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11

Determine as many isomorphisms as you can between the graphs G
and G, of Figure 1.1.3.

Define the complement of G using set differences.
Represent K, 5, ..., p, as the join of graphs.

Prove that G x G is isomorphic to G2 X G .

Determine a result analogous to Theorem 1.3.1 for digraphs.

Give examples to show that there are walks that are not trails and
trails that are not paths.

Given a (py, q; ) graph Gy and a (p3, 92 ) graph G, determine
formulas for the order and size of G}, G; U G,, G; xG, and
GG ] !

Prove or disprove: The graph G [ G, ] is isomorphic to G, [ G ].

Prove that if two graphs are isomorphic, then they have the same
order and size and degree sequence.

Find all nonisomorphic graphs of order 4.

Show that two graphs G and H are isomorphic if, and only if, there
are two bijections (1-1 and onto functions) f1: V(G ) = V(H)
and fo: E(G) = E(H)suchthate = uv € E(G) if, and only
if, fa(e) = fi(u)fa(v)

Prove that a (p, ¢ ) graph G is a complete graph if, and only if,

a=(%)
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13.
14,

15.

16.

17.
18.

19.

20.

21
22,

23,

Determine the order and size of K, p, ..., poo # 2 2.

A (p, q) graph G is self complementary if G is isomorphic to G.
Show that if G is self complementary, then p = 0,1(mod 4).

Suppose A(G) = k. Prove that there exists a supergraph H of G (that
is, a graph H that contains G as a subgraph) such that G is an induced
subgraph of H and H is k-regular,

Prove that if G is a regular bipartite graph with partite sets V| and V5,
then |V | = | Va |

Determine all nonisomorphic digraphs of order 4.

Characterize the matrices that are adjacency matrices of digraphs, that
is, those matrices A(D) = [a;] where a; =1 @if
vi » vj e E(D)andg; = 0 otherwise.

Determine which of the following sequences is graphical, and for
those that are graphical, find a realization of the sequence.

a. 5,5573,3,2,2,2,2,2 ;

b. 7,6,5,5,4,3,2,2,2

-¢c 4,4,3,2,1,0

Show that the sequence dy, da, *°

the sequence p —d; =1, p —da - 1,..., p —d, — 1 is graphical.

The degree.set of a graph G is the set of degrees of the vertices of G.

a. Show that every set S = { @y, a3,..., a¢ } (k 2 1) of positive
integers with a; < az < '+ < a is the degree set of some
graph.

b. Prove that if 1 (S ) is the minimum order of a graph with degree set
S,thenu(S) = a; + 1.

c. Find a graph of order 7 with degree set S = {3,4,5,6}.

Show that every graph of order n is isomorphic to a subgraph of K.

’ -24— Show that every subgraph of a bipartite graph is bipartite.
Let G be a bipartite graph. If Aoy is the transpose of A |3, show that L

25.

the vertices of G can be partitioned so that the adjacency matrix of G
has the following form:
0 Ap
Agj 0

*, d, is graphical if, and only if, - ",
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26.

31

33

34,

3s.

36.

37.

38.

39.

Let G be a (p, g ) graph and let ¢ be an integer, 1 < t < p - 1.
Prove that if p 2 4 and all induced subgraphs of G on ¢ vertices have
the same size, then G is isomorphic to K, or K.

LetGbea(p, q)graph. Showthatd(G ) < _2;q_ < A(G).

Show that the entries on the diagonal of A2 are the degrees of G.
Show that any degree sequence of a graph has two equal terms.

Show that dy, dy , ..., dp is the degree sequence of a multigraph if
p

and only if ¥, d; is even.

i=1
The line graph L(G) of a (p, q) graph G is that graph with
V(L(G)) = E(G ) and such that two vertices in L (G) are adjacent
if, and only if, the corresponding edges in G are adjacent. Determine

formulas for the order and size of L( G ).
Find L(K33 ).

Assuming no human head has more than 2,000,000 hairs on it, show
that there are at least two people in New York City with exactly the
same number of hairs on their heads.

