = 1 (393)

and since Yy, j (7, 0, ®) = ¥y j.m(u, 0, $) we have

1 o
3 / W yr? sin0drdode = 1 (394)

Meaning that if we want to normalize with respect to r instead we just
need to include a factor N, which I denote the normalization of the transition
fromutor

1

= w3 (395)
So we will work with ¢ which is normalized with respect to u, I will

denote this to be in u-space and to go to r-space where ¢ is normalized with
respect to r instead we just use the relation
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Y= P (396)

Now let us work out the normalization of Q, since we were able to
separate r, 6, ¢ we had the choice to normalize them how we wanted, we
have normalized 6, ¢ already and found N; for those in eq.?? so we only
need to worry about the # component now,

1= N () / u?duQ? = / duv*u® e™n (397)
0 0

Z Cku

Here I have used a = ﬁ which we found earlier and I denoted the
normalization as N?(u),, j Just to emphasis that it is the normalization with
respect to u. So now we have

1= N?(u)n /0 dun® TV e™n (398)

P
> cut
k=0

Now it will be useful to use the gamma function which is defined as such

[(s) = / ) e~ ds (399)
0

From this we can see that by doing a change of variables t = I dt = “¢
we have from eq

| = NZ(u)n’jnZ(j+l)+l‘/ 2(]+1)

Z Ci(nt) ) (400)

Now we can find the normalization to be

-1/2
=0 o ) \/n2(1'+1)+1
401)

P P
N = (Z Z ClCn™ T QG+ 1) +1+k+1)

2-74 AIP Publishing Books



So we have the wave equation

P

G (10, 8) = No jON; (0, $ul €35 )" (Cun) Hy o (0) [sin 0 €™
k=0
(402)
Where
1 .
“(k+j+1)-1
Crui = 1 C 403
T Gr D) (k2 + 1) F (403)
P P -1/2 |
N(u), : = CCn'™*r G+ +1+k+1 —
(1)n, (%;)zk (2(j +1) )) WepET
(404)
1/2
N;(6,¢) = [ : ! } (405)
NP = an i (CDF
4n Z;<=0 Cljc 2k+1

Where I let N; = N; (0, ¢) to denote that this is the normalization of the
0, ¢ part of our wave equation.

Let us also now rewrite our energy in terms of our quantum number n.
Recall that we had

h2
E =
2mb?

(—a?) (406)

but knowing b and a = ﬁ and letting z = 1 for the case of the hydrogen
atom we can now write this as

zze4m€ 1

Ep=—¢Me 407
" (4meph)? 2n? 407

‘We can also write this as
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E, ~ _13.6067¢ (408)

2
n
Where we found b to be

b=2.6459 107! (409)

Let us look at what u gives us maximal probability in the ground state
|1,0,0). To do so we just need to consider the probability of the radial
component of our wave function, meaning we have integrated over 6, ¢
giving us

P(u) = %uze_” 410)

Where the % comes from N,%’ ; (u) = % This corresponds to the probability of
finding the electron in a shell centered at the nucleus of thickness dr. Now

to find where it is most probable to find the electron we must find u such that
dP(u) _ 0
du

dP(u) o 1o,
= - — = 411
W ue 2u e 0 411)

or

1 u
(1 - Eu) ue " =0 412)

So we have the point # = 2,0 but u = 0 cannot be the solution since we
know the function increases from u = 0 so u = 2 or r = bu must be where
the electron is most likely to be found. This is usually whats called the Bohr
radius and is denoted by ag = 2b = 5.2918 - 10~!"'m where r = a,.

Let us now consider the average or expected position of the electron for

the ground state, < u >. Since this only on u we can integrate over the € and
¢ parts and are left only to consider

®q
<u>= / —wde du =3 (413)
)
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So we find that the average position of the electron in the ground state is
r = 3b or u = 3 in natural units. Notice that this is not the same as the most
likely position to find the electron which we found to be r = 2b.

S Dirac Equation

Dirac was interested in taking the square root of the Klein-Gordan wave
equation, something which at the time seemed meaningless, however we
will work through the mathematics which Dirac considered and show that it
indeed an interesting problem. To begin considered the relativistic energy
of a particle

E? = p*c? + m*¢* (414)

Where

E = cy/p? + m3c? (415)

Since we require 0 < E. For small momentum this is the classical energy
equation
2

E:mc2+;L+... (416)

m

Now we start with the one dimensional Klein-Gordan Wave equation
which satisfies eq. 14|

2 & 220 2 4
—h 92 —h“c @+m c | Y(x,t) 417)

Dirac said consider the square root of this equation

0 02
ihaw(x, t) = \/—hzczﬁ +m2c* |y (x, 1) (418)
To consider what type of operators satisfy this we must consider
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Ox Ox?
Where once we expand the L.H.S. we get

2 2
(ai + ,8) P Y R (419)

20° o ,0 L 0 dad OB
¥ optPraBgi fagtaga tags

Now to understand the solution which Dirac proposed for this let us go
back to the central force problem solutions that we found. Recall that we
had shown that j had to be an integer from the periodicity of ¢?, suppose
we ignored this for now and worked out the operators L2, L, L,, L_ for this
case. Let us denote the angular solutions by |, m) as before where j = % SO

we have m = —%, % Then we have

(420)

L2|é,i%> = 3Thz|%,%> (421)
L3|%,i%> = i;%,i%) (422)

Lilg. 5 =15 2) 423)
Lol3,—3) =Hlz.~3) 424)

These follow from the algebra of the group which we showed earlier
from eq. [[48] Now let us look at the matrix representation of these states.
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Table 13 L3

H ml/m2 -172 12 H

12 -1 oo

h
12 o I
Table 14 L,

H ml/m2 -172 12 H

-172 0 0
172 h 0

Where L = % and L, = % from the definition of L, L_.

