TEST #2 - Spring 2008
Answer all 6 questions. Provide all reasoning and show all working. An unjustified answer will receive little or no credit. Begin each question on a separate page.

(15) 1. Let L be the language accepted by the NFA shown on the right. Find NFAs which accept (a) \(L^c \) (b) \((L^c)^R \).

(15) 2. (a) Find an NFA which is equivalent to the RLG given below.

(b) Convert the NFA shown below on the right in Qu. #3 into an equivalent RLG.

(18) 3(a) Find a regular expression for the language accepted by the NFA shown on the right.

(b) Write down what the Halting Problem says and define what is the Busy-beaver function.

(18) 4(a) Define what are the initial functions and what is the operation known as primitive recursion.

(b) Show that \(f(x,y) = 3x + 4y + 1 \) is a primitive recursive function by finding primitive recursive functions \(g \) and \(h \) such that \(f = \text{prim.rec.}(g,h) \).

[You must show that your \(g \) and \(h \) are primitive recursive.]

(18) 5(a) Define what is a Turing comutable function with domain \(D \).

(b) Show what happens at each step if 01010 is the input for the TM, \(M \) shown on the right.

(c) Find the language accepted by \(M \).

(18) 6. Determine which of the following languages are regular and which are not.
(a) \(L_1 = \{ a^k b^n : k \equiv n^2 + 1 \pmod{3} \} \) (b) \(L_2 = \{ b^k c^n : k < n^2 + 1 \} \)

[If you say that it is regular, you must find a regular expression for it; if you say it is non-regular, you must give a complete proof. You may use the Pumping Lemma, if you so desire.]
Solutions to Test #2

1. \[
\begin{align*}
&\{A\} \xrightarrow{0} \{A\} \xrightarrow{1} \{A\} \xrightarrow{\emptyset} \emptyset \\
&\{A\} \xrightarrow{\emptyset} \{A\} \xrightarrow{1} \{A\} \xrightarrow{\emptyset} \emptyset \\
\end{align*}
\]

DFA for \(L\)

1. \[
\begin{align*}
&\{A\} \xrightarrow{0} \{A\} \xrightarrow{1} \{A\} \xrightarrow{\emptyset} \emptyset \\
&\{A\} \xrightarrow{\emptyset} \{A\} \xrightarrow{1} \{A\} \xrightarrow{\emptyset} \emptyset \\
\end{align*}
\]

DFA for \(L^c\)

OAS - NFA for \(L^c\)

NFA for \((L^c)^c\)

2. \[
\begin{align*}
&\xrightarrow{\lambda} C, \quad C \xrightarrow{IA}, \quad A \xrightarrow{0A}, \quad A \xrightarrow{IB}, \quad B \xrightarrow{0C} \\
&\quad B \xrightarrow{0D}, \quad D \xrightarrow{0E}, \quad E \xrightarrow{IB}, \quad E \xrightarrow{0C}, \quad E \xrightarrow{\lambda}
\end{align*}
\]

[\(\rightarrow C \text{ means } C \text{ is the starting variable}\)]

3. (a) Eliminate A to get

Eliminate D to get

Eliminate B to get

\[
L(M) = r_1^* r_2 (r_3 + r_3^* r_2)^* \\
= (10^* 10)^* 10^* 100 . (100 + (0+10) . (10^* 10)^* 10^* 100)^*.
\]
The Halting Problem asks if there is a TM such that for an arb. TM M and an arb. input w for M,
H halts on c(M)#c(w) in an acc. state if M halts on w &
H halts on c(M)#9w in a non-acc. state if M does not halt on w.

Let \(\mathcal{H}_n \) = set of all TMs with n states & tape alphabet \{0,1\} which halts when started on the blank tape.
\(\beta(n) \) = maximum number of 1's that a TM in \(\mathcal{H}_n \) can produce.

4.(a) The initial functions are: the constant 0, the zero function \(z(x) = 0 \),
the successor function \(s(x) = x+1 \), and the projective functions
\(I^n_k \) which are defined by \(I^n_k(x_1, \ldots, x_n) = x_k \); 1 <= k <= n.

Primitive recursion is the operation which produces a
function \(f: \mathbb{N}^n \rightarrow \mathbb{N} \) from the functions \(g: \mathbb{N} \rightarrow \mathbb{N} \) & \(h: \mathbb{N} \rightarrow \mathbb{N} \)
by putting \(f(x,0) = g(x) \) & \(f(x,y+1) = h(x,y, f(x,y)) \).

(b) \(f(x,0) = 3x+1 \) \(\rightarrow \) \(g(x) \)
\(g(0) = 3(0)+1 = 1 \)
\(f(x,y+1) = 3x + 4(y+1) + 1 \)
\(= (3x + 4y + 1) + 4 \)
\(= (3x + 4y + 1) + 4 \)
\(= h(x,y, f(x,y)) \)
\(g = \text{prim. rec. (} s_0, s_0 s_0 s_0 I_2^{(3)} \text{)} \) & \(h = s_0 s_0 s_0 s_0 I_2^{(3)} \)

5.(a) A function with domain \(D \) is said to be Turing-computable
if we can find a TM M such that we have we D \(\Rightarrow \)
\(\langle g_0, w \rangle \xrightarrow{\ast} \langle g_f, f(w) \rangle \) is a halted computation in M with \(g_f \in A \).

(b) \(\langle A, 01010 \rangle \xrightarrow{\ast} \langle D, 11010 \rangle \xrightarrow{\ast} \langle B, 11010 \rangle \xrightarrow{\ast} \langle C, 1110 \rangle \)
\(\xrightarrow{\ast} \langle B, 11100 \rangle \xrightarrow{\ast} \langle C, 11101 \rangle \xrightarrow{\ast} \langle F, 11101 \rangle \)

(c) \(L(M) = 00^* + 00^* 10(10)^* + 10(10)^* = 00^* + (00 + 1).10.(10)^* \)
6(a) If \(n = 0 \pmod{3} \), then \(k = 0^2 + 1 = 1 \pmod{3} \); if \(n = 1 \pmod{3} \), then \(k = 1^2 + 1 = 2 \pmod{3} \); & if \(n = 2 \pmod{3} \), \(k = 2^2 + 1 = 2 \pmod{3} \). So \(L_1 = a(aa)^*b(bb)^* + a(aa)^*b(bb)^*a(aa)^*b(bb)^* \) and is therefore a regular language.

(b) Suppose \(L_2 \) was a regular language. Then we can find a DFA \(M \) such that \(L(M) = L_2 \). Let \(N \) be the number of states in \(M \) and consider the string \(b^{N^2}c^N \). Since \(N^2 < (N+1)^2 \), \(b^{N^2}c^N \in L_2 \) & will be accepted by \(M \). Since it takes \(NH \) states to process the \(c^N \), the acceptance track of \(b^{N^2}c^N \) must have a loop as shown below with \(j = 1 \).

Now if we skip this loop, we will see that \(M \) accepts \(b^{N^2}c^i \cdot c^{N-i-j} = b^{N^2}c^{N-j} \). But \(N^2 \neq (N-j)^2 + 1 \), so this contradicts the fact that \(L(M) = L_2 \). Hence \(L_2 \) cannot be a regular language.