Show that if the digits 1, 2,..., 10 are used to randomly label the
vertices of a C g (no label is repeated), that the sum of the labels on
some set of three consecutive vertices along the cycle will be at least
17.

Show that there exist graphs on five vertices that do not contain an
induced K5 or K3.

If we color the vertices of C; either red, white, blue or green, what
can be said about the order of the largest subgraph each of whose
vertices has the same color?

Prove that in any group of p 2 2 people, there are always two people
that have the same number of acquaintances.

(*) Prove that any sequence of n? + 1 distinct integers contains
either an increasing subsequence of n + 1 terms or a decreasing
subsequence of n + 1 terms.

Find a sequence of n? (n 2 3) distinct integers that does not contain
an increasing subsequence of n + 1 terms or a decreasing
subsequence of n + 1 terms.
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40. Prove that if n+1 numbers are selected from the set
{1,2,..., 2n }, then one of these numbers will divide a second one

of these numbers.
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1.

Show that graph distance is a metric function. Is distance still a
metric function on labeled or weighted graphs?

Modify the BFS labeling process to make it easier to find the x —v
distance path,

Modify the BFS algorithm to find the distance from x to one specified
vertex y.

Develop a recursive version of the BFS algorithm.

What modifications are necessary to make Dijkstra’s algorithm work
for undirected graphs?

Modify Dijkstra’s algorithm to find the distance from x to all vertices
reachable from x.

Prove that the relation "is connected to" is an equivalence relation on
the vertex set of a graph.

Show that if G is a connected graph of order p, then the size of G is at
leastp = 1.

N !
g
1 ‘!s
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M
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10.

- 11
12,

13.

14,

15.

. 16.

17.
18.

19.

20.
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22,

23,

Determine a sharp lower bound on the size g of a (p, ¢ ) graph
necessary to ensure that the graph is connected.

Characterize those graphs having the property that every one of their
induced subgraphs is connected.

Prove that every circuit in a graph contains a cycle.

Prove that if G is a graph of order p and S(G)Z%, then
kl‘( G)=8(G). -

Suppose that G is a (p, ¢ ) graph with k(G )=n and k(G )=m,
where both n and m are at least 1. Determine what values are possible
for the following:

k(G=v), ki(G=v), G -e), ki(G~e).

Let G be an n-connected graph and let vy, va,..., v, be distinct
vertices of G. Suppose we insert a new vertex x and join x to each of
Vi, V2,..., V. Show that this new graph is also n-connected.

Prove that if G is an n-connected graph and vy ,..., v, and v are
n + 1 vertices of G, then there exist internally disjoint v — v; paths for
P=1y: 00 s

Show that if G contains no vertices of odd degree, then G contains no
bridges.
Prove Theorem 2.1.4.

In applying Ford’s algorithm to a weighted digraph D that contains no
negative cycles, show that if a shortest x — v path contains & arcs, then
v will have its final label by the end of the kth pass through the arc
list.

Modify the labeling in Ford’s algorithm to make backtracking to find
the distance path easier.

Show that G contains a path of length at least 8(G).

Show that G is connected if, and only if, for every partition of V( G. )
into two nonempty sets V| and V, there is an edge from a vertex in
V| to a vertex in V5.

Show that if (G ) 2 -p—;—l-, then G is connected.

Show that any nontrivial graph contains at least two vertices that are
not cut vertices.
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24,
- 25,

26.

27.

28.

29..

30.

3L

32,

33.
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Show that if G is disconnected, then G is connected.

Show that if G is connected, then either G is complete or G contains
three vertices x, y, z such that xy and yz are edges of G but
xz¢ E(G).

A graph G is a critical block if G is a block and for every vertex vy,
G - v is not a block. Show that every critical block of order at least 4
contains a vertex of degree 2.

A graph G is a minimal block if G is a block and for every edge e,
G - e is not a block. Show that if G is a minimal block of order at
least 4, then G contains a vertex of degree 2.