Table 15 L_

H ml/m2 -172 172 H

-172 0 h
172 0 0
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Table 16 L

H ml/m2 -172 12 H

12 0 &
h

12 I 0

Table 17 L,

H ml/m2 -1/2 1/2 H

-172 0 i

T
12 it

O ol

Now from these we can define a new matrix o, where L, = %aa and
since from eq. [[48] we have the commutator of L,, L, we can find the
commutator of o, o7,

W w2
T (00, sigmay] = i?eabca-c (425)
or
(04, sigmay] = 2ie ;0 (426)

Notice how 0'3 = 1,,» from the tables above. We can also see from these
two that
Oa0p = 1€, +0aplo 427)

Meaning

{O-aa O-b} = 204p (428)

Where {A, B} = AB+ BA denotes the anti-commutator of A, B. There is
a further generalization of this called Clifford Algebra, where Clifford asked
the question, what about matrices which satisfy
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Yas Vb = 20ab (429)

This generalizes these properties for any arbitrary space-time dimen-
sions. However we we will only work with the algebra of o, which corre-
sponds to j = 1/2. Again the problem we are interested in are operators
which satisfy

2 207 5,9
=-h"—+hc"— 430
) o " " ax2 (30
Recall that this came from E? = p%c? + m?c*. Now let
0 0
= ilyo— — ihcy1— 431
(D ihyo- —ihcy1 - (431)
From this we have (I§)?

9? 92 0 0 0 0
2 2.2 2.2.2 2 2
=-h"yy,— —h —+7h ——+h —— (432
() Yoga ~HeVigg tenivog o+ eyoyig oo (432)
Meaning that
Yo = lax (433)
v =-laa,i %0 (434)
and
{vo.71}=0 (435)

From what we worked out before this looks just like o,. So let yo = o7
and y| = ioy. Now we have Ip which we need to understand however before
we do let us now consider the problem in 2 space 1 time dimensions. This
is just

82
B3y =Dl +H7 (436)
s s a y2
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In this case we now require

Yo = lox (437)
y?=—lp0,i 20 (438)
{viovj}=0,i#j (439)

So we must now introduce 03, giving us y; = io3. Now let us consider
the case of 3 space and 1 time dimensions

62
B3, =0, + 1P — (440)
0z

Which gives us the requirements

Yo = lax2 (441)
y? = —l20,i # 0 (442)
iy} =0,i #j (443)

However we do not have any more o left to choose from. The solution
to this is to increase the size of the matrix so that

|l O
70 - [ 0 _12x2:| (444)
0 —0;
¥i= [m 0 ] (445)

This satisfies the algebra required because o satisfies the algebra, this is
just an extension to 3 space 1 time. Now we have

E? - p?c? = m?c? (446)
or
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B* = m3c* (447)

Meaning we have two solutions

D = +mc? (448)

For now let us pick the positive solution. We will be working with what
is called the Dirac wave equation however once it was fully understood it was
called Dirac field theory. Let us now solve this wave equation Ip — mc> = 0

9 2 ; 3 0
ihg;, —mc ihc 337, (0', I,

) Y1 =0 (449)
—ihc ?:1 (0',-8%) —ih% — mc? !

(I — mc*)¥ax1 =

Where now ¥ has 4 components and seems like a vector as opposed to
a scalar which is what we had before. Notice how for this to not be a trivial
solution we require the determinant of our matrix to be O but this is just

62
m2ct — V2 + it — =0 (450)
but this is just

B? = m2c* (451)
Which is the condition that E2 = pzc2 +m?2c?, so these solutions satisty
conservation of energy. Now then will have to require Ip to be hermitian so
that it has real solutions. As such we have to consider of )" = Ip. Since

time acts as space-time component we know

a 0
. :__a/"l:0$19293 (452)
Ox, 0xy

Where ¢ = 0 corresponds to the time component. We also know that

O'f = oy, yOT = Yo and 7? = —v; so then writing I in terms of these we have

0 0
D= lhyOE — ihc(y; @) (453)
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Where summation over j is implied. The adjoint of this then becomes

8 0
p' = lhyOE + mc(ng) (454)
J

This is clearly not hermitian so to make our solution hermitian we will
need to consider

D" =y,Dy, (455)

Where we will pick u = 0. This is because 78 = yo and yoyiyo = —Yi
from the algebra of the group. Now then we have

Dyo = o' (456)

or

yoIp = B'yo (457)

So then we can have yyIp or Py being our hermitian operator.

