
Chapter 10

Extremal Theory

Section 10.0 Introduction

We now begin a study of one of the most elegant and deeply developed areas in all of
graph theory, extremal graph theory. We have often dealt with extremal questions. For
example, earlier we tried to determine the minimum number of edges e so that every
graph of order n with at least e edges contained a cycle. This was one of the first
problems we attempted when studying trees. Other extremal problems we have
investigated include ramsey theory, finding bounds on the cardinality of neighborhood
unions that ensured hamiltonian cycles and degree requirements that ensured hamiltonian
properties.

Extremal graph theory, in its most general form, concerns any problem which
attempts to determine the relation between graph invariants (such as order, size or
minimum degree) and a graph property (like being hamiltonian, containing a perfect
matching or containing a particular subgraph G 1). Typically, given a graph property P,
an invariant i and a class of graphs Ĥ, one tries to determine the least value m such that
every graph G in Ĥ with i(G) > m has property P.

We shall limit our investigation to that question generally credited with starting
extremal theory and to the beginnings of the research that sprang from this question.
This study is rich in counting techniques and estimations. We shall use elementary
results about convex functions to obtain some bounds. All the necessary results on
convex functions are contained in the appendix or the exercises.

We shall limit our investigation to a particular type of extremal problem whose
initiation is generally credited to Tura ́ n [19]. In this problem, we ask the following:
Given a graph G, determine the maximum number of edges, ex(n; G) in a graph of order
n that does not contain G as a subgraph. A graph E of order n with ex(n; G) edges and
not containing G as a subgraph is called an extremal graph for this problem. The
complete solution of any such problem ordinarily requires two things. First, we must
produce an extremal graph on n vertices and ex(n; G) edges that does not contain any G.
Second, we must show that any graph on n vertices and with at least ex(n; G) + 1
edges must contain a G.

The investigation of this extremal problem will eventually lead us to the study of the
structure of extremal graphs. A rather beautiful theory has been developed that
essentially tells us that the exact structure of the forbidden graphs themselves is not really
as important as their chromatic number.
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Section 10.1 Complete Subgraphs

We begin with Tura ́ n’s original problem: What is the maximum number of edges q in
a graph of order n that does not contain the complete graph K p? We begin by producing
the extremal graph for the Tura ́ n problem. This graph is easy to describe. For the
forbidden graph K p + 1 (with chromatic number p + 1), we begin with the complete p-
partite graph K n 1 , n 2 , . . . , n p

where n = Σ n i . It is easy to show that among all such
graphs, the one with the maximum number of edges is that graph with partite sets as
nearly equal as possible. In fact, among all graphs on n vertices with chromatic number
p, it has the maximum number of edges. Thus, if n = kp + r, 0 ≤ r < p , then p − r of
the partite sets contain k vertices and the remaining r of the partite sets contain k + 1
vertices. We denote this graph as T n , p , and call it the Tura ́ n graph. We further note that

E(T n ,p ) = ( 2

n ) −
2

k(n − p + r)_ ____________ .

We are now ready to state Tura ́ n’s theorem.

Theorem 10.1.1 Among the graphs of order n which do not contain K p , there exists
exactly one with the maximum number of edges, namely T n ,p − 1 .

We will present (or at least sketch) two proofs to Tura ́ n’s theorem, showing two
common and useful techniques in extremal theory. The first technique is called
"chopping" and resembles Tura ́ n’s original proof. The strategy is to chop off a "useful"
subgraph and work around this structure to complete the proof, carefully avoiding the
"chopped" graph. For convenience and to maintain a notation common in extremal
theory, we denote by G n a graph of order n.

Tura ´n’s Chopping Proof. We proceed by induction on n, the order of the extremal
graph under construction. The anchor is trivial so assume the result holds for orders less
than n and suppose the extremal graph G n is K p − free. Since G is extremal, it follows
that H = K p − 1 ⊆ G n and define q 1 , q 2 , q 3 as follows:

q 1 = E(H) = ( 2

p − 1 ) ,

q 2 = no. of edges between H and V − H ≤ (n − p + 1 ) (p − 2 )
q 3 = E(V − H) ≤ E(T n − p + 1 ,p − 1 )

(the bound in the third expression follows from the inductive assumption ).

It is clear that E(G n ) = q 1 + q 2 + q 3 , and by summing the bounds given on q 1 ,
q 2 and q 3 we see that

E(G n ) ≤ E(T n ,p − 1 ).



Chapter 10: Extremal Theory 307

It remains to show that if equality holds, then G n = T n ,p − 1 . Clearly,
q 2 = (n − p + 1 ) (p − 2 ). This determines a partition of V(G n ) into p − 1 classes,
defined according to their p − 2 adjacencies in H. These classes are clearly independent,
so G n is a complete (p − 1 ) partite graph defined by these classes, that is, G = T n , p − 1 .

The second proof technique, known as symmetrization, has become a powerful tool in
extremal theory. The process of symmetrization proceeds as follows: Given nonadjacent
vertices v and u, we delete all the edges incident to the vertex u and make u adjacent to
all vertices in N(v). The vertex u is then said to be symmetric to v. We can see that
under certain conditions symmetrization can be useful in extremal problems. First, it is
clear that no K p is formed during this process, since only the vertices of N(v) have new
adjacencies and u and v are not adjacent. Thus, if a K p now exists, it must have existed
prior to symmetrization. Second, if deg u < deg v, then we have increased the number
of edges in the graph without producing the forbidden K p . We now sketch a second
proof of Tura ́ n’s theorem using symmetrization from Zykov [21].

Sketch of Zykov’s Proof. We assume the anchor and inductive steps have been
performed and consider the extremal graph G n which is K p-free. Let v have maximum
degree in G n and symmetrize all of V − N(v) to v. Let S 1 denote these vertices along
with v. Clearly, S 1 is an independent set of vertices. Further, since v had maximum
degree, our new graph has at least as many edges as G n . Now, repeat this process on
< G n − S 1 >, forming the set S 2 . Continue the procedure, forming the sets
S 3 , . . . , S d . As we noted earlier, since G n was K p-free, this new graph formed by
symmetrization is also K p-free. (That is, d ≤ p − 1 ). Thus, any K p-free graph can be
transformed into a d-partite (d ≤ p − 1 ) graph. Further, to maximize the number of
edges in such a graph, standard convexity arguments (as noted before) imply that the
graph is actually T n ,p − 1 .

