MAD 3512: Quiz #1 - Spring 08

TIME: 30 min.

Just write "TRUE" or "FALSE".

- (10) 1(a) For any languages A and B, we always have $(B.A)^* = (B^*.A^*)$.
 - (b) If a regular expression E contains $\underline{1}^*$, then $L(E) \neq \emptyset$.
 - (c) If a CFG, $G \neq \emptyset$ has no useless productions then $L(G) \neq \emptyset$.
 - (d) Any ambiguous CFG is equivalent to an unambiguous CFG.
 - (e) If a DFA M has no inaccesible states and M has at least one accepting state, then $L(M) \neq \emptyset$.

Just write down the correct answer.

(18) 2(a) Find a regular expression E for the set of all strings in {a,b}* which contains at least three b's.

Ans: E =

(b) If $G = \{S \rightarrow bSAA, S \rightarrow \lambda, A \rightarrow a, A \rightarrow \lambda\}$, then

$$L(G) =$$

(c) If M is the NFA below, then

(d) Find a RLG G for a*.b*.c.b

Ans:
$$G =$$

(e) Find a DFA M with $L(M) = \underline{0}^* + (\underline{1}^*,\underline{0})$

Ans: M =

Use the back of this paper for question #3.

- (12) 3(a) A regular expression over {0,1} is a string on which alphabet ?
 - (b) Define what is a $leftmost\ derivation$ of a string from a CFG G.
 - (c) Define when two states of a DFA M are indistinguishable.
 - (d) Define what is the extended transition function of an NFA M.

MAD 3512 - Theory of Algorithms Solutions to Quiz #1

Florida Intl Univ. Spring 2008

- 1. (a) FALSE. Take A = {a} and B = {b}
 - (b) FALSE. Consider 0.1.0

 - (c) TRUE (e) TRUE
 (d) FALSE, If this was true inherently ambiguous CFLs wontexist.
- 2. (a) E = (a+b)*, b, (a+b)*, b, (a+b)*, b, (a+b)*
 - (b) $L(G) = \{b^n a^k : n \geqslant 0, 0 \leqslant k \leqslant 2n\}$
 - (c) $L(M) = (ba^*c)^* + b \cdot (a + cb)^*$
 - (d) $S \rightarrow aS/bA/cB$, $A \rightarrow bA/cB$, $B \rightarrow b$

- 3(a) A regular expression over {0,1} is a string on the alphabet $\{0,1,\lambda,\emptyset,+,\cdot,*,(,)\}$.
- (b) A leftmost derivation of a string from G is a derivation from G in which the left most variable is being replaced at each step of the derivation.
- (c) Two states p and q of a DFA M are said to be indistinguishable if for each $\varphi \in \Sigma^*$, $S^*(p, \varphi) \in A$ if and only if $S^*(q, \varphi) \in A$.

[Here Z = input alphabet of M and A = set of accepting states in M.]

(d) The extended transition function of an NFA M is the function $\Delta^*: Q \times Z^* \to P(Q)$ defined by $\Delta^*(p, \varphi) = \{ q \in Q : \varphi \text{ can lead you from } p \text{ to } q \}.$