Let us now go back and solve eq. 449 with yo now. We will pick yo P as
our hermitian operator. This gives us

) 2 : 3 0
I 0 ihg —mc ihc 37, O'l'a—xi)
(Yol —me?) W1 = [0 —I] , t3 3 ' la ( 5 | P41 =0
—ihc 7, (O‘,’a—xi) —ihg —mc
(458)
and we will assume solutions of the form
i
Y= 459
i (459)
This gives us the two equations
.0 2 , 0
I(ih— —mc“ )W +ihc(o;—)Yyr =0 (460)
ot ox;
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ihc(o‘,-i)lpL + I(ih2 —mc?)r=0 (461)
0x; ot

4 coupled equations in total. We know from wave mechanics that we
should expect solutions of the form

Wik = xLgehPrED (462)

Plugging in these solutions into our two equations give us the relations

(E —mc*)xr = c(oipi) xR (463)

(E +mc*)xr = c(oipi)xL (464)

Which we can solve to get the equation
(E? = m*c)xr = p*c’xr (465)
Then from this equation in matrix form we have

Lo (E2 — m2c* — p2c?) [;21] =0 (466)
2

So from this we can also see that these solutions require EZ = ¢ p?+m?c*.

Now xr,, Xr, can be anything since we have two degrees of freedom. So we

ca pick the solutions
1] (O

Also remember that these must have a connection to j = 1/2 since
we started with its corresponding group. Using eq. we can get the
components of y; as well. So we only have two independent solutions for
positive and negative energy. Let us call

E = \m2c* + c2p? (468)

the ”physical” solution since this is what we would expect and
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E = —\m%c* + ¢2p?

(469)

the “nonphysical” solution. It is also worth considering when E = 0 but
this corresponds to massless particles at rest since p = 0 and m = 0 so this
is truly a nonphysical case. Let us consider the case where E > 0 first for

this case we have the solutions

XL =

AR = E +mc?

and

XL =

1

XR

For negative energy £ < 0 we have

XR =
3 1
XL_E—mcz
and
XR =
B 1
M= e i

E +mc? |

—Cp3
[cp1 —icpa

[0
»1
'cpl +icp2]

cp3
the solutions

1
0
—Cp3
[cp1—icpa

i

7cp1 +icp2]
cp3

(470)

471)

472)

(473)

(474)

(475)

(476)

“477)

Notice that solution 1 and 2 for both cases are orthogonal with one
another. Now let us normalize these but it is also worth thinking about how
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Yo changes this since we require yoIp to be our hermitian operator. The

. . . El+mc? s .
normalization we get is ' él I’;C when we don’t consider the effect of yq

and |E| is the magnitude of the energy. Let us now write our solutions with
this normalization and also put the solutions in terms of |E|. This gives us
the solutions for positive energy £ > 0

|E| +mc? [1
=1 f— 478
|E| + mc? 1 —cp3
= s 479
AR \/ 2|E| |E|+mc? |cp1—icp “79)

/|E| +mc? [0
XL = W 1 (480)
|E| + mc? 1 cpy+icps
= 481
XK \/ 2|E| |E|+mc? (481)

cp3
For negative energy E < 0 we have the solutions

|E| +mc? |1
=\ 482
XR JE |0 (432)
3 |E| + mc? 1 [ cp3 ] (483)
XL = 2|E|  |E|+mc? |=(cp1 —icp2)

|E| +mc? [0
=4[ — 484
XR \/ 2IE] 1 (484)
|E| + mc? 1 —(cpy +icpr)
= 485
L \/ 2|1E|  |E|+mc? —cp3 (483)
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If we considered yoIp as our hermitian operator and we normalize now
with respect to v, so that we now consider the quantity ¢ "y when nor-
malizing our wave solutions. From this we get the normalization

o'yow = N* (whxe = xixe) (486)

c’p? 2me?

T (E|+mc2)? " |E| +mc?

N (¥ixe - xhre) =1 (487)

Where here we used c?p? = |E|?> — m*c*. From which we can now get N

which we find to be
|E| + mc?
Moo =N e (488)

Where I denote it as N, to differentiate this normalization since we took
into account .

Let us now try the case where p = 0 but m > 0, in this case we have the
solutions

0
0
\Pf = o (489)
-0_
0l
+ 1
¥ = 0 (490)
_O_‘
and
o]
_ 0
Y, = 1 491)
-0_
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(492)

Where W* denotes the energy of the solution. These solutions seem

to correspond to m = +5 where y; = [(1)] : [(l)] since recall that o3 [(1)] =

1 0 0
0 and o3 ll 1

We call this intrinsic spin and it seems to be there even in the non
relativist case where p = 0 showing that this is not just a relativist effect but
a fundamental property of the particle. Julian Schwinger later showed that
Dirac’s wave equation was experimentally correct and that electrons do have

intrinsic spin.

-1 =+1

6 Wave Equation with a Magnetic Field

Let us consider how we would take into account the effects of a magnetic
field on Schrodinger’s wave equation. To do so first consider the classical
problem of a particle with velocity v in a magnetic field B = B2 where
we pick B to be in the Z direction since we have the freedom of choice
of coordinates. To simplify the problem let us also put the constraint that
Vo - B = 0. So the initial motion lines on a plane perpendicular to the
magnetic field. Recall that F = ¥ x B for an electron in a magnetic field so
we have

my = eBV X 2 (493)

Where e is the charge of the electron. We want to show that the speed is
constant so consider

dv -v dv eB
=25 L =25 x5 = 494
” Vg mev (vx2)=0 (494)
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So we have shown that only the direction will change not the speed of the
electron. Now let us solve the equations of motion for the electron. Using

eq. we get the equations

dv eB
d—tx =—, (495)
dv eB
d_ty =-—n (496)
and d
% =0 (497)

since we said the initial velocity lies on the x, y plane. From this we expect
solutions to vy, vy to be of the form

B
v = vosin(E21) (498)

m

B
Vy = vocos(e—t) (499)

m

Where

VIV Vg (500)

w= % is the called the cyclotron frequency. So we have the equations
of motion

V = v [sin(wt)X + cos(wt)P] (501)
F= % [—cos(wt)x + sin(wt)P] (502)

Now let us consider the angular momentum of the electron since it will
orbit the magnetic field, recall the formula for angular momentum

-

L=mrxv (503)

So plugging in our solutions we have
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—— V2B (504)

Where we have just rewritten L in terms of B so that now we have
quantity

m?v?