The following is immediate from Tura ́ n’s Theorem, but was originally proven by Mantel
in 1906 [13]. We provide an independent proof of this result because the technique is
different and very interesting.

Corollary 10.1.1 If G n is K 3-free, then E(G n ) ≤
4

n 2
_ __.

Proof: Suppose G is as described and number the vertices of G from 1 to n. Assign

vertex i a weight of w i ≥ 0 such that
i = 1
Σ
n

w i = 1. Our goal is to maximize
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S =
i j ∈ E(G)

Σ w i w j

(where the sum is taken over all edges in G). Suppose vertices u and v are not adjacent in
G. Let the neighbors of u have total weight x and let the neighbors of v have total weight
y, where we assume without loss of generality that x ≥ y.

Since

(w u + ε) x + (w v − ε) y ≥ w u x + w v y

we do not decrease the value of S if we shift some weight from the vertex v to the vertex
u. It follows that S is maximal if all the weight is concentrated on some complete

subgraph of G, in fact, on one edge. But then S ≤
4
1_ _ (applying standard convexity). On

the other hand, taking all w i = n − 1 , we see that S ≥ n − 2E. But then these two

inequalities imply that E ≤
4

n 2
_ __.

We now state an extension of Tura ́ n’s theorem from Erdo
. .
s [5] which can be used to

provide yet another proof of Tura ́ n’s theorem.

Theorem 10.1.2 Let G n be a K p-free graph with degree sequence
d 1 ≥ d 2 ≥ . . . ≥ d n . Then there exists a (p − 1 ) chromatic graph H n which is K p-
free with degrees s 1 ≥ s 2 ≥ . . . ≥ s n and such that s i ≥ d i for every i.

We continue our investigation of complete subgraphs with a theorem from Dirac [4]
that shows that we actually get more than a K p once we have more than the extremal
number of edges. To this end, we say that a graph H is saturated (in particular, we say a
graph H is G-saturated) if H does not contain G and if the addition of any edge to H
results in a graph that does contain G. This idea is similar to the technique we have often
used in assuming maximal counterexamples. For example, the proof of Ore’s theorem
(Theorem 5.1.1) used this approach.

Theorem 10.1.3 If n ≥ r + 1 , then every (n , ex(n , K r ) + 1 ) −graph G contains a
K r + 1 − e.

Proof. We proceed by induction on n, the order of G. For n = r + 1, it is clear that
having one more than the extremal number of edges forces G = K r + 1 − e, and so we
have the anchor step.

Now, we assume the result holds on all such graphs of order less than n and consider
an (n , ex(n; K r ) + 1 ) graph G. Let x have minimum degree δ(G). Then it is easily
seen that δ(G) ≤ δ(T n ,r ), and so E(G − x) ≥ ex(n − 1 ; K r ) + 1. Hence, by
induction we see that G − x contains K r + 1 − e, and the result holds.



Chapter 10: Extremal Theory 309

For completeness, we now state the following corollary to Tura ́ n’s theorem.

Corollary 10.1.2 (Zarankiewicz [20]) If G n is K r-free, then

δ(G n ) ≤ ( 1 −
r − 1

1_ _____ ) n =
r − 1
r − 2_ _____ n.

With considerable effort, one can improve upon the above corollary; however, we
shall simply state this improvement.

Theorem 10.1.4 ([1]). If χ (G n ) ≥ r and G n is K r-free, then

δ(G n ) ≤
( 3r − 4 )
( 3r − 7 )_ ________ n.

We continue our investigation of complete subgraphs by counting triangles. Tura ́ n’s
theorem tells us when we can be sure one triangle exists, but our goal is to establish
bounds on the number of triangles that exist in general. In first attacking this problem,
we will find it useful to change the setting and sum the number of triangles that must be
contained in a graph and its complement. Let k r (G) equal the number of K r ′s contained
in the graph G. Independent work of several people, including Goodman [11], Moon and
Moser [14] and Lova ́ sz [12] all lead to the following result.

Theorem 10.1.5 Given an (n , q) −graph G with (n , q
_

) complement G
_ _

,

k 3 (G) + k 3 (G
_ _

) = ( 3

n ) − (n − 2 ) q +
i = 1
Σ
n

( 2

deg v i )

= ( 3

n ) − (n − 2 ) q
_

+
i = 1
Σ
n

( 2

n − 1 − deg v i ) .

Proof. Consider the degree sequence of G. There are
i = 1
Σ
n

( 2

deg v i ) pairs of adjacent

edges of G and
i = 1
Σ
n

( 2

n − 1 − deg v i ) pairs of adjacent edges in G
_ _

. The sum of

these two numbers can be counted in another way as well. Each of the triangles in G and
G
_ _

contains three pairs of adjacent edges, and each of the remaining

L = ( 3

n ) − k 3 (G) − k 3 (G
_ _

)

triples of vertices contains exactly one such pair. Hence,
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i = 1
Σ
n

( 2

deg v i ) +
i = 1
Σ
n

( 2

n − 1 − deg v i ) = 3k 3 (G) + 3k 3 (G
_ _

) + L.

Solving for our desired sum yields,

k 3 (G) + k 3 (G
_ _

) =
2
1_ _ [

i = 1
Σ
n

( 2

deg v i ) +
i = 1
Σ
n

( 2

n − 1 − deg v i ) − ( 3

n )] .

But note that

i = 1
Σ
n

( 2

n − 1 − deg v i ) =
i = 1
Σ
n

2

(n − 1 − deg v i ) (n − 2 − deg v i )_ __________________________

=
i = 1
Σ
n 




( 2

n − 1 ) − (n − 2 ) deg v i + ( 2

deg v i )



.

Now, substituting and rearranging terms completes the result.

Corollary 10.1.3 The graphs G n and G
_ _ n

contain a total of at least

24
n(n − 1 ) (n − 5 )_ _______________ triangles.

Theorem 10.1.6 An (n , q) −graph contains at least
3n
q_ __ ( 4q − n 2 ) triangles.

Proof. Suppose that uv ∈ E. Then there are at least deg u + deg v − n vertices
adjacent to both u and v. Thus, we see that

k 3 (G) ≥
3
1_ _

uv∈E
Σ (deg u + deg v − n) .