The block index b(v) of a vertex v in a graph G is the number of
blocks of G to which v belongs. If b(G ) denotes the number of
blocks of G, show that.
b(G)=x(G)+ X

ve V(G)
Three cannibals and three missionaries are traveling together and they
arrive at a river. They all wish to cross the river; however, the only
transportation is a boat that can hold at most two people. There is
another complication, however; at no tifne can the cannibals
outnumber the missionaries (on either side of the river), for then the
missionaries would be in danger. How do they manage to cross the
river?

(b(v)-1).

Prove that there can be no solution to the three cannibals and three
missionaries problem that uses fewer than eleven river crossings.

Does a four-cannibal and four-missionary problem make sense? If so,
explain this problem and try to solve it.

Three wives and their jealous husbands wish to go to town, but their
only means of transportation is an RX7, which seats only two. people.
How might they do this so that no wife is ever left with one or both of
the other husbands unless her own husband is present?

The 8-puzzle is a square tray in which are placed eight numbered
tiles. The remaining ninth square is open. A tile that is adjacent to
the open square can slide into that space. The object of this game is
to obtain the following configuration from the starting configuration:

|
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34,
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start
2 | 8 3
1 6 4
7 5
oal
1 2 3
8 4 _
7 6 5

How does this problem differ from those studied earlier? Can you
build a mechanism into the rules that handles this difference?

A problem-solving search can proceed forward (as we have done) or
backward from the goal state. What factors should influence your
decision on how to proceed?

Char'{'C’V' =
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1.

Show that if T = (V, E ) is a tree, then for any e € E, T —e¢ has
exactly two components.

Show that any connecled graph on p verlices contains at least p — 1

-edges.

Show that if T is a tree with 8( T ) 2 &, then T has at least & legves.

In a connected graph G, a vertex v is called central if

max d(u, v) = rad (G ). Show that for a tree T, the set of

ueV(G) . . .
central vertices consists of either one vertex or two adjacent vertices.

Show that the sequence dy,d3,..., dp of positiv; integers is the
degree sequence of a tree if, and only if, the graph is connected and
p

d=2p-1).
=]
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12,
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Show that the number of end vertices in a nontrivial tree of order n
equals 2+ Y, (degv;-2).,
deg v; 23

Determine the time complexity of Kruskal’s algorithm.,

Apply Kruskal’s algorithm to the graph:

A4 " 4 J
Apply Prim’s algorithm to the graph of the previous problem.

Prove that a graph G is acyclic if, and only if, every induced subgraph
of G contains a vertex of degree one at most.

Characterize those graphs with the property that every connected
subgraph is also an induced subgraph.

Find the binary tree representations for the expressions 4x — 2y,
(3x+2z)(xy —7z),and Vb? = 4ac.

Perform a preorder, postorder and inorder traversal on the trees
constructed in the previous problem.

Determine the number of nonidentical spanning trees of the graph
below. Before you begin your computation, make an observation

about this graph that will simplify the calculations. -

O—)—

e

Find the spanning trees on the set { 1,2, 3,4 }.

Using the proof of Cayley's theorem, determine the sequences of
length p =2 on { 1, 2, 3, 4} that correspond to any two of the trees
found in the previous problem.
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17.

18.
19.

20.

21

22,

23,

24,

25.

26.
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Show that the Priifer algorithm for creating a tree from a sequence
selects the same vertex as the algorithm for producing the sequence.

Use the matrix-tree theorem to prove Cayley’s tree formula.

Find the number of directed spanning trees with root 3 in the
following digraph:

Show that the number of trees with m labeled edges and no labels on
the vertices is (m + 1 )"2,

Determine the number of trees that can be built on p labeled vertices
such that one specified vertex is of degree k.

By contracting an edge e = uv, we mean removing e and identifying
the vertices u and v as a single new vertex. Let nump( G ) denote the
number of spanning trees of the graph G. Show that the following
recursive formula holds:

nump(G ) = nump(G —e) + nump(Goe)

where G o e means the graph obtained from G by contracting the
edge e. Hint: Interpret what numyp(G —e ) and nump(G o e) really
count,

Show that the algorithm for determining the number gf spanning trees
of G implied by the previous problem takes exponential time.

Determine the Huffman tree and code for the alphabet
{x, y, z, a, b, ¢ } with corresponding frequencies (3, 8, 1, 5, 4,4).