L-B=—2 (505)

e

Which looks like kinetic energy due to the magnetic field so we can write
1 , le- -

Giving us the total energy

2
le- -
P vy +=-L£1.B (507)
2m 2m

Now if we try to convert this wave mechanics all we have added is an
extra term 5L - B so we have the wave equation

_i2 ..
U V(r)+uL-B|y = Hgy = ihéw (508)
2m ot

Where u = 5~ and Hp = H + ,uZ . B is our new Hamiltonian with
the addition of the magnetic field. Now recall that we have showed that
H,L,, L? all commute. If B = B? then we can pick L, = L3 since we have
already worked it out for this case. Suppose this is the case then we have

Hp=H +uL,B, (509)

Now consider the potential of the hydrogen atom where we found solu-
tions which we denoted by |n, j, m) such that

LZlnaj’m> :hmln’j’m> (510)

L*n, j,m)y =1%j(j + D|n, j, m) (511)
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2
. 1 Zez me . .
Then applying this solution to our new Hamiltonian gives us
. ) eB .
Hp|n,j,m) =H|n, j,m) + L;|n,j,m) (513)
2m,
eB

Hgln, j,m) = E,|n, j,m) + > hmin, j, m) (514)
m

e

. eB
Hgln, j,m) = E, + >

hm|n, j,m) = E, j m|n, j,m) (515)

e

So we now get our energy shifted and notice that now the energy de-
pends on n,j,m. However notice how the rest of our solution stayed the same.
This is because we introduced a term proportional to L, where L, already
commuted with H, L? leaving are solution unchanged for the most part.
However this shifting of energy causes the energy levels to split at each state
apart from the ground state where n = 1. It is also important to note that in
laboratory’s the strongest magnetic fields we can produce are B;,;, <~ 100T.

Now in the case where we cannot pick the direction of B we would have
to consider B - L along the direction of B. So we would have Lp denoting
the component of L in the B direction. However we showed before that we
can rotate L, to L through a unitary matrix U such that UTU = 1 where we
require U to satisfy UTL_U = Lg. Then we can use our previous solutions.

2-92 AIP Publishing Books



7 Perturbation Theory

Some problems in quantum mechanics are not solvable exactly, and there are
different techniques which try to approximate these solutions. We will be
going over one of these methods known as perturbation theory. Perturbation
theory is the study of more complicated systems from systems which we can
solve exactly.

Let Hp be exactly solvable and hermitian with eigenfunctions |n) such
that
Ho|n) = Ep|n) (516)

Now suppose we have H such that

H =Hy+ AV, 517)

Where H cannot be solved exactly and A is a constant. Let us assume
solutions for this Hamiltonian of the form

H|p) = Ey|¢) (518)
so that we now have
H|¢) = Holg) + AVi|¢) = Eg|d) (519)
Now let us assume we can write Eg, |¢) as infinite series, meaning
Ey= Z L (520)
k=0
and
#) = > A¥1pe) (521)
k=0

where u; are numbers and |¢ ) are different vectors which need not be
normalized. We will now try to solve for all u; and |¢x). To do so, let us
plug solutions of these forms into eq.
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(Ho+AV1) ) Alg;) = (Z A"uk) D Alg)) (522)

j=0 k=0 j=0
Now for this to work we must have the series converge for a range of A.

Therefore this equation must be true term by term in A. Let us list a few of
these terms

2° 2 Holgo) = ol o) (523)
AV (Ho = po) |1y = (11 = V1)l do) (524)
A2 1 (Ho = po) |¢2) = (p2) o) + (11 = Vi) |1) (525)

and so on. We can write these in general for A as

P
AP < (Ho = o) |¢p) = (p1 = Vlgpo1) + D pldps)  (526)
k=2

for p > 2.