But since each deg u term appears deg u times in this sum, we have that

k 3 (G) ≥
3
1_ _

u∈V
Σ deg 2 u − nq.

So by the Cauchy inequality (see the appendix),

k 3 (G) ≥
3
1_ _



 n

( 2q)2
_ _____ − nq





=
3n
q_ __ [ 4q − n 2 ].

The next result is due to Rademacher (see [9]) and extends Mantel’s Theorem.

Theorem 10.1.7 For every even n, a graph on n vertices with
4

n 2
_ __ + 1 edges contains
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at least
2
n_ _ triangles. Furthermore, this result is best possible.

The graph K n /2 ,n /2 + e shows that Rademacher’s Theorem is best possible. Our
next result was originally conjectured by Nordhaus and Stewart [15]. The result is due to
Bolloba ́ s [2].

Theorem 10.1.8 If G is a graph on n vertices and
4

n 2
_ __ ≤ E(G) ≤

3
n 2
_ __ edges then

G contains at least
9
n_ _ ( 4E(G) − n 2 ) triangles.

Comparing these theorems over the range of possible values for q we see that

Rademacher’s Theorem is most acurate for q =
4

n 2
_ __ + 1 edges; the bounds of Moon

and Moser and of Bolloba ́ s are equal when q =
3

n 2
_ __; finally, Moon and Moser’s

Theorem yields the exact number of triangles when q = (2

n ).

We complete this section with a result due to Erdo
. .
s [8]. We begin with a sequence of

lemmas.

Lemma 10.1.1 Every (n , ex(n − 1 , K 3 ) + 2 ) −graph G which contains an odd
cycle, contains a triangle.

Proof. Let G be as described and let C: u 1 , u 2 , . . . , u 2k + 1 be the vertices of a
shortest odd cycle in G. We can assume that 3 < 2k + 1 ≤ n. Now
< u 1 , u 2 , . . . , u 2k + 1 > can have no other edges, for otherwise a shorter odd cycle
would be formed. Let v 1 , v 2 , . . . , v n − 2k − 1 be the other vertices of G. Any v i
( 1 ≤ i ≤ n − 2k − 1 ) can be adjacent to at most two u j ( 1 ≤ j ≤ 2k + 1 ), for
otherwise an odd cycle shorter than C would be formed. Finally, Tura ́ n’s Theorem
implies < v 1 , . . . , v n − 2k − 1 > can have at most ex(n − 2k − 1 , K 3 ) edges. Thus, the
number of edges in G is at most

2k + 1 + 2 (n − 2k − 1 ) + ex(n − 2k − 1 , K 3 ) ≤ ex(n − 1 , K 3 ) + 1 ,

contradicting our assumptions.

Lemma 10.1.2 There exists a constant c 2 > 0 such that every (n , ex(n , K 3 ) + 1 )
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graph G contains at least c 2 n  triangles having a common edge (u , v).

Proof. Let T = { (u i , v i , w i )  1 ≤ i ≤ r } be a maximal system of disjoint
triangles in G. Thus, in G − T the remaining n − 3r vertices contain no triangles and
therefore have at most ex(n − 3r , K 3 ) edges.

Denote by G( i) the graph obtained from G by deleting the first i − 1 triangles of T.
Further, let deg i u i , deg i v i and deg i w i be the degrees of u i , v i and w i in G( i).

We now show that for some i ( 1 ≤ i ≤ r) we must have

deg i u i + deg i v i + deg i w i > n( 1 + 9c 2 ) − 3i , (1)

for if this failed to hold for any i, then the number of edges in G would be at most

i = 1
Σ
r

[ n( 1 + 9c 2 ) − 3i ] + ex(n − 3r , K 3 ) < ex(n , K 3 )

by a simple calculation for sufficiently small c 2 . But this contradicts the fact G contains
at least ex(n , K 3 ) + 1 edges. Thus, (1) holds for say i = i 0 . Then a simple calculation
shows that there are at least 3 c 2 n  vertices of G( i 0 ) which are adjacent to more than
one of the vertices u i 0

, v i 0
, w i 0

. Therefore, there are at least c 2 n  vertices adjacent to
the same pair, which completes our proof.

Lemma 10.1.3 Let δ > 0 be a fixed number. Consider any (n , q)-graph G with

q > ex(n , K 3 ) −
2
n_ _ ( 1 − δ), n > n 0 (δ), which contains a triangle. Then G contains

an edge (u , v) and r =  c 3 n  + 1 (c 3 = c 3 (δ) ) vertices w i ( i = 1 , 2 , . . . , r) so
that all the triangles (u , v , w i ) (i = 1 , 2 , . . . , r) are in G.

Proof. By assumption, G contains a triangle (u , v , w). Assume first that

deg u + deg v + deg w > n( 1 + 9c 3 ) + 9 . (2)

Then the result follows from Lemma 2.

If (2) fails to hold, then G − u − v − w has n − 3 vertices and at least

q − n( 1 + 9c 3 ) − 9 edges. But if c 3 <
18
δ_ __, then for n > n 0 ,

q − n( 1 + 9c 3 ) − 9 > ex(n , K 3 ) −
2
n_ _ ( 1 − δ) − n( 1 + 9c 3 ) − 9

> ex(n − 3 , K 3 ) .

But then by Lemma 10.1.2, G − u − v − w contains the desired configuration of
triangles, which completes the proof.
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We are finally ready to present our goal, a theorem due to Erdo
. .
s [8].

Theorem 10.1.9 There exists a constant c 1 > 0 such that for n sufficiently large and

t < c 1 n /2, if a graph G on n vertices contains at least
4

n 2
_ __  + t edges, then G contains

at least t
2
n_ _  triangles.

Proof. Suppose G is as above and t < c 1 2
n_ _. We first assume that after the omission of

any r =  c 1 n /2c 3  edges, the graph still contains a triangle. (Note: c 3 = c 3 (δ), for

δ =
4
1_ _ in the last lemma.) For sufficiently small c 1 ,

2c 3

c 1_ ___ <
4
1_ _; thus it will be

permissible to apply Lemma 10.1.3 during the omission of these edges.