What is the minimum weighted path length for the Huffman tree you
constructed in the previous problem?

)
Using the definition of( sl ), show that

U]
‘/2) -1y (1)3)(5)- - (2n=1)_ _@)ED =
(n+1 =

Sl XTI 2)(3) (A1) Znln+)
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1. Find the maximum flow in the network below, using each of the
algorithms presented in this chapter,

2. Use Algorithm 4.3.2 to find the maximum flow in the network of
Figure 4.1.2,

3. Use Algorithm 4.4.1 to find the maximum flow in the network of
Figure 4.1.2,

4. Letuand v be two vertices of a digraph D = (V, E)andletE, g E
such that every u — v path in D contains at least one arc of E|. Prove
that there exists a set of arcs of the form (W, W) (where W ¢ V)
suchthatu € W,v e Wand (W, W) ¢ E|.

5. Suppose the following network has multiple sources s;, s, and s3
and they have available supplies 6, 12, and 7, respectively. Further
suppose that ry, t5 and ¢5 are all sinks with the demands 7, 12 and 6,,
respectively. Determine whether all these demands can be met
simultaneously. ' :

"
]

by
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6. Let N be a network with underlying digraph D. Prov.e that if D
contains no s — ¢ path, then the value of a maximum flow in N and the

value of a minimum cut in N are both equal to zero.

7. Prove or disprove (each direction): The flows fi an.d fa2 in the
network N agree on (W, W) and (W, W) if, and only if, f1 and f,
are maximum flows in N.

8. Use networks to prove that k( Ky, ) = min {m, n }.

9. In the following network, in addition to the usual constraints, we have
the additional constraint that each vertex (other than s am:l 1) has an
upper bound on the capacity that may flow through it. Th'xs capacity
is indicated by the value inside the vertex. Find the maximum flow

for this network.
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10.  Prove that in a network with a nonnegative lower bound on each are, |
11,

12,

14,

15.

A,

e oo} BRI ||"l‘
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but no upper bound, there exists a legal flow if, and only if, for every
arc e, either e is in a directed circuit or e is in a directed path from s to
t(orrtos).

Prove that a network with both lower and upper bounds on the flow in
the arcs has no legal flow if, and only if, there exists a set of vertices
which includes neither the source nor the sink and is required to
produce flow or absorb it. .

A path cover of the vertices of a digraph D = (V, E ) (or graph) is a
set of paths with the property that each vertex of D lies on exactly one
path (note that a path may be trivial). Use the following network to
develop an algorithm for determining ‘the minimum number of paths

necessary to cover an acyclic digraph D = (V, E): Let
= (V,, Ey ) where
Vi={st} U {u,...,uV]|)
U vV}

={s>u|1gig|V]}
Ulviot|1£ig|V |} |
Uiy—ovi|lx—-xe E(D)}

Also, set the capacities of each arc to 1. (Hint: Show that the
minimum number of paths which cover V equals | V |, the max flow
in the network.)

In the previous problem, was the assumption that D was acyclic
necessary?

Suppose we ease the path cover restriction in the sense that the paths

are no longer required to be vertex disjoint. Further, into the network
constructed in exercise 11, insert the additional edges
{ui—>v; | 1<i<|V ]|} Now, let the lower bound on each of
these new arcs be 1 and on all other arcs be 0 and let all upper bounds
be . Describe an algorithm for finding the minimum number of
paths covering the vertices of the original digraph D.

(Dilworth’s theorem [3]) Two vertices are called concurrent if no
directed path exists between them. A set of vertices is concurrent if
its members are pairwise concurrent. Prove that the minimum
number of paths which cover the vertices of D equals the maximum
number of concurrent vertices. (Hint: See the previous exercise.)

Chapter 4: Networks EX(/’( /‘:(‘f_(‘ gf f/’ 4

16.

17.

18.

19,

20.

21,

22,

Verify that the modified Ford and Fulkerson algorithm for networks
with upper and lower bounds actually gives the desired results.

Complete the proof of the edge version of Menger's thcorem
(Theorem 4.6.2).