Now from eq. we can see that [¢g) = |n) with eigenvalues ug = E,
is the natural choice since Hy acting on it is an eigenvalue problem. So that
we have

A Ho|n) = E,|n) (527)

Now it is important to not that we will assume solutions for the exactly
solvable Hamiltonian Hj to be orthonormal, meaning

(nlm) = 6pm (528)
From this we can take the inner product of eq. with (m| giving us

(m|Hy — Ez|¢1) = pi{m|n) — (m|Vi|n) (529)

Where we can use (m|Hy = (m|E,, since Hy hermitian. Giving us
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(m|Ey = Enlé1) = p16mn — (m|Vi|n) (530)

Now if we let m = n we get

u1 = (n|Vi|n) (531D

Now without loss of generality we may write |¢1) in terms of our |n)
basis since they form an orthonormal set of basis eigenfunctions over our
space. As such we have

|¢1) = >, Ciulm) (532)
m=0

Let us now plug in solutions of this form into eq. [524]

A2 Y (Ep = Ey) Crlm) = (11 = Vi) In) (533)
m=0

Here I have brought in the operator Hy since it must act on each of our
eigenfunctions |m) and now let us again take the inner product with (k|
giving us

A2 > (Ey = Ey) Cow(klm) = (k| (1 = Vi) In) (534)
m=0
Which then using the orthogonality of our solutions |n) we get

A': (Ex = En) Crp = piSin — (kIVi|n) (535)
From which we can then get Cj ; to be
_ 10k — (kVi|n)
(Ek - En)

However this can only be valid for k # n since k = n causes the coefficient
to blow up. So we have

Cik

(536)

(k|Vi|n)

Cij=-——rt’l
bk (Ek - En)

(537)
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So that we now have |¢1)

61) = Cual) + 37 S (538)

m#£n

To find Cy , we must use the normalization condition. From this we then
have the first and order approximations of Eg, |¢) which we can write of the
form

Ey=E,+A(n|Vi|n) + ... (539)

(m|Vi|n )

£ g M (540)

[¢) = (1+AC1,) +4 )| ————

m#n

However recall that for this method to work our solutions must converge
for a radius of A.

Repeating the process for eq. we can find |¢,) which we will write
in terms of our orthonormal basis |n) as such

|¢2) = > Calk) (541)
k

Which if we now write[523] with solutions of this form and take the inner
product with (m| we have

Z Cox(Ex — Ep)(mlk) = Z Cig (t16m = mIVI|1)) + p2bmn  (542)
7

Now if we take m = n we have

0=p1Crp— ) (VIIDCry+ 2 (543)
/
However the nth term in our sum is exactly p;Cy , so that we now have
0= > (VilDCi; + 2 (544)
l#n
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or substituting our solutions for C;; we have

_ v (valh)?
5=

545
E,_E, (545)

I#n

Where I have used the property that ([|Vi|n) = (n|Vi|l) where V| we

take to be hermitian since in quantum mechanics we require our operators

to correspond to observable quantities that we can measure, meaning we
require operators which are hermitian so that our eigenvalues are real.

Now similarly we can show

1 Crm = 2 Cra{m|Vil)
Com =
’ E,-E,
by taking eq. with m # n where again C, can be found by
normalization.

(546)

7.1 Degeneracies

So far we have assumed that each energy level has exactly 1 unique solution
|n) but we will now loosen this assumption to see how we can incorpo-
rate these degeneracies into our perturbation. For now let us assume two
degenerate states where

E,=E, (547)

with eigenfunctions

|n), |n+1) (548)

Once this simple case is shown we can include an arbitrary amount of
degeneracies. Now notice that

Cpln+1) +Cpiqln+ 1) (549)

also has the same energy. So let us assume this sort of solution where we
have a linear combination of |n), |n + 1) since this is the most general case.
So that we now have
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|¢0) = Caln + 1) + Cppi|n + 1) (550)

with

Mo = E, = Eyn (551)

Now we found earlier that we can write
|¢1) = > Crlk) (552)
k

which if we plug into eq. gives us

Ho = Ey ) Crelk) = (11 = Vi) (Caln) + Craan + 1)) (553)
k

Now let us take the inner product of this equation with )n| so that we get

0= u1Cy — Cu(n|Viln) = Cpei (n|Vi|n + 1) (554)
and let us also take the inner product of eq. with (n + 1] giving us

0=p1Crr1 = Gu(n+ 1|Vi|n) = Coi(n + 1{Vi|n + 1) (555)

Now we can solve these equations, to write this in a more compact way

let us use matrix notation.
C C
= " 556
[Cn+l] H [Cn+l] ( )

(n|Vi|n) (n|Viln+1)
(n+1|Vi|n) (n+1|Vi|n+1)

(n|Viln) (nViln +1)
(n+1\Vi|ln)y (n+1|Viln+1)

and let us denote V = as well as C =

|
Cn+1

So that we now have

VE = C (557)

2-98 AIP Publishing Books



From this we can clearly see that this equation is just an eigenvector
equation. So that if we diagonalize V we can find the corresponding u and
C which diagonalizes this matrix. To find higher order approximations we
would then apply the same methods for the A% term and so on.

7.2 Properties of V

This section will go over some of the properties of V. First notice that
V = VT, This is because we require V| to be hermitian so that V| = V;f , as
such V is also hermitian which makes sense since we require y; to be real
since it correspond to energy. From this it follows that we need not calculate
n’? elements but rather @ terms.

Now suppose our solution to the solvable Hamiltonian, Hy, is of the
form |ay, as, ..., a,) where each of the a; for i = 1,2,...,m correspond
to eigenfunction solutions to some operator A; such that [A;, A;] = 0 and
Ailay, ag, ..., an) = ai|ai, ay, ..., a,). For each A; which commutes with
V1 we will have a corresponding symmetry. Let us show this.