By Lemma 10.1.3 (or Lemma 10.1.2) there exists an edge e 1 contained in
 c 3 n  + 1 triangles of G. Again by Lemma 10.1.3 in H 1 = G − e 1 , there exists an
edge e 2 contained in at least  c 3 n  + 1 triangles of H 1 . Suppose we have already
chosen the edges e 1 , . . . , e r each of which is contained in at least  c 3 n  + 1
triangles. By our earlier assumption H r = G − e 1 − . . . − e r contains at least one
triangle. But then by Lemma 10.1.3 there is an edge e r + 1 in H r which is contained in at
least  c 3 n  + 1 triangles of H r . These triangles incident on the edges e 1 , . . . , e r + 1
are clearly distinct, thus G contains at least

(r + 1 ) {  c 3 n  + 1 } > c 1 2
n 2
_ __ > t

2
n_ _

triangles, which completes the proof in this case.

Therefore, we may assume that there are s ≤ r <
4
n_ _ edges e 1 , e 2 , . . . , e s so that

the graph H = G − e 1 − e 2 − . . . − e s contains no triangles and we may assume s

is the smallest integer with this property. By the fact that s ≤ r <
4
n_ _, H has

ex(n , K 3 ) + t − s > ex(n , K 3 ) −
4
n_ _ > ex(n − 1 , K 3 ) + 1

edges. Thus, by Lemma 1, H must contain only even cycles.

By Theorem 10.1.1, s ≥ t. Suppose s = t. Then H has ex(n , K 3 ) edges and by

Theorem 10.1.1, H = T n , 2 . Clearly, the addition of any edge creates at least 
2
n_ _ 

distinct triangles. A simple argument shows that the addition of every further edge

introduces at least
2
n_ _  triangles and that these triangles are distinct. Thus, G contains at

least t
2
n_ _  triangles and our result is shown in this case as well.
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Finally assume s = t + w, 0 < w <
4
n_ _ (since s < n /4 ). We also assume n is

even, say n = 2m. Now since H contains only even cycles, it is a subgraph of a bipartite
graph B whose vertices are say α 1 , . . . , α m − u and β 1 , . . . , β m + u (since H has more

than ex( 2m , K 3 ) −
2
m_ __ edges, we have 0 ≤ u < (m /2 )

1⁄2 ).

Clearly, every one of the edges e 1 , . . . , e s join two of the α’s or two of the β’s, for
otherwise for some e i , the graph G − e 1 − . . . − e i − 1 − e i + 1 − . . . − e s would
still have only even cycles and hence no triangles, which contradicts the minimum
property of s.

By our assumption, H is a subgraph of B. Assume H is obtained from B by the
omission of x edges. Then we clearly have

s = x + u 2 + t ( or w = x + u 2 ) ,

and G is obtained from H by adding s edges e 1 , . . . , e s which are all of the form
(α i 1

, α i 2
) or (β i 1

, β i 2
). Let e i = (β i 1

, β i 2
) and let us estimate the number of

triangles (β i 1
, β i 2

, α j ) in B. Clearly, at most x of the edges (β i 1
, α j ), (β i 2

, α j ) are
not in B; thus B + e i contains at least m − u − x triangles (if e i connects two α’s, then
B + e i contains at least m + u − x triangles). For different e i’s these triangles are
clearly different; thus G = H + e 1 + . . . + e s contains at least

(m − u − x) s = (m − u − x) (x + u 2 + t) ≥ tm = t(n /2 )

triangles. The above follows by simple computation from s = u 2 + x + t < m /2. The
above equation completes the proof in the n = 2m case. For n = 2m + 1 the proof is
almost identical and hence we omit it here. This completes our proof.

This result has been improved by Lova ́ sz and Simonovits (see [3]) who showed that
the theorem holds for c 1 = 1.

Section 10.2 Cycles in Graphs

We now modify the forbidden subgraph in question and consider extremal results
involving cycles of various sizes. Our first result is somewhat less specific than those we
have seen thus far. Our concern is in finding a pair of vertex disjoint cycles of
unspecified order. We define s(n) to be the minimum number of edges so that every
graph on n vertices contains two vertex disjoint cycles. The following result of Po ´sa [16]
was presented in Chapter 5. We restate it here for completeness.

Theorem 10.2.1 For n ≥ 6 , s(n) = 3n − 5.
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Despite finding s(n) precisely, we find the previous result somewhat unsatisfying in
that we do not have any information about the size of the cycles that must exist. We now
turn to a line of investigation for cycles similar to the one taken for complete graphs. We
begin with a bound on the size that will ensure that a graph contains a 4-cycle. Our
strategy will be to count pairs of vertices that are dominated by a common vertex.
Allowing only one such neighbor will prevent 4-cycles.

Theorem 10.2.2 Every graph on n vertices and q >
4
n_ _ ( 1 + √  4n − 3 ) edges contains

a 4-cycle.

Proof. Suppose G n contains no 4-cycle. Our strategy will be to count pairs of vertices
that are dominated by another vertex and in doing so, to create an upper bound on the
number of edges in G n .

For a fixed z ∈ V, there are ( 2

deg z ) pairs of vertices dominated by z. On the other

hand, each pair x , y is counted at most once, since if it were counted twice, a 4-cycle
would have to exist. Hence,

z∈V
Σ ( 2

deg z ) ≤ ( 2

n ) .

Now, by Jensen’s Inequality (see the appendix),

( 2

n ) ≥
z∈V
Σ ( 2

deg z ) ≥ n ( 2

2qn − 1

) =
n

2q 2 − nq_ _________ .

Thus,

q 2 −
2
nq_ __ ≤

4
n 3 − n 2
_ ________

and hence,

q ≤ (
16

( 4n 3 − 3n 2 )_ _____________ )1⁄2 +
4
n_ _

= (
4
n_ _ ) ( 1 + √  4n − 3 ) .

Thus, the result follows. We note that we often say that the extremal value for C 4 is
O(n 3/2 ); that is, q is bounded by a function that is on the order of O(n 3/2 ).

In attempting to produce a sharp extremal example for the previous result, we come
across our first difficulty. However, with the use of projective planes, we can produce a
meaningful example. A finite projective plane is a special type of block design. That is,
it is a family of v points and b subsets of these points such that each subset contains k of
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the points and each pair of points occur together in exactly λ of the subsets. For finite
projective planes, a more geometric view is taken and the parameters carry special
restrictions. First of all, k = n + 1 and λ = 1. The sets are called lines, and the
following four properties (defining properties of block designs) hold.