If paths (u, v ) is the maximum number of pairwise disjoint u —v
pathsin a graph G, show that if G is not complete, then

paths (u, v) =_ " s1('nli;rgc)paths( u, v),

uyve V(G)

that is, the minimum value of paths(u,
nonadjacent pair of vertices u, v.

v ) occurs for some

Show that if the connectivity of a graph G is , then

k = in aths (u, v).
u.vIeTn(G)p ( )

Let N be a 0—1 network with no multiple arcs and let M be the
maximum total flow from s to ¢ in N. Show that the length of the first

layered network (with zero flow everywhere) is at most + 1.

Show that for the network N of the previous problem, Dinic’s
algorithm has time complexity O ( [ V¥* | | E | ).

Determine if the network below has a legal flow. If it does not,
modify as few capacities as possible to obtain a network that does

have a legal flow.

2,9

A7
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1.

2
3.
4

Prove Corollary 5.1.2,
Prove Theorem 5.1.2.
Determine the complexity of Algorithm 5.1.1.

Use each of Algonthms 5.1.1,5.1.2 and 5.1.3 to find an eulerian cycle
in the graph below.

Determine an algorithm to accomphsh the splitting away of two
edges.

If H is the graph obtained from G by splitfing away e¢; =vw and
ez = vx, prove that H is connected if, and only if, G is connected and
{ ey, ez } does not form a cut set.

Prove that a nontrivial connected graph G is eulerian if, and only if,
every edge of G lies on an odd number of cycles.

Prove that a nontrivial connected digraph D is eulerian if and only if
E can be partitioned into subsets E |, E, , ..., E such that the graph
induced by E; is a cycle foreach i, (1 Si Sk ).

Prove Observations 1 and 2 from page 135.

Show that if G = (V, E) is hamiltonian, then for every proper
subset S of V, the number of components in G — § is at most | S |.
Show that if G is not 2-connected, then G is not hamiltonian.
Characterize when the graph X, 5, ..., p, is hamiltonian,

Prove or disprove: If G and H are hamiltonian, then G x H is
hamiltonian,

Prove or disprove: If G and H are hamiltonian, then G[H ] is
hamiltonian,

Chapter 5: Cycles and Circuits
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~15.

.-16.

.17,

- 18.

19,
20.

21,

22,

23,
24,

25,
26.
27.

28.

29,

30.

Let the n-cube be the graph Q, = K3 x Q,-; (where @; = K,).
Prove thatif n 2 2, Q,, is hamiltonian.

Let G be a graph with §( G ) 2 2. Show that G contains a cycle of
length at least 8( G ) + 1.

Supposg that G is a (p, ¢ ) graph with p 2 3. Show that if
q 2 E—P—— , then G is hamiltonian,

Show that if G is a (p, ¢ ) graph with ¢ 2 ( ) + 3, then G is

hamiltonian connected.

Show that if G is hamiltonian connected, then G is 3-connected.

Show that if a (p, g ) graph G is hamiltonian connected and if p 2 4,
theng 2 §2&1

Give an example of a graph that is pancyclic but not panconnected.
(Hint: Consider order 8.)

Find an example of a graph that is hamiltonian connected but not
panconnected.

Find an example of a graph that is pancyclic but not vertex pancyclic.

Can we remove the restriction that D be strongly connected from
Meyniel’s theorem?

Show that every complete graph with directed edges is traceable.
Show that K,, with strong directed edges is vertex pancyclic,

Give an example of a hamiltonian connected digraph that sansﬁes the
conditions of Theorem 5.4.2 but does not have od v 2 12-— and

idv 2 E—;-'— for every vertex v.

Show that the Petersen graph is
nonharmiltonian and also hypohamiltonian.

Show that homogeneously traceable nonhamiltonian graphs exist for
allordersp 2 9.

Show that if G = (V,E) is a homogeneously traceable
nonhamiltonian graph and x € V, then x is adjacent to at most one
vertex of degree 2.

homogeneously traceable




BN UN1H TRt o iy g it
vl il C | et
sl . i

Ykl i \ .|£i|-w
N ;

H sl

; "'l‘.ilﬁl'll' ! AL
87
g’ 7 ;; [A _ Chapter 5: Cycles and Circuits Chapter 5: Cycles and Circuits
¥ -‘- ¢ . a e s ih
KEF CISE 2 Exercrises for CH. 5 g
31. Show thatif C,-) (G ) =K), then G is traceable. 42, Show that the greedy approach to the traveling salesman problem can .

be arbitrarily bad.

