MAD 3512 - THEORY OF ALGORITHMS TEST #2 – Spring 2021

FLORIDA INT'L UNIV. <u>TIME: 75 min</u>.

Answer all 6 questions. No calculators, notes, or on-line stuff are allowed. An unjustified answer will receive little or no credit. Draw a line to separate each of your 6 solutions to the 6 questions. (Double check the solutions that you send as a pdf file – to ensure it contains everything.)

(16) 1. (a) Find an NFA, *M*, which is *equivalent* to the RLG *G* given below. $G: \rightarrow D, D \rightarrow 01D, D \rightarrow 1C, C \rightarrow 10, C \rightarrow \lambda, C \rightarrow 1B,$

D,
$$D \to 01D$$
, $D \to 1C$, $C \to 10$, $C \to \lambda$, $C \to 1B$,
 $C \to A$, $B \to 1D$, $B \to \lambda$, $A \to 0C$, $A \to 11$.

- (b) Find an RLG, G, which is equivalent to the NFA in Problem 2(a) below.
- (16) 2. (a) Find a *regular expression* for the language accepted by the NFA *M* shown on the right.
 - (b) Define what is the busy-beaver function, $\beta(n)$.

- (16) 3. (a) Define the *initial functions* and the operation called *primitive recursion*.
 (b) Show that F(x,y) = 4x+3y+2 is a *primitive recursive function* by finding primitive recursive functions g and h such that F = prec(g,h).
- (16) 4.(a) What is the difference between a total function & a μ-recursive function on N.
 (b) Let f(x) = Ceiling function of [(x²+1)^{1/3}]. Show that f is a μ-recursive function. [You may use the fact that PRED, MONUS, ADD, MULT & SIGN are primitive recursive if needed in #4, but you are **not** allowed to do so in Question #3.]
- (18) 5.(a) What is the difference between a *Turing-decidable language* and a *Turing semi-decidable language*.
 - (b) Show what happens at each step if (i) 1 and (ii) λ are the inputs for the TM, *M*, shown on the right.
 - (c) What is the *function computed* by *M* in monadic (base 1) notation?

(18) 6. Determine which of the following languages are regular and which are not. (a) $L_1 = \{a^k b^n : k \pmod{3} > (n^2 - 1) \pmod{3}\}$ (b) $L_2 = \{b^k c^n : k > n^2 + 2\}$. [If you say that it is regular, you must find a regular expression for it; if you say it is non-regular, you must give a complete proof.]

MAD 3512 - Theory of Algorithms Florida International Univ. (1) Spring 2021 Solutions to Test # 2 (b) G: $\rightarrow C$, $C \rightarrow aA$, $A \rightarrow bA$, $A \rightarrow dE$ of the the state $A \rightarrow cD$, $E \rightarrow cC$, $E \rightarrow bD$ $D \rightarrow \lambda, D \rightarrow bB, B \rightarrow dE.$ $\mathcal{E}hm. A \rightarrow \mathcal{O}$ $ab^*d = 4$ ab = 0ab = 0ab*de ab*(db+c) Jadk > C Lade $L(M) = R_{1}^{*}R_{2}(R_{4} + R_{3}R_{1}^{*}R_{2})^{*} =$ (ab*dc)* ab*(db+c). [adb + adc. (ab*dc). ab*(db+c)]* 2(b) $\beta(n) = max. no. of is a DTM in Hn can produce when$ started on the blank tape. Hn = set of all DTMs with n states + $a halt which halts when started on the blank tape. & alphabet {1,13$ state;# 3/a) The initial functions are the constant o, the zero function $Z(x) \equiv 0$, the successor function S(x) = x+1, and the projective functions $I_{k,n}(x_1, ..., x_n) = x_k$ if $I_k \le n & \chi$ if k = 0Prim. recursion is the operation that takes two functions $g:N \xrightarrow{\sim} N$ & h: IN "> N & produces a function f: IN "> N by putting f(x, 0) = g(x) & f(x, s(y)) = h(x, y, f(x, y))3(b) f(x,y) = 4x + 3y + 2. $f(x,0) = 4x + 2 \leftarrow g(x)$ $f(x, y) = 4x + 3(y+1) + 2 = (4x+3y+2) + 3 = f(x, y) + 3 \leftarrow h(x, y, f(x, y))$ $i = 505050 I_{2,2} & g(e) = 2 & g(s(y)) = 4(y_1)_{12} = g(y_1 + y_2)_{12} = g(y_1 +$ Sug = prec (Sosol, sosososo I2,2) $f = prec(g,h) = prec(prec(sosol, sososoI_{2,2}), sososoI_{3,3})$ III 1/212 $g = prec(g_1, h_1)$ $g_1 = sosoo, h(y, g(y)) = g(y) + 4$ $h = sosososo I_{2,2}$

#4(a) A total function on is any function g: N > N which is defined for all values of XENK. A recursive function is a partial function which can be obtained form the initial functions by a finite no. of cartesian products, prim recursions compositions, and minimizations on total functions. 4(b) Let $g(x,y) = (x^2+1) - y^3$. Then $f(x) = (\mu y) [g(x,y) = 0]$. So f = M[g,0] = M[MONUS o (So MULTO (I1,2 ~ I1,2) ~ MULT (I2,2 MULT (I2,2 12,2))), 0] # 51a) A language L is Turing-decidable if we can find a TM M, such that M, halts in an accepting state on w, when weL & M, halts in a non-accepting on w, when will. L is Turing semi-decidable if we can find a TM M2 such that M2 halts in an accepting state on w, when we L & M2 fails to halt, or halts in a non-accepting state onw, if wEL. 5(b) + (A, 1) + (A, Y u) + (B, Y u) + (F , u) + (E, 11 u) + (B, 11)H(B, 1 | 1) H(B, 1 | 1) H(C, 1 | 1) H(D, 1) halts(ii) $\vdash (A, \amalg) \vdash (B, \amalg \sqcup) \vdash (C, \amalg \sqcup) \vdash (D, \bot) halts$ 5(c) So f(0) = 1, f(1) = 4, [Check that f(2) = 7.] f(n) = 3n + 1. #6(a) if $n \equiv 0 \pmod{3}$, then $k \pmod{3} > 0^2 - 1 \equiv 2 \pmod{3}$, no value of k If $n \equiv 1 \pmod{3}$, then $k \pmod{3} > 1^2 - 1 \equiv 0 \pmod{3}$, so $k \equiv 0 \text{ or } 1$ If $n \equiv 2 \pmod{3}$, then $k \pmod{3} > 2^2 - 1 \equiv 0 \pmod{3}$, so $k \equiv 0 \text{ or } 1$ So (2+a)(aag)*b(bbb)* + (2+a).(aaa)* bb (bbb)* is a reg. expr. for L, 6(b) Suppose L2 was reg. Then we can a 2-free NFA Mwith Nstates such that L(M2)= L2. Since N2+3>N2+2, 6N2+3 NEL2 and since it takes N+1 states to process CN, the acceptance track of $b^{N^2+3}c^N$ must have loop as shown. If we ride this loop twice, this $2b^{N^2+3}c^{i}$ $b^{N^2+3}c^{i}$ b^{N^2+3+i} b^{N^2+3+i} b^{N^2+3+i} b^{N^2+3+i} shows that M2 accepts a Nº+3 N+j. But $N^2+3 \neq (N+j)^2+2 = N^2+2jN+j^2+2$. So this contradiction shows that L_2 is non-regular.