1. Any line is incident with n + 1 points.

2. Any point is incident with n + 1 lines.

3. Any pair of points are joined by exactly one line.

4. Any pair of lines intersect in exactly one point.

We can model projective planes as bipartite graphs as follows. Define the point-line
incidence graph G of a projective plane of order p, where p is a prime as follows: The
vertices of G correspond to the points and lines of the projective plane. A line is joined
to each of the points that lie on the line. Thus, the point-line incidence graph is an n + 1
regular bipartite graph of order 2x = 2 (n 2 + n + 1 ). Further, it can be shown (in the
exercises) that this graph has no cycle smaller than a 6-cycle. In fact, it represents the
(n + 1 )-regular graphs of smallest order having this property. Further,

E(G) = x(n + 1 ) =
2
x_ _ ( 1 + √ 4x − 3 ) , where x =

2
V(G)_ ______ .

For n = 2, the projective plane can be modeled as shown in Figure 10.2.1. Can you
construct the point-line incidence graph for the projective plane of order 2?

We can find a natural setting in which the above examples do provide a set of
extremal graphs. Suppose we consider a variation on the usual extremal question in
which we consider only bipartite graphs rather than general graphs. It is natural to forbid
only other bipartite graphs and, in particular, complete bipartite graphs. With this in
mind, we define ex( n , m; K s ,t ) to be the maximum number of edges in a bipartite
graph with partite sets of orders n ≥ s and m ≥ t that does not contain a K s , t . In
particular, then, we first investigate forbidden C 4 s; that is, we seek the extremal value
ex(n , n; K 2 , 2 ).

Figure 10.2.1. A model of the projective plane of order p = 2.
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Theorem 10.2.3 For n ≥ 2, ex(n , n; K 2 , 2 ) ≤
2
n_ _ ( 1 + √  4n − 3 ), and equality holds

infinitely often.

Proof. Let q =
2
n_ _ ( 1 + √  4 n − 3 ) and note that

(q − n) q = n 2 (n − 1 ).

Now, suppose there is a bipartite graph G n , n of size greater than q that does not contain
a K 2 , 2 . Denote by d 1 , d 2 , . . . , d n the degrees of the vertices in the first partite set
V 1 . Then,

i = 1
Σ
n

d i = E(G n ,n ) = e > q

and

( 2

n ) ≥
i = 1
Σ
n

( 2

d i ) =
2
1_ _

i = 1
Σ
n

d i
2 −

2
1_ _

i = 1
Σ
n

d i

≥
2n
1_ __ e 2 −

2
e_ _ >

2n
q(q − n)_ ________ = ( 2

n ) .

Thus, we reach a contradiction and the bound now follows.

The previous example of the point-line incidence graph of the projective plane shows
that equality holds infinitely often .

We now consider the more general bipartite extremal problem. The following lemma
will be useful in our computations. This approach follows Bolloba ́ s [3].

Lemma 10.2.1 Let m , n , s , t , r , k be integers with 2 ≤ s ≤ m , 2 ≤ t ≤ n, k ≥ 0 ,
0 ≤ r < m and G m ,n of size mx = km + r and with no K s ,t; then

m ( t

x ) ≤ (m − r) ( t

k ) + r ( t

k + 1 ) ≤ (s − 1 ) ( t

n ) .

Proof. Let T ⊆ V 2 with T  = t and say T is linked to v ∈ V 1 if T ⊆ N(v). Then the

number of t-sets linked to v is ( t

deg v ). Since by assumption G m ,n contains no K s ,t ,

each t-set in V 2 is linked to at most s − 1 vertices of V 1 . Hence,
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m ( t

x ) ≤
v∈V 1

Σ ( t

deg v ) ≤ (s − 1 ) ( t

n ) .

Since
v∈V 1

Σ deg v = mx = km + r, 0 ≤ r < m, and since f (w) = ( t

w ) is convex,

the inequality follows.

Theorem 10.2.4 For t ≤ s,

ex(m , n; K s , t ) ≤ (s − 1 )1/ t (n − t + 1 ) m 1 − 1/ t + ( t − 1 ) m.

Proof. Let G m , n be an extremal bipartite graph with ex(m , n; K s ,t ) = mx edges
which is K s ,t-free. As x < n, the lemma implies that

(x − ( t − 1 ) ) t ≤ (s − 1 ) (n − ( t − 1 ) ) tm − 1 .

Thus,

x − ( t − 1 ) ≤ (s − 1 )1/ t (n − t + 1 ) m − 1/ t ,

or

mx ≤ (s − 1 )1/ t (n − t + 1 ) m 1 − 1/ t + ( t − 1 ) m.

Corollary 10.2.1 If t ≥ 2 and c is a constant such that c > ( t − 1 )1/ t ( t , c fixed),
then for n sufficiently large,

ex(n , n; K t ,t ) < cn 2 − 1/ t .

We can use the bound in Theorem 10.2.4 to obtain a bound in general graphs.

Theorem 10.2.5 Let G be an (n , q)-graph that does not contain a K s ,t , 2 ≤ s , 2 ≤ t.
Then

q ≤
2
1_ _ ex(n , n ; K s ,t )

Proof. We construct a bipartite graph B from G as follows. Let V 1 and V 2 be copies of
V(G). For every edge xy in G, insert the edge from x 1 ∈ V 1 to y 2 ∈ V 2 (hence, two
edges are placed into B). Then B has 2q edges and does not contain a K s ,t and, hence,
the result follows.
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Section 10.3 On the Structure of Extremal Graphs

In this section we begin an investigation of the structure of extremal graphs. After
determining the extremal values of various forbidden graphs, it is natural to try to gain
further information about the extremal graphs themselves. It is not surprising that a great
deal can be said and that this information opens still other avenues of investigation. It
should be noted that there is a fundamental difference between extremal problems in
which one of the forbidden graphs is bipartite (called a degenerate extremal problem),
and one where none of the graphs is bipartite. The reasons for this will become more
apparent as we progress. For now, simply note that in the degenerate case
ex(n , H) = o(n 2 ), while in the nondegenerate case,

ex(n , H) ≥


 4

n 2
_ __




.

