# Water and Salt Physiology



ADAPTATIONS: Active ion transport uptake across gill epithelium of a

lons are **loss** in the urine and by diffusion in the gills

Na and CL are gain by two independent active transport in the gills

#### **Electroneutral**





#### **Electroneutral**



## Chloride cell and pavement cells in gill epithelium of a freshwater teleost fish



Gill epithelium consists of two types of cells:

**Chloride cells**: (ion transport)

Pavement cells : (O<sub>2</sub> uptake)



Low in Calcium



## Water-salt relations in freshwater fish



# Marine environment



# Water-Salt regulation in **Marine** Invertebrates





Solutes in the blood are mostly inorganic ions

Ion composition regulation by kidneys and gills

#### Water-salt relations in marine teleost fish

## The marine teleost fish are **Hyposmotic** regulators



## Water-Salt regulation in a Marine teleost fish

Loss of water by osmosis and urine production.

Water acquired by **drinking** and eating

Eliminate divalent ions by urine.

Eliminate monovalent ions actively by the gills (extrarenal excretion)(principal osmotic regulator)



## NaCl secretion by a chloride cell of a marine teleost fish



Cl - transport is **secondary active transport**, Na-K- 2 Cl - cotransporter. **ELECTROGENIC** -----Strong electrochemical gradient for Na.

# Birds in ocean environments: salt glands of a herring gull

# **Hyposmotic regulators**



# Water-salt relations in a marine shark



Urea and trimethylamine oxide (TMAO) are counteracting organic solutes

## Water-salt relations in a marine shark



# UREA and Trimethylamine oxide (TMAO)

```
Tri methylamine oxide
CH3
\
CH3-N-O
/
CH3
```



## Animals from brackish water

Baltimore

Washington

25 miles

50 km



Brackish water **Osmotic pressure**: 15-850



A typical shoreline of the Chesapeake Bay

Cape Charles

Cape

Henry

#### Animals from brackish water

**Stenohaline**: narrow range of salinity

**Euryhaline**: broad range of salinity

#### Most invertebrates in the ocean are stenohaline osmoconformers





#### (b) Hyper-hyposmotic regulators



**Hyper and Hyposmotic regulators** 

## Acclimation of mussels to changed salinity



## Terrestrial environments

Terrestrial environments: air is a fluid that **dehydrates** organisms.



**Evaporation**: is a gas diffusion mechanism. Water (as vapor) moves from an area of <u>higher partial pressure</u> to one of <u>lower partial pressure</u>.

**Humidity**: is the water content of air.

Saturation water vapor pressure: maximum water pressure before condensation in the form of liquid.

# Evaporation

# Terrestrial organisms lose water by evaporation



- 1. Air humidity: lower water vapor pressure of air--- higher evaporation
- 2. Temperature of body fluid: warmer more evaporation.
- 3. Rate of air movement: windy more evaporation.
- 4. Permeability of integument to water: High ---- higher evaporation.

# Humidic and Xeric animals



**Humidic**: restricted to humid microenvironments

Earthworms, slugs, centipedes, amphibians









Xeric: capable of living in dry environments

Mammals, birds, reptiles, insects, arachnids

How rapidly they desiccate!

#### Low integumentary permeability to water reduces evaporative water loss

The evolution of a low permeability of integument to water is one of the most important adaptation to a xeric life

Very thin layer of <u>lipids</u> are responsible of low <u>integumentary</u> permeability

Mammals: glycolipids in the skin

**Insects**: long-chain carbohydrates and waxes in the epicuticle





#### Differentiation in protection against evaporative water loss in grasshoppers populations



#### Differences in the lipid composition in the epicuticle





#### The rate of evaporative water loss of insects increases at a transition temperature

#### The increase in permeability at a transition temperature is a consequence of lipid melting



Epidermis

Frichogen Cell Epidermal Cells Dermal Gland



## Respiratory evaporative loss depends on the function of the breathing organs



Humidic animals have respiratory surfaces directly exposed to the air







Xeric animals have invaginated respiratory structures

## The temperature of air exhaled from the nostrils







#### The rate of metabolism is important

37





20



#### Within a group, total rate of evaporative water loss is an allometric function of size

#### Smaller animals -----higher metabolism



#### Higher metabolism-----higher respiratory water loss



Adaptations: better extraction of oxygen, cooling of exhaled air.