Consider [A;, V1] = 0 so that V; commutes with A;. If we now take the
inner product with another eigenfunction (0/1, @), ..., a,,| so that we have

(), @y, .. ap|[Ai, Villar, az, ..., @) (558)

it follows that

(o], @, ..., |[Ai, Vi]lar, a2, ...;a,) =0 (559)

However since A; corresponds to an a; with which we have diagonalized
lay, as, ..., a;,) we can also write

(@], @), ..., |AVI = ViAjlay, a2, ...,am) =0 (560)

which we can then write as
(of — @) (a1, a2, ..o, am|Vilar, as, ..o @y) =0 (561)
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From this we can clearly see that if a # a; we have

(@], @), .oy ap|Vilag, @z, .., iy o @) = 0 (562)

So that V is diagonal with respect to A; if [A;, V1] = 0. ged

Now suppose we have V| (xy, x3, ..., X,), from this we have two possible
cases. First consider the case

V1(—X1,—X2,...,—xn) = —Vl(xl,xz,...,xn) (563)

We will call these as odd potentials.
The other case being

Vl(—xl,—xz,...,—xn) = Vl(xl,xz,...,xn) (564)

These we will call even potentials.

Now assume we have solutions |ay, s, ..., @,) = ¥ (x1, X2, ..., X,). which
may be odd or even in similar fashion as (x1, x2, ..., x,) — (=x1, =X2, ..., =Xp).

Let us now examine the case where V; is odd. First recall that we can
write V; ; as

Vi = Vilj) (565)
If we take (x1, x2, ...,x,) — (=x1, —x2, ..., —x,) we then have
Vij==(lVilj) (566)

if the eigenfuncions|i), | j) are either both even or both odd and in general
we have

Vii = =(ilVili) (567)

Since (i|V;]i) will always be positive semi-definite.
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From this we then have V(x1, x, ..., x,,) = =V (x1, X2, ..., x,,) for odd and
V(x1,x2, ..., x,) = V(x1,x2, ..., x,) for even potentials.

In the case V(—x1, —x3, ..., —x,) = =V (x1, x2, ..., X,) we then have
\Zjéj = 'ulC‘j (568)
and
V€ = miC; (569)

from eq. , but then either u; = —u; so that u; = 0 or \7,~J- = 0 when
V1 is odd and i), |j) are of same oddness.

Now consider the case V(x1, X2, ..., X) = V(=x1, =X2, ..., =x), if |i), |j)
are of opposite oddness we then have again

Vi;iCi = mu1C; (570)

and
V€ = mC; (571)
from which we can deduce either u; = —u; so that u; = 0 or V; =0

when V| is even and |i), | j) are of opposite oddness.

7.3 Problems in Perturbation Theory

First let us consider the problem of a one-dimensional harmonic oscillator
with the perturbation V| = x. Let us calculate the corresponding energy
corrections i, up. First for y; recall that we must calculate

u1 = (n|Vi|n) (572)

(5]

Ha(y) _¥
n"l(/f)e T where x = by

In this case we have the eigenfunctions y,(y) =
and b? = m—z) So what we want to calculate is

u1 = b{ily|i) (573)
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where 71 = y,(y). Without further calculation we can tell x; = 0. This
is because u; > 0 since 7i is even when n is even and odd when n is odd, this

2
follows from H,(y) since ¢~ is even and the V; y is odd giving us an
overall odd term when we integrate and since we integrate over all of space
this gives us

= / (Foad)dy = 0 (574)

Now to calculate u; we need to first calculate (m|V|n) = b{(m|y|n).
Calculating (m|y|n) we have

(mlyln) = / Hou () Ho(y)e™ydy (575)

Now using our recursion relation for H,(y) we can write

VH () = 5 (VZOT+ D () + H, ) (576)

so that we have

[ ) (V2 Dt () + ) ey 657D

I will avoid the constants until the end where we can just plug them back
in. Now we can split this into two integrals

I / " Ho(30)20n + D) Honn (v)e " dy (578)

and

I / Ho () H, ()™ dy (579)

Now using integration by parts on I, we can write

& d 2
I:- / ()5 (Hn(3)e™) dy (580)

2-102 AIP Publishing Books



Where I have used the property that our functions must go to O as

x — =+oo. Now if we differentiate % H,, (y)e‘yz) we can get

d 2 42 ,
gy (Hn)e™) =@, = 23Hy) (581)
giving us
1 (o] (o]
h:=3 / Hye ™ H. dy + / Hye™ yH,dy (582)

However notice that the second term is just /;,; the integral we want to
solve so that in total we have

1 [oe)
hoi =1~ % / Hye ™ Hiydy + Lo (583)

giving us the relation

1 (o]
=3 / H,e ™ H dy (584)

Now let us use this in /;,,. First using the recursion relation of H,,(y)
again we have

I 2
b= [ (VBT D100 + Hy ) Hae ™ 5dy (589

Now using our relation we have

1 [ 1 [
Lot = 3 / e_yanHmH\/Z(m + 1)dy + > / e_yszHnH\/Z(n + 1)dy
- - (586)
Now using the even and oddness of H,(y) we can see that this integral
isOunlessn =m+1orm =n+ 1. Suppose m = n+ 1 we then have

1 = 2
Lot = E/ e_yan+1Hn+1\/2(n +1)dy = g Vn + 1 (587)
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Since chiyy; 1s normalized. Giving us

2 —
ItOt = g n+ 1 (588)

The other case n = m + 1 gives us

2 ——
IIOI = g n+ 1 (589)

Which makes sense this Vj is hermitian. So that we have

1/2(n+1) 1/2(n-1+1) 1

H2 = —hw " hw - 2hw (590)
where [ used E,, = (n + 1)%iw and the only non-zero terms are m = n — 1
and m = n+ 1. These results make sense since we have a potential V| = x
which corresponds to a constant force. Classically this would just shift the
equilibrium point and leave the physics unchanged so that we have y; = 0.
Looking at the u; corrections we see that these are similar to the L, L, ma-
trices we had when we diagonalized L3 for central potentials, where the only
nonzero terms where the off-diagonals. This could correspond to a change of
basis which would better suit this problem. It makes sense that our solution
does not diagonalize this new potential since [Ho, V] # 0 clearly. Where

Hy is our Hamiltonian for the one dimensional harmonic oscillator.