The foundation for this section is primarily the work of Erdo
. .
s and Stone [10]. Our

goal is to show that for a class of graphs H, the extremal number ex(n; H) depends only
loosely on the graphs in H. That is, the exact structure of the forbidden subgraphs is not
the critical issue, but rather the dominant feature is the minimum chromatic number of a
graph in the class H. In what follows we use the notation K (s) (t) to mean the complete
s-partite graph with t vertices in each partite set. We begin with two beautiful results
from Erdo

. .
s and Stone [10].

Theorem 10.3.1 Let ε > 0 and k , t ≥ 1 be given. Then, for n sufficiently large, every

graph of order n and with δ ≥ ( 1 −
k
1_ _ + ε) n contains K (k + 1 ) (t) .

Proof. (By induction on k). For k = 1, the statement claims that δ ≥ εn and, hence, G

has at least
2
ε_ _ n 2 edges. That G contains a K t ,t follows from Corollary 10.2.1 and

Theorem 10.2.5.

Now let k ≥ 2 and s = 
ε
1_ _ t . If n is sufficiently large, then by our induction

assumption, we can find a K (k) (s) in G. Let Y = V(G) − K (k) (s) and let X be those
vertices of Y that are adjacent to at least t vertices in each of the partite sets of the K (k) (s) .
Then the number of missing edges between Y − X and K (k) (s) is at least

(Y  − X ) (s − t) ≥ (Y  − X ) ( 1 − ε) s
= (n − ks − X ) ( 1 − ε) s .

Also, the number of edges missing from any vertex in K (k) (s) is at most (
k
1_ _ − ε) n.

Thus, the number of edges missing from the vertices in K (k) (s) is at most
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ks(
k
1_ _ − ε) n = ( 1 − k ε) sn.

Thus, the preceding two inequalities imply that

(n − ks − X ) ( 1 − ε) s ≤ ( 1 − k ε) sn ,

and solving we see that X  ≥
( 1 − ε)

ε(k − 1 )_ ________ n − ks.

Since k ≥ 2 and ε > 0, we see that X grows large as n grows large. Then, if

X  > ( t

s )
k

( t − 1 )

we can select t vertices that will form the final partite set we desire.

Theorem 10.3.2 Let G be a graph of order n with at least ( 1 −
k
1_ _ + ε)

2
n 2
_ __ edges.

Then for n sufficiently large, G contains a K (k + 1 ) (t) .

Proof. Remove a vertex of degree less than ( 1 −
k
1_ _ +

2
ε_ _ ) V(G) if any exist. Now,

in the graph that remains, repeat this process and continue to repeat this process as often
as possible. Suppose that at some point in this process we are unable to continue; that is,
suppose we are left with a graph H in which all vertices have degree at least

( 1 −
k
1_ _ +

2
ε_ _ ) V(H) . Let V(H) = N; then if N is sufficiently large, the result

will follow from our last theorem. Then, all that remains is for us to show that N cannot
be "too small." That is, we wish to show that N is bounded below by a function that
grows as n grows.

In the construction of H, the number of edges we removed is at most

j = N + 1
Σ
n

j( 1 −
k
1_ _ +

2
ε_ _ ) = ( ( 2

n + 1 ) − ( 2

N + 1 ) ) ( 1 −
k
1_ _ +

2
ε_ _ )

≤ ( ( 2

n ) − ( 2

N ) ) ( 1 −
k
1_ _ +

2
ε_ _ ) + (n − N).

The graph H has at most ( 2

N ) edges, and, thus,



Chapter 10: Extremal Theory 321

( 1 −
k
1_ _ + ε) ( 2

n ) ≤  E(G) 

≤ ( 1 −
k
1_ _ +

2
ε_ _ ) [ ( 2

n ) − ( 2

N )]

+ (n − N) + ( 2

N ) .

Thus,

2
ε_ _ ( 2

n ) ≤ (
k
1_ _ −

2
ε_ _ ) ( 2

N ) + (n − N).

Hence, we see that N grows large if n grows large.

Finally, to see that the process of removing vertices of small degree must stop,
suppose that it does not stop and examine the sum on the number of edges removed (as

we did above). In this case we would have at most ( 1 −
k
1_ _ +

2
ε_ _ )

2
n 2
_ __ edges in G, a

contradiction. Hence, the process must stop and the result is proved .

The next, somewhat surprising result has been the goal of our work in this section. It
tells us that the forbidden subgraph’s structure is only somewhat responsible for the
extremal number. That is, the exact structure of the graph is not as important as the
chromatic number. The significance of the next result has lead to the following
definition: Given a family of graphs F, the subchromatic number is defined to be

Ψ(F) = min { χ(G) : G ∈ F } − 1.

The following result of Erdo
. .
s and Simonovits [9] is an easy consequence of the Erdo

. .
s

- Stone Theorems.

Theorem 10.3.3 If F is a family of graphs with ψ(F) = p, then

ex(n , F) = ( 1 −
p
1_ _ ) ( 2

n ) + o(n 2 ) .

Proof. Since each G ∈ F is not p-colorable, we see that G is not a subgraph of T n ,p .
Hence,

ex(n , F) ≥ E(T n ,p )  = ( 1 −
p
1_ _ )

2
n 2
_ __ + O(n).

On the other hand, there is some G 0 ∈ F with χ(G 0 ) = p + 1 and say
V(G 0 )  = m. Now the Erdo

. .
s - Stone Theorem (10.3.2) asserts that
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ex(n , K (p + 1 ) (m) ) = ( 1 −
p
1_ _ ) ( 2

n ) + o(n 2 ) .

Since G 0 is a subgraph of K (p + 1 ) (m) , we have that

ex(n , F) ≤ ex(n , K (p + 1 ) (m) ) ≤ ( 1 −
p
1_ _ + o( 1 ) ) ( 2

n ) .

The following is an immediate corollary.

Corollary 10.3.1

n → ∞
lim

n 2
ex(n; G)_ ________ =

2
1_ _ ( 1 −

χ(G) − 1
1_ _________ ).

