TEST #1 - SPRING 2007

TIME: 75 min.

Answer all 6 questions. Provide all reasoning and show all working. An unjustified answer will receive little or no credit. BEGIN EACH OF THE 6 QUESTIONS ON A SEPARATE PAGE.

(15) 1. Find the distances from b to each of the other vertices of the graph on the right by using Dijkstra's Algorithm.

- (20) 2(a) Find a graph with degree sequence 5,3,3,3,3,3 by using the graphical sequence algorithm.
 - (b) Find a minimal spanning tree of the graph on the right by using Prim's Algorithm & starting at b.

- (20) 3. (a) Find the tree corresponding to (2,1,2,6) via Prufer's Tree Decoding Algorithm.
 - (b) The six characters a,b,c,d,e,f occur with frequencies 25,4,6,15,40,10 respectively. Find an optimal binary coding for these six characters.
- (15) 4. (a) Define what is a connected component of a disconnected graph G.
 - (b) Prove that if G is a disconnected graph, then G^c is forced to be connected.
- (15) 5. (a) Define what is an pendant vertex of a graph G.
 - (b) Prove that in any tree T the number of leaves is equal to $2 + \sum \{\deg(v) 2\}$ $\deg(v) > 2$
- (15) 6. (a) Define what is a *legal flow* f in a network N and what is the *value* of the flow f.
 - (b) Prove that there are only two trees T such that T^c is also a tree.

TEST #1 - SPRING 2007

TIME: 75 min.

Answer all 6 questions. Provide all reasoning and show all working. An unjustified answer will receive little or no credit. BEGIN EACH OF THE 6 QUESTIONS ON A SEPARATE PAGE.

(15) 1. Find the distances from b to each of the other vertices of the graph on the right by using Dijkstra's Algorithm.

- (20) 2(a) Find a graph with degree sequence 5,3,3,3,3,3 by using the graphical sequence algorithm.
 - (b) Find a minimal spanning tree of the graph on the right by using Prim's Algorithm & starting at b.

- (20) 3. (a) Find the tree corresponding to $\langle 2,1,2,6 \rangle$ via Prufer's Tree Decoding Algorithm.
 - (b) The six characters a,b,c,d,e,f occur with frequencies 25,4,6,15,40,10 respectively. Find an optimal binary coding for these six characters.
- (15) 4. (a) Define what is a connected component of a disconnected graph G.
 - (b) Prove that if G is a disconnected graph, then G^c is forced to be connected.
- (15) 5. (a) Define what is an pendant vertex of a graph G.
 (b) Prove that in any tree T the number of leaves is equal to

(b) Prove that in any tree T the number of leaves is equal $2 + \sum \{\deg(v) - 2\}$

- (15) 6. (a) Define what is a *legal flow* f in a network N and what is the *value* of the flow f.
 - (b) Prove that there are only two trees T such that T^c is also a tree.

MAD 3305 - Graph Theory Solutions to Test #1

Florida Internat / Univ. Spring 2007.

1.	L(a)	L(6)	16)	L(d)	L(e)	L(f)	L(9)	7	Vo
	ω.	O	æ	<i>∞</i>	∞	œ	∞	{a,b,c,d,e,f,g}	6
aranda er ne de l'alterna en page de d'alterna de de des de	15		20	3	∞	∞		{a,c,d,e,fg}	
	15		15	•	4	20	12	{a,c,e,f,g}	C
ng di mining li palagang gang p di di dalam	6		10				12	{ a, c, f, g}	а
		**************************************	10					{c,f,g}	•
		(10		(9	{c, g}	9
as are a real membership of the set specific street and set	(10			(,	{c}	C
	,	,			(•	•	Ø	
	6	U	10	3	4	7	9	$=d(b,\cdot)$	**************************************
11								-	

5, 3, 3, 3, 3, 3

2,2,2,2,2

1,1,2,2

2,2,1,1 1,0,1

1,1,0

MI	$\alpha(u, \cdot)$										
(b)	E(T)	U	a.	6	C·	d	e	f	9	×۵	
	Ø	\$63	6		6	00	ø	∞	9	a	
	{bq}	<i>{b,a}</i>		•	6	∞	12	2	4	f	
	{ba,af	₹6, q, f }	,	,	4	<i>∞</i> ∪	8	,	4	c	
	sba, af, fe}	{b, a, f, c}	,	•	,	3	8	,	4	d	
	sba, af, fe, ed?	\$6, a, f, c d?	,	,	•		5	•	1	9	
	ba, af, fc, cd, dg)		((,	,	5	,	•	е	
	ba, af, fc, cd, dg, de)	r • • • • • • • • • • • • • • • • • • •	\$70	P		a p	f c	2	9 5		
83 - 163 1 majar	w (Tmin) = 21			Tmin	=	6	0- q	4		> d	
- 1					1	5 1	0	e 11.7 7 61 3	8/3		

4(a) A connected component of G is a maximal connected subgraph H of G. H is maximal in the sense that there is no connected subgraph H'which strictly contains H.

(b) Suppose G is disconnected. Let us v be any two vertices in G. Now if uv & G, then uv & G and we instantly get a path u-v from u to v in G. And if uv & G, then there must exist a component H2 of G that does not contain usv. Choose a vertex w in H2. Then uw & wv will both be edges in G. So u-w-v will be a path from u to v in G. So in either case we get a path from u to v in G. Since u and v are arbitrary, it follows that G is a connected graph.

```
5(a) A pendant vertex of G is any vertex of degree 1.
 (b) Let p = (V(T)), k = max. degree in T, and ni =
    number of vertices in T with degree i. Then
    n_1 + n_2 + n_3 + \dots + n_k = p. Also sum of degrees in T
     = 2(p-1). So 1.n_1+2.n_2+3.n_3+\cdots+k.n_k = 2p-2
    1. 1. 1, 1 + 2. n2 + 3. n3 + ... + k. nk = (21, +212+213+...+21/k)-2
    1. 2 + 0. N2 + (3-2). N3 + (4-2). N4 + ... + (k-2). Nk = 2N, - N,
     (M_1 = 2 + (3-2), N_3 + (4-2), N_4 + \dots + (k-2), N_k 
             = 2 + \sum_{deg(v)>2} \{deg(v)-2\}
6(a) A legal flow in a network N is any function f: E→[0,0)
    such that (i) f(e) < c(e) for each ee E, and
    (ii) \sum_{e \in Out(v)} f(e) = \sum_{e \in In(v)} f(e) for each v \in V - \{s, t\}. The value of the flow is defined by f(f) = \sum_{e \in In(t)} f(e).
 (b) Suppose T is a tree such that T' is also a tree.
    Let p = (V(T)). Then |E(T)| = |E(T^c)| = p-1.
    Also |E(T)| + |E(T^c)| = |E(K_p)| = P(P^-)/2
    So (p-1) + (p-1) = p(p-1)/2
     4(p-1) = p(p-1)
      (4-p)(p-1) = 0 \Rightarrow p = 1 \text{ or } 4.
    So there can only be two possible values of p.
    If p=1, then T=0 and T^c=0

If p=4, then T=0 and T^c=0
   So there are only two trees T such that T's
   Note: When p=4, Trannot be
                                           bec. T'= 15 not a tree.
```