43, Prove that the graph of Figure 5.7.1 is the unique (5, 3 )-cage and is
isomorphic to the Petersen graph.

32. Prove Corollary 5.4.2.
33. Prove that the graph G2 of Figure 5.5.1 is not hamiltonian,

34, Show (without using Fleischner’s theorem) that if G is 2-connected, . T

then G* is hamiltonian. (Hint: Consider spanning trees). % Tind the (6,3 )-onge and:show that if i unique.
35. Use Fleischner’s theorem to show that if G is 2-connected, then G2 is 45:  Fiovs Theorem S B4
hamiltonian connected. (Hint: Consider five copies of G along with
two additional vertices x and y joined to an arbitrary pair of vertices u

and v in each copy of G). :
36. Prove Theorem 5.5.2. §
37. Prove that if G is a graph of order p 2 3 such that the vertices of G ’ .
can be labeled vy, vy , ..., v, so that

J<k, j+kzp, vivg ¢ E(G) '
deg vj <), deg vy Sk~ 1 = deg v; +deg vy 2 p.

then G is hamiltonian. i

38. Let G be a graph of order p 2 3, the degrees d; of whose vertices ,
satisfy d) < dy <,..., <d,. If _ |

. 4
dij<L

2 = dp-jzp-j;

then G is hamiltonian,
39. Prove that if G is a graph of order p 2 3 such that for every integer j
withl £ j < E, the number of vertices of degree not exceeding j is

2 :
less than j, then G is hamiltonian. i

40. Prove that if G has order p 2 3 and if k(G ) 2 B(G ) = the
maximum number of mutually nonadjacent vertices, then G is
hamiltonian.

41. Determine the minimum salesman’s walk in the following graph.
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1.

Show that if G is a plane (p, ¢) graph with r regions, then
p — q +r = 1 + k(G) where k(G) is the number of components of

G.

"g(frc“/lsf’f 74’ (4. &

An (f, d )~ regular polyhedron graph is a plane graph that is d--

13,

14,

15.

B /0

Chapter 6: Planarity

regular (d 2 3) and each of its faces has S sides. Use Euler’s
formula to show that there are only five regular polyhedron graphs.
(Hint: The dodecahedron is a ( 5, 3 )-regular polyhedron graph.)

Show that "homeomorphic with" is an equivalence relation on the set
of graphs.

Show that a graph is planar if, and only if, each of its blocks (maximal
2-connected subgraphs) is planar.

Let G be a maximal planar graph of order p 2 4. Also let pi denote
the number of wvertices of degree ! in G, where
i=3,4,..., A(G) = n. Show that

3p3 + 2p4 + ps =py + 2pg + -

Show that any maximal planar (p, ¢ ) graph contains a bipartite

+ (n=6)p, + 12,

subgraph with 2 -g— edges.

Find an example of a planar graph that contains no vertex of degree
less than 5. '

Prove that every planar graph of order p 2 4 contains at least four
vertices of degree at most 5.

Show that the Petersen graph (Figure 7.3.2) contains a subgraph
homeomorphic with K'3 5 and is therefore not planar.
Show that if G is a connected planar (p, ¢ ) graph with girth (shortest

_ (p=2)
cyclelength) g (G ) = k 2 3, then | E | < (k-2) "

Use the last result to again show that the Petersen graph is not planar,
A graph is self-dual if it is isomorphic to its own geometric dual.

Show that if G is self-dual, then2 |V | = | E | + 2. Further, show
that not every graph with this property is self-dual.