The structure of extremal graphs is fairly stable, in the sense that graphs that are
nearly extremal (that is, do not contain the forbidden graph or graphs but have nearly as
many edges as the extremal graphs) have a structure that is close to that of extremal
graphs. That is, we need not make a great many changes in the edge set of a nearly
extremal graph to obtain an extremal graph. This idea is expressed in our next result, the
combined efforts of Erdo

. .
s [6], [7] and Simonovits [18].

Theorem 10.3.5 (The First Stability Theorem) Let F be a family of forbidden graphs
with subchromatic number p. For every ε > 0, there exists a δ > 0 and an n ε such
that if G n is F-free and if, for n > n ε ,

E(G n ) > ex(n; F) − δn 2 ,

then G n can be obtained from T n ,p by changing at most εn 2 edges.

The name "first stability theorem" clearly implies that there are others.
Unfortunately, these results are beyond the scope of this text, but the interested reader is
advised to see [17] and [3]. Our next theorem can be proven using the first stability
theorem (10.3.5) and is due to the combined work of Erdo

. .
s and Simonovits [6], [7] and

[18].

For our next result we need the following idea. Consider a partition of the vertex set
of G n as say S 1 , . . . , S p and the p-partite graph K s 1 , . . . , s p

corresponding to this
partition of V(G n ), where s i =  S i . An edge vw is called an extra edge if it is not in
K s 1 , . . . , s p

but is in G n (similarly, an edge is missing if it is in K s 1 , . . . , s p
but not in
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G n). For a given p, the partition S 1 , . . . , S p is optimal if the number of missing edges
is minimum. Finally, for a given vertex v, let b(v) denote the number of extra edges at v.

Theorem 10.3.6 (The Asymptotic Structure Theorem) Let F be a family of forbidden
subgraphs with Ψ(F) = p. If S n is any extremal graph for F, then it can be obtained
from T n ,p by deleting and adding at most o(n 2 ) edges. Furthermore, if F is a finite
family, then

n
δ(S n )_ _____ = 1 −

p
1_ _ + o( 1 ).

Sketch of Proof. The first part of the theorem follows from Theorems 10.3.3 and the
First Stability Theorem.

For the second part, consider an optimal partition R 1 , R 2 , . . . , R p of V(S n ) and

assume R 1 has minimum order. Then,  R 1  ≤
p
n_ _ and by the First Stability Theorem

v ∈ R 1

Σ b(v) = o(n 2 ) .

If r denotes the maximum order of a graph in F, take r vertices v 1 , . . . , v r with

i = 1
Σ
r

b(v i ) minimum. Clearly for some c > 0,  R 1  > cn. Thus,

i = 1
Σ
r

b(v i ) ≤
R 1

r_ ____
v ∈ R 1

Σ b(v) = o(n) .

Now apply symmetrization in a slightly modified form. For an arbitrary vertex v in
S n , delete all incident edges and join v to all vertices adjacent to each of v 1 , . . . , v r .
The resulting graph S * contains no member of F. Further,  E(S n )  ≤  E(S * ) .
Hence,

deg v = 
i = 1
∩
r

N(v i )  ≥ 
j = 2
∪
r

R j  −
i = 1
Σ
r

b(v i ) ≥ n −
p
n_ _ − o(n)

and the result follows.

We next present an easy but useful result on the behavior of ex(n; F).

Theorem 10.3.7 For every family F,

( 2

n )
ex(n; F)________ is decreasing as n → ∞ .

Proof. For a fixed extremal graph H m , take all ( n

m ) subgraphs of order n, say
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G 1 , . . . , G t . Each edge of H m is in ( n − 2

m − 2 ) of the G is and, thus,

( n − 2

m − 2 )  E( H m )  ≤
i < t
Σ  E( G i )  ≤ ( n

m )  E( H n ) .

But this implies that

( 2

m )
 E( H m ) _ __________ ≤

( 2

n )
 E( H n ) _ __________ .

We finish our study of the structure of extremal graphs by trying to determine when
the Tura ́ n graph is the extremal graph for a family of graphs F. We will see that T n ,p is
fundamental to extremal graphs.

To prove the next result, we use the technique of progressive induction. Essentially,
the technique is as follows. For a given problem you are able to prove the inductive step
under the assumptions of the inductive hypothesis. However, you are unable to prove the
anchor step. (This could be because the anchor step is not true for small values.) It also
appears that the proof of the anchor step is as difficult as a direct proof of the result.
Thus, to establish the result, we define a function, say D, used to measure the "distance
between our knowledge and the conjecture." We then attempt to show that the value of
this measure must approach zero. We now use progressive induction to establish our
next result. Once again this result is due to Simonovits [18].

Theorem 10.3.4 A family F has T n ,p as an extremal graph (for n sufficiently large) if,
and only if, some G ∈ F has an edge e such that p = χ(G − e) = Ψ(F). Furthermore,
if T n ,p is extremal for F for infinitely many values of n, then it is the only extremal graph
(again, provided n is sufficiently large).

Proof. One direction is easy, for if χ(G − e) ≥ p + 1 for every graph G ∈ F and for
every edge e of G, then the addition of one edge to T n ,p cannot produce a graph that
contains one of the forbidden graphs of F. If it did, that graph would necessarily have
chromatic number p after the deletion of some edge. Thus, T n ,p is not extremal for the
family F.

For the other direction, we assume that χ(G) = p + 1 but that χ(G − e) = p.
Further suppose that {E n} is a sequence of extremal graphs for the family F. Since T n ,p
contains none of the forbidden subgraphs, E(E n ) ≥ E(T n ,p ). We now define our
measure of the "distance between our knowledge and the conjecture." Let

D(n) = E(E n ) − E(T n ,p ).
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In order to accomplish our goal we shall prove the following statement.
(*) For n > n 0 , either T n ,p is the only extremal graph or there is an
n ′ < n such that D(n ′) > D(n) and n ′ → ∞ as n → ∞ .

The implications of statement (*) are that for n > n 0 , T n ,p is the only extremal graph
for the family F. In fact, for n < n 0 , D(n) is bounded by some constant c. Using (*),
then, D(n) ≤ c for every n.

If we define N i such that if n > N i , then n ′ > N i − 1 and if N 0 = n 0 , it is then easy
to show by induction on i that for n > N i , either D(n) = 0 or D(n) ≤ c − i. Hence,
for n 1 = N k + 1 (since D(n) ≥ 0) T n ,p is the only extremal graph.