Let us now consider adding a potential V; = x* to our one-dimensional
harmonic oscillator. In this case we will use the raising and lowering opera-
tors a', a which we showed in quantum mechanics 1 to be

= T(—d— y) (591)

= T(d— y) (592)

from these we can write y* = Z((a +a")*. Now to calculate 11; we need
only consider
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(n|(a +a"H*n) (593)

As such it will be important to review how a, a’ operate on |n). recall

aflny =Vn+1n+1) (594)
aln) = \nln - 1) (595)

where Vn + 1, v/n correspond to their normalization. From this we can
already see that only the terms which raise and lower twice will remain
whereas any other combination will lead to a product (m|n) = 0 where
m # n. From carrying out the calculations for only the operators which have
two raising and lowering operations in any order we get the quanity

6n” + 6n +3(njn) =3(2n* +2n + 1) (596)

Now recall x = by so that we have

w = b Lol +a) o) (597)

after adding back all the constants, giving us the first order correction

3., 2
= Z(Zn +2n+ 1)m2w2 (598)
So that the nth state has energy
3., 2
Ey~ (n+1)hw+ AZ(Zn +2n+ 1)m2w2 (599)
The fractional correction then of u; to the energy E, is
32n*+2n+1) h
f(n) = (600)

4n+1)  m2wd

where f(n) - (n+ 1)hw = u
From this we can see that this fraction increases as n increases meaning
for large n our fractional correction goes towards infinity, so that the only
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valid choice of A forallnis A = 0.

Let us now consider the two-dimensional harmonic oscillator with po-
tential V; = r. In this case we have the solutions

Hnl,nZ(u’ V) e—%(u2+yz)
\r

Where Hy1 2(u, v) = Hy1 (1) Hyo(v) the same H), as for our one-dimensional
harmonic oscillator. Where we have the corresponding energies E, =
(n1 + n2 + 1)hw. From this we see that the lowest states correspond to
nl,n2 = 0 with £y = hw and nl = 1,n2 = 0 and nl = 0,n2 = 1 with
E> = 2hw. Here are solutions are in natural units so that we have to convert
between r and u, v. To do so we use the following relation x = bu and y = by
where b? = -l So we may write r = bVu? + v2. Let us first calculate 4

for |0, 0) = #e—%(uuﬂ)

In1,n2) = (601)

w1 = (0,0]bVu2 + v2|0,0) (602)

where we will need to find

/ V2 +v2e~ W) qudy (603)

let us now go to polar coordinates so let u = pcosf, v = psinf giving us
dA = |du x dv| = pdpd0, so that we now have

271/ ple P dp = % (604)
0

o = ?\/i (605)
maw

after including the constants. Now to do u; for the E, case we will
have to look at the matrix V since we have degeneracy. First notice that in
our polar basis |N, m) we were able to diagonalize H, L where L was the
angular momentum. Notice that [L, r] = 0 since L is only dependent on our

So that we have
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angle, meaning our added potential will be diagonal with respect to L, so
that off-diagonal terms will be 0. We will check this later.

We will need to check the terms (1, 0|bVu? + v2|0, 1), (1, 0|bVu? + v2|1,0),
(0, 1|bVu? +v2|0, 1), and (0, 1|6 Vu? + v2|1,0). Notice that because n, n»
are independent of each other both n1”, n1 and n2’, n2 must be the same mean-
ing nl” = nl and n2’ = n2. Where n’ denotes the left term in the inner prod-
uct. So then we only need to calculate the terms (1,0[bVu? + v2|1,0) and
(0, 1|bVu? + v2|0, 1) butagain (1, 0|bVu? + v2|1,0) = (0, 1|bVu? + v2|0, 1)
since n1, n2 are independent. So we only need to calculate 0, 1|6Vu? + v2|0, 1)

(0, 1|bVu? +v2|0,1) = / Vi + v ) dudy (606)

which we can write as

(o) 2
3
/ pze_(”2+"2>dp/ cos*0do = Z\/E (607)
0 0
Here I am using the integral 7, which I define as
I, = / e dr (608)
0
Then using integration by parts we get
-1
In = "5 ln-2 (609)
Where |
=5 (610)
and
Iy = g (611)

So that we have
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Giving us

=" (613)

Iw
1§

for both states. Where our matrix V is diagonal, this must be because
this basis is a basis which diagonalizes L, the momentum operator. Notice
that the higher energy level was raised by a larger amount % rather then %
compared to the |0, 0) state. This must be because of the radial component
of our wave function, as n increases where n = nl + n2 we would expect this
fraction increase and possibly be bounded as it approaches 1.