If G is a connected plane graph with spanning tree T, and
E' ={e"€E(G") | e ¢ E(T)}, showthatT* = (E* ) isa
spanning.tree of G . ’

Show that if | V(G )| 2 11, then at least one of G and G is.

nonplanar,

Show that the average degree in a planar graph is actually less than 6.
(Note that this provides an alternate proof to Corollary 6.1.2.)
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16, Use the DMP algorithm to test the planarity of the following graphs. 22, Show that no hamiltonian cycle in the graph below can contain both
of the edges e and f,

17. Prove path propemes 1-5 relating to the Hopcroft- Tarjan planarity
algorithm,

18. Use the Hopcroft-Tarjan planarity algorithm to test the planarity of ' . "
the graphs from exercise 16 in Chapter 6. "

19. Prove Theorem 6.4.1. .

20. How might you actually keep track of the paths both inside and ‘ ;
outside of a given cycle? How much information must actually be s
recorded?

21. " Use Grinberg’s theorem to show that the graph below is' not
hamiltonian. ‘ "
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Sxercises towr (4.7

27.
28.

Find a decomposition of K o as paths of length 5.
Prove that for each integer n 2 1, the graph Ka,41 can be
decomposed as a collection of stars Ky, , and that the graph Ko, can

be decomposed as a collection of stars K, .

Exercises /éi" L"A n/;/er 7

2w

o

10.

11,

Show that the n-cube 0, (n 2 2 ) has a perfect matching.
Show that Q, is r-factorable if, and only if, r | .
Characterize when the graph Ky pa...., pa has a perfect matching.

Determine the number of perfect matchings in the graphs K, p and
K. '

How many perfect matchings can exist in a tree?

Find a maximum matching and a minimum cover in the graph below
using each of the indicated methods.

a. Algorithm 7.2.1 and Theorem 7.2.1,

b. A network model.

Use Dirac’s theorem (Corollary 5.2.1) to show that if G has even
orderand 8( G ) 2 % + 1, then G has a 3-factor,

|
Show that every doubly stochastic matrix is a square matrix.

Show that if G = (X U Y, E ) is a bipartite graph, then
Pi(G) = |X|—§né§({lsl —-IN(S) I}

Use the previous exercise to show that if the (p, ¢) graph:

G=(XUVUYE) is bipartite and |[X|=]|Y|=n and
q 2 (k=1)n, then G has a matching of cardinality k.

[ 9] Suppose that G is a graph of order p with the property that for
every pair of nonadjacent vertices xandy, | N(x) U N(y) | 2 s.
a. Use Berge's defect form of Tutte's theorem to show that if
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. s> 2[%} ~2andpisoddandp 2 6, then

17.

" 18.

13.
14.

16.

1
Bi(G) = —2'(P'1)-
b. Find-a graph of order 5 for which the conditions of part (a) fail to
ensure By (G ) = —;— (p=1).
c. Use Tutte’s theorem to show that if s > %—(p = Yy=1 and p is

even and G is connected, then By (G ) = 1;—

Use Tutte’s theorem to prove Hall’s theorem.
Use Kénig's theorem to prove Hall’s theorem.
Prove Corollary 7.3.1.

Prove Theorem 7.3.6.

Show that K,, can be factored into n — 1 hamiltonian paths and one
1-factor. ‘ -

Let G be a (p, g ) graph of even order p with 8(G ) < £ Show

2
that if

3G -28(G) -
o> (X2 (T 1)+&GXP—MG}x

then G has a perfect matching.

Four men and four women apply to a computer dating service. The
computer evaluates the unsuitability of each man for each woman as a
percentage (see the table below). Find the best possible dates for each

woman for this Friday night.

| My, M, My My
W, | 60 35 30 65
w, | 30 10 55 30
W4 40 60 15 35
Wy 25 15 40 40

19, Consider the table used for the last exercise as representing the

weights assigned to a bipartite graph and solve the bottleneck
assignment problem for this graph.

Chapter 7: Matchings Cg/’Yc’/C/:{(J‘ A’/ (Z 7

20.

23,

24,

25,

26.