To prove (*), we choose an arbitrary sequence of extremal graphs {E n} and applying
Theorem 10.3.2 and the fact that

E(E n ) ≥ E(T n ,p ),

we know that T pt ,p ⊆ E n . Similarly, we know that T pt ,p ⊆ T n ,p .

Let S = E n − T pt ,p and T = T n ,p − T pt ,p . Also, denote by e S the number of
edges from T pt ,p to S and e T the number of edges between T pt ,p and T. It is easily seen
that e T = (n − pt) (p − 1 ) t.

Since E n is extremal, T pt ,p is an induced subgraph of E n and each vertex of S is
adjacent to at most (p − 1 ) t vertices of T pt ,p . Therefore,

E(E n ) = E(T pt ,p ) + e s + E(S)

≤ E(T pt ,p)  + (n − pt) (p − 1 ) t + E(S).

Using the above we see that

D(n − pt) − D(n) = [E(S) − E(T)] − [E(E n ) − E(T n ,p )]

= [E(T n ,p ) − E(T)] − [E(E n ) − E(S)]

≥ e T − e S

≥ 0.

The only thing left for us to do is to check that if D(n) = D(n − pt), then
E n = T n ,p . Clearly, each vertex of S is joined to exactly p − 1 classes of T pt ,p . We
partition the vertices of E n into p sets A 1 , . . . , A p by placing in A j all vertices of E n

that are not adjacent to vertices in the jth partite set of T pt ,p . The vertices of A j are
clearly independent; otherwise, some H ∈ F must be in E n . Thus, E n must be a p-
colorable graph. Recall that it has at least as many edges as T n ,p . Therefore, we have
that E n = T n ,p , and the proof is complete.
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Exercises

1. Complete the arithmetic on q 1 + q 2 + q 3 in the proof of Theorem 10.1.1 that
establishes the bound on  E( G n ) .

2. Prove Theorem 10.1.2.

3. Provide a graph theoretic proof of the fact that the maximum number of edges in a
complete d-partite graph of order n (d ≤ p − 1) actually occurs in the graph
T n , p − 1 (see Zykov’s proof).

4. Prove Mantel’s Theorem directly, without using Turan’s theorem or proof. (Hint:
Use a counting argument initially similar to that of Theorem 10.1.5).

5. Verify Corollary 10.1.2.

6. If G is a k-regular graph of order n then

k 3 (G) + k 3 (G
_ _

) = ( 3

n ) −
2

nk(n − k − 1 )_ _____________ .

7. Prove Corollary 10.1.3.

8. Let G be a graph of order n and let N k denote the number of K ks in G. Prove that

N k

N k + 1_ _____ ≥
k 2 − 1

1_ ______ (k 2

N k + 1

N k_ _____ − n) .

9. Let G be a graph on mk vertices and more than (2

k )m 2 edges. Prove that G

contains a K k + 1 .

10. (Stronger version of Theorem 10.3.2) Let k ≥ 2 be an integer and let
0 < ε < 1⁄2 (r − 1 ). Then there exists a d = d(ε ,r) > 0 such that if n is
sufficiently large and

q > {
k − 1
k − 2_ ____ + ε}

2
n 2
_ __

then every graph of order n and size q contains a K k(t) with t ≥  dlog n . Hint:
use induction, Theorem 10.2.4 with s = 2 and

ε k = 1⁄2 {
k − 1
k − 2_ ____ −

k − 2
k − 3_ ____ } = { 2 (k − 1 ) (k − 2 ) } − 1 > 0 .

11. If E(G) = ( 1 −
r
1_ _ )

2
n 2
_ __, then N k ≥ ( k

r ) (
k
n_ _ )k , (k ≤ r + 1 , r real ).

12. A strongly connected tournament on n vertices contains at least ( 2

n − 1 ) cycles.
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13. A tournament of order n contains at least one and at most n!/2 2
n_ _

hamiltonian paths.

14. Every tournament T of order n contains a transitive tournament of order at least [
log 2 n ] + 1.

15. If T is a strong tournament, then the number of transitive subtournaments of order k
(k ≥ 3 ) is at most

( k

n ) − ( k − 2

n − 2 ) .

16. Suppose G is a (p , q) graph with at most q = E(T r ,p ), but G is not T r ,p . Then
G contains a subgraph H of order r + p and size

( 2

r + p ) − p + 1 .

That is, there are less than p edges missing from H.

17. Show that if G is a graph of order p with

δ(G) ≥


 (r − 1 )

(r − 2 ) p_ ________




+ 1 ,

then G contains a K r .

18. Suppose that G has order p ≥ r + 1 and size q = ex(p; K r ) + 1.
(a) Show that G contains two copies of K r with r − 1 vertices in common.
(b) Show that for every k, r ≤ k ≤ p, G has a subgraph with k vertices and at least
ex(k , K r − 1 ) + 1 edges.

19. Show that every graph of order p ≥ 5 and size q ≥


 4

p 2
_ __





+ 2 contains two

triangles with exactly one vertex in common.

20. Let 0 < a < a + ε < 1. Then every graph G of order n ≥ 2a /ε and size at least
1⁄2 (a + ε) n 2 contains a subgraph H with V(H) = h ≥ (

2
ε_ _ ) n and minimum

degree at least ah.

21. Let r ≥ 2, 1 ≤ t ≤ q and N = n − (r − 1 ) q ≥ 1. Let G be a graph of order n
that contains a K (r − 1 ) (q) , but does not contain a K r(t). Then G has at most

e = ( (r − 1 ) q + t) N + 2qN
1 −

t
1_ _

edges of the form xy, where x ∈ K (r − 1 ) (q)
and y ∈ G − K (r − 1 ) (q).

22. Let F = K r(t) , where r ≥ 2 and t ≥ 1. Then the maximal size of a graph of order
n without F is
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ex(n; F) = 1⁄2 {
(r − 1 )
(r − 2 )_ _______ + o( 1 ) }n 2 .

23. Let F 1 , F 2 , . . . , F j be non-empty graphs. Denote by r the minimum of the
chromatic numbers of the F i . Then the maximal size of a graph of order n not
containing any of the F i is

ex(n; F 1 , . . . , F j ) = 1⁄2 {
(r − 1 )
(r − 2 )_ _______ + o( 1 ) }n 2 .
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