Small bodies----- higher weight-specific rates of evaporative water loss (EWL)

Small bodies----- higher surface/volume ratio ----- Higher metabolism



#### Excretory water loss depends on the concentrating ability of excretory organs

Terrestrial animals modulate concentration, composition and volume of urine

Two ways to minimize loses:

- 1. Concentrate the urine
- 2. Reduce the amount of solute excreted in the urine







**High U/P ratios** 

Hyperosmotic urine



The <u>Maximum concentration of urine</u> mammals can produce is in part a function of size and part related with the habitat



#### Water-turnover rates of free-living terrestrial vertebrates as a function of body size

Water turnover: is the water lost and gain per day

Animals with **high water turnover** are more expose to dehydration

The water-turnover rates of a particular group is a function of body size



#### Amphibians occupy xeric habitats despite their humidic nature

Amphibians are able to invade dry habitats thanks to:

Protective behavior Advantageous patterns of seasonality Particular physiological adaptations

#### Problems:

High integumental water permeability Low ability to concentrate urine Carnivores: high urea

#### Solutions:

Absorb water across their skins (also drink)
Behavioral and seasonal dormancy
Decrease integumental water permeability.
Reduce urinary water losses (uric acid)





ANIMAL PHYSIOLOGY, Figure 26.19 @ 2004 Sinau

Arboreal frogs (*Phyllomedusa*) spread protective lipids over their skin surface

# Insects are excellent water managers





Ability to concentrate the urine



#### Low integumentary permeability



Low respiratory water losses

Water losses are low and organisms survive on metabolic water for long periods





# Xeric vertebrates are well adapted to prevent water losses.

#### Problems:

High metabolic rates Carnivores: high urea Limited access to water

#### Solutions:

Low integumental water permeability. Reduce urinary water losses (uric acid) Behavior to avoid water stress

#### A kangaroo rat water budget



Very low cutaneous water permeability. Very concentrated urine Very low fecal water looses

## Metabolic water

Approximate catabolic gains and losses of water in caged kangaroo rats (*Dipodomys*) and laboratory rats (*Rattus*) when eating air-dried barley and denied drinking water at 25°C and 33% relative humidity The values given are grams of H<sub>2</sub>O per gram (dry weight) of barley ingested. Those for the kangaroo rats are from Box 25.1.

| Category of water gain or loss | Kangaroo rats | Laboratory rats |
|--------------------------------|---------------|-----------------|
| Gross metabolic water produced | 0.54 g/g      | 0.54 g/g        |
| Obligatory water losses        |               |                 |
| Respiratory                    | 0.33          | 0.33            |
| Urinary                        | 0.14          | 0.24            |
| Fecal                          | 0.00          | 0.03            |
| Total obligatory water losses  | 0.47          | 0.60            |
| Net gain of metabolic water    | + 0.07        | - 0.06          |





# Summary

#### Terrestrial organisms lose water by evaporation.

#### **Evaporation**:

- 1. Air humidity: lower water vapor pressure of air--- higher evaporation
- 2. Temperature of body fluid: warmer more evaporation.
- 3. Rate of air movement: windy more evaporation.
- 4. Permeability of integument to water: High ---- higher evaporation.

#### Terrestrial organisms **gain water** by

- Drinking preformed water.
- 2. Eating preformed water.
- 3. Metabolic water: water produced by catabolic reaction

Obligatory water losses: respiratory, urinary and fecal obligatory water losses.

**Humidic**: restricted to humid microenvironments

**Xeric**: capable of living in dry environments

The evolution of a **low permeability of integument to water** I s one of the most important adaptation to a xeric life