Let us now consider the hydrogen atom. Suppose we introduce a constant
electric field in the z-direction so that E = E3. Classically this would change
the energy by eE(z — zp), let us suppose we can pick zg = 0 so that we have
eEz. Letus try introducing this term into our hydrogen atom solutions using
perturbation theory. So we are introducing V| = eEz. We will only consider
the n = 1, 2 states. For these states we had the solutions

1 1
1,0,0)= — ¢ 3 (614)
| ) Var VF

1
4Van

[3 1 u .
12,1, 1) = [ — ue” 3 sinfe*'? (616)
87 16V3

3 1 u
2,1,0) = — ue 4cos6 (617)
4m 16V3

12,0,0) = (615)

Where these states are in terms of the natural units u where we have
r=bu. b= znfoh ~ 2.6459 - 10~ m. Now notice that V; is odd so that our
diagonal terms w111 be 0 meaning we have
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uy™0 =0 (618)

Now Since E> has degeneracies we will need to look at the matrix V.
Recall that we mentioned the diagonal terms must be zero since V| is odd, we
showed this in the previous section when discussing properties of V. Notice
also that [L,, V] « z] = 0 clearly since z only depends on r, 8 so that our
matrix V will be diagonal with respect to the eigenvalues m. Meaning that
for different m we will have V; ; = 0. Notice also that |2, 1, 1) is odd so
that every non-diagonal term will be zero since we will have an overall odd
integral. This only leaves the term (2, 1,0|V1]2,0,0) = (2,0,0|V;|2, 1,0)
this equality follows from V) being hermitian. Let us find (2, 1, 0|V}|2, 0, 0)

e u 1 T
(2,1,0|V1]2,0,0) o 27r/ e 2u(1 - Zu)du/ cosOsinfcos*0do
0 0

(619)
which gives us

(2,1,0]V1]2,0,0) oc —1152 (620)

Now adding back the constants we have

(2,1,0|V1]2,0,0) = —6eEb ~ —15.8754¢E - 107! ~ —25.435E - 107°

(621)
giving us
0 0 —6eEb 0| | Cr00 C200
~ |0 0 0 Of |1Co1,-1| _ Co1,-1
V= 0 —6¢eEb 0 0| Cano | i C210 (622)
0 0 0 Of | Cana Ca11

Giving us the solutions y; = 0,0, + —6e Eb where u; = 0, 0 corresponds
to |2, 0, £1) which makes since since we said [L,, V] = 0 and we observed
Vi was odd, so we expected this symmetry. This makes physical sense since
we expect an electric field in the z-direction not affect the angular momentum
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in the z-direction since, regardless of whether we have an angular momen-
tum in the +Z direction the electric field would affect both the same since
the rotation is perpendicular to the direction of E.

Now suppose instead of putting the hydrogen atom in a field we model
the proton to have some radius, so that we no longer treat it as a point particle.

To do this consider a volume of charge with density p = % using Gauss’s

law we can show E = % inside the sphere and E = Lz outside the
neoR 4reor

sphere. So outside the sphere our potential will be left unchanged since it

behaves like a point charge, so let us focus on inside the sphere. Here we

say the sphere is of radius R. Now integrating the electric field with respect

to infinity we get

0o 1 r?
= —3-—= 2
Arey 2R 3 R? (623)

However we want to add an opposing potential to the potential outside
the sphere to counteract the initial potential for which we calculated the
eigenfunctions |n, j,m). So we have

S L O ub\’
" 4ne |bu 2R R

We will focus on the n = 1, 2 states. Let us first look at |1, 0, 0)

R
, — 624
u < 5 ( )

p1 =<1,0,0[v1[1,0,0) (625)

Where we must now integrate inside the sphere since our potential is
only changed inside the sphere. It will be useful to define

R

b 1 R\"
I,(a) = / ’ e~y dy = — 9% (—) + Eln_l (626)
0 a b a
Where
1 1
Io(a) = ——e ™95 + — (627)
a a
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From this we find

ez 1 _ R 3 & 1 R R
T [— |—e R/b(5+1)+1 —oR(-e b(5(5)2+3+1)+1)+"'

 4re 2b
(628)
b> k1 R, _ R, R*> R

Similarly we can find

ro0 € 1 1 1 3 1 1
My = [_(ll(1/2)_512(1/2)+EI3(1/2))_32_R(12(1/2)_513(1/2)+1_614(1/2))+“‘

drey 16b
(630)
+ i (14(1/2) 1I (1/2) + 1I (1/2))] (631)
3R3 23 16°°
Where if we take R — 0 we have
lim I, (a) = —2(0) + Tim "1, _(a) (632)
im = — im —1,_
rop M a R0 g "N
and
) 1 1
lim Iy(a) =——+—=0 (633)
R—0 a a
So then we have
lim 7, = 4
ng}) (a)=0 (634)

so we see that all these corrections go to 0 as R — 0 which is what we
would expect.
Continuing with the corrections we have

2 2

2.1.0 e 1 1 b
= — I;(1/2) — 14(1/2) + Is(1/2 635
K= Tre | 7866 B2 ~ 53ag 4 (1/2) + 5 le (/D) (639)
as for the rest we have ,uf’l’_l = ,u%’l’_l = ,uf’l’o since for each the radial

part of the wave function is left unaffected.
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