Th§ math department at your college has six professors that must be
assigned to teach each of five different classes. The department did
an examination of the suitability of each professor for each class and
the unsuitability table is shown below. What is the optimal teaching

alsmgnment that can be made if no professor is assigned more than one
class? ;

P, P, Py Py Ps Pg
C, | 75 25 55 25 50 35
C, 60 30 45 35 45 20
Cy | 55 25 50 15 50 30
Cqy | 40 35 40 45 35 25
Cs | 50 20 45 30 40 45

(Hinht:) Add a dummy class that each pror"ess'or is equally suited to
teach,

Does the previous problem make sense as a bottleneck assignment
problem? If so, solve it.

Consider the doubly stochastic matrix below. Use Algorithm 7.2.2 to
decompose this matrix into permutation matrices.

0.3 0.3 0.0 0.3 0.1
0.1 0.5 0.2 0.1 0.1
0.2 0.0 0.3 0.5 0.0
0.0 0.2 0.5 0.0 0.3
0.4 00 00 0.1 0.5

Consider the table of the previous problem as the weights assigned to
the edges of a bipartite graph. Interpret your solution in relatian to
the last problem on this graph.

Explain why the adjustment process allows us to complete the

hungarian algorithm applied to an unsuitability matrix.

A decomposition of G is a collection { H; } of subgraphs of G such
that H; = LG E; RG for some subset £; of E( G ) and where the sets
{ E; } partition E(G ). Prove that the complete graph K, can be
decomposed as a collection of 3-cycles if, and only if, p 2 3, p is odd

and 3 divides ( ; )

Find a decomposition of K 5 as 5-cycles.
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26. a. K1.3 P #Zé ([Jﬁf/ﬂ&(ﬁ’/)
b. K4 -0
c. The Petersen graph
d. The Grotsch graph shown below

27. Find the chromatic polynomial for K} 3 and for K4 — e. How many
S-colorings are there for each of these graphs?

28. Let G be a graph. For every nontrivial subset S of V(G ), either
< § >g or < § > is disconnected if, and only if, G is P 4-free.

Exercises éf [Aﬂ/)/zé/ X

1. Show that % (K, ) = max{m, n }.
2. Show that if G is a bipartite graph, then %;(G ) = 8(G ).

3. Prove that if G is a graph of order p with 8(G) > 0, then
o (G) + Bi(G) = p.

4. Provethatx(Kp, ... p,) =1

5. Prove that if G is k-partite, then x( G ) < k.

6. Prove Corollary 8.2.1.

7. Prove Corollary 8.2.2,

8. Prove Corollary 8.2.3.
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9. Prove Theorem 8.3.1,

10.  Show that every k-chromatic graph is a subgraph of some complete
k-partite graph,

11.  Determine the n-critical graphs forn =1, 2, 3.

12, Show that a criticallx n-chromatic graph need not be (n-1)-
connected,

13.  Characterize graphs whose line graphs are 2-colorable.

14.  Show that for every graph G, x(G ) £ 1 + max 8( H ) where the
maximum is taken over all induced subgraphs H of G.

15. If m(G) denotes the length of a longest path in G, prove that
X(G) <1+ m(G)

16. Find a largest first ordering of the vertices of the graph in Example
8.3.1 that produces a sequential coloring using three colors.

17.  Show that every regular graph of odd order is class 2.

18. Show that if H is a regular graph of odd order and if G is any graph
obtained from H by deleting at most 148( G ) — 1 edges, then G is of
class 2.

19. Show that if H is a regular graph of even order and if G is any graph
obtained from H by subdividing any edge of H, then G is class 2.

20.. Show that if G is any graph obtained from an odd cycle Co4; by
adding no more than 2k — 2 independent edges, then G is class 2.

21. Show that if G is a regular graph containing a cut vertex, then G is of
class 2.

22, Show that there are no regular 8(G )-minimal graphs with
3 G) 2 3.

23. Show that every bipartite graph is perfect.

24, Let G,G;,,..., Gy be pairwise disjoint graphs. Also let

G = 61+ng+ *++ +Gy. Prove that x(G ) = Y, %(G;) and that
&(G) =3 o(Gi).
i=l
25. Show that if G does not contain P4 as an induced subgraph then
%(G ) = w(G ). Aresuch graphs perfect?

26. Use the largest first, smallest last and color-degree algorithms to
bound the chromatic number of each of the following graphs.




