MAA 3200 - INTROD TO ADVANCED MATH
 FLORIDA INT'L UNIV.

 TEST #2 - SPRING 2021
 TIME: 75 min.

 Answer all 6 questions. No calculators, notes, or on-line stuff are allowed. An unjustified answer will receive little or no credit. Draw a line to separate each of your 6 solutions to the 6 questions.

 (Double check the solutions that you send as a pdf file – to ensure it contains everything.)

- (15) 1. (a) Define what is a *finite sequence* s and define what is a *subsequence* of s.
 - (b) Define what it means for $f : A \rightarrow B$ to be *injective*. Prove that if $f : A \rightarrow B$ and $g : B \rightarrow C$ are both injective, then $g \circ f : A \rightarrow C$ is also injective.
- (20) 2. (a) Let $g: X \to Y$ be a function and suppose that A, B \subseteq X and C, D \subseteq Y. *Define* what is g[A] and define what is $g^{-1}[C]$.
 - (b) Is it always true that $g[A] g[B] \subseteq g[A-B]$?
 - (c) Is it always true that $g^{-1}[C] \cap g^{-1}[D] \subseteq g^{-1}[C \cap D]$?
- (15) 3. (a) Write down the Second (Strong) Principle of Mathematical Induction for N.
 (b) Prove that (∀n∈N) [5ⁿ⁺² + 6²ⁿ⁺¹ is an integer-multiple of 31].
- (15) 4. (a) Define what it means for A to be *denumerable* and for B to be *countable*.
 (b) Prove that N × Z⁺ is a denumerable set. [*If you claim that a function is a bijection, then you must prove that the function is indeed a bijection.*]
- (20) 5. (a) Define what is a *convergent* sequence $\langle a_n \rangle_{n \in \mathbb{N}}$ of real numbers. Suppose $\langle a_n \rangle_{n \in \mathbb{N}}$ converges to A and $\langle b_n \rangle_{n \in \mathbb{N}}$ converges to B. Prove that (b) $\langle 3a_n \rangle_{n \in \mathbb{N}}$ converges to 3A, and (c) $\langle b_n - a_n \rangle_{n \in \mathbb{N}}$ converges to B-A.
- (15) 6. (a) Define what is a *bounded sequence* $\langle b_n \rangle_{n \in \mathbb{N}}$ sequence of real numbers. and what is a *Cauchy sequence* $\langle c_n \rangle_{n \in \mathbb{N}}$ of real numbers.
 - (b) Prove that if $\langle c_n \rangle_{n \in \mathbb{N}}$ is a Cauchy sequence, then it is a *bounded sequence*.

 $\in \forall \exists \Delta \oplus \subseteq \not\in \subset \rightarrow \neg \neq \infty \, \emptyset \equiv \approx \, \leftrightarrow \, \times \, \aleph \, \sqrt{\nabla} \ \Box \cong \bot \ \pm \geq \leq \circ \uparrow \downarrow \bot - \cup \cap \mathbb{R} \, \mathbb{Z} \, \langle \, \rangle \, \mathbb{N}$

MAA 3200 - Introd to Adv. Math Florida Int'l Univ. 0 Solutions to Test #2 Spring 2021 #1(a) A finite sequence & is any function & with dom(s) = Nk for some kell. A subsequence of \underline{z} is any ordered pair $\langle \underline{z}, \underline{t} \rangle$ where $\underline{t}: N_{\underline{z}} \rightarrow N_{\underline{k}}$ is an increasing function and $dom(\underline{z}) = N_{\underline{k}}$. (b) $f: A \rightarrow B$ is injective if $(\forall a_1, a_2 \in A) [f(a_1) = f(a_2) \rightarrow (a_1 = a_2)]$ Suppose $(g \circ f)(a_1) = (g \circ f)(a_2)$. Then $g(f(a_1)) = g(f(a_2))$. Since gis injective, we must have $f(a_1) = f(a_2)$. And since t is injective, we then get $q_1 = q_2$. So $(g \circ f)(q_1) = (g \circ f)(q_2) \rightarrow$ a1= a2. Hence gof: A > C is injective. #2(a) g[A]={g(a); a \in A} and g'[C]={x \in X; g(x) \in C}. 2(b) Let ye g[A]-g[B]. Then yeg[A] and y\$g[B]. So we can find an acA such that g(a) = y. Now if acB, then g(a) = y eB which contradicts $y \notin B$. Hence $q \notin B$, '. $a \in A - B$. Thug $y \in g[A - B]$ because $a \in A - B$. Hence $g[A] - g[B] \subseteq g[A - B]$. 2(c) Let $x \in g'[C] \cap g'[D]$. Then $x \in g'[C]$ and $x \in g'[D]$. So $g(x) \in C$ and $g(x) \in D$. i. $g(x) \in C \cap D$. i. $x \in g'[C \cap D]$ Hence $g'[C] \cap g'[D] \subseteq g'[C \cap D]$. # 3 (a) Let P(n) be a first order formula with free variable n. Then $\{P(G) \land (\forall n \in \mathbb{N}) | P(G) \land P(I) \land \dots \land P(n) \rightarrow P(n+I)] \} \Rightarrow (\forall n \in \mathbb{N}) P(n)$ 3(b) Let P(n) be the formula (FKEN)[5"+2,62n+1=31k]. Since $5^{0+2} + 6^{2(0)+1} = 25+6=31(i)$, P(0) is true. Now suppose P(n) is true. Then $5^{n+2} + 6^{2n+1} = 31k$ for some $k \in \mathbb{N}$. So $5^{(n+1)+2} + 6^{2(n+1)+1} = 5.5^{n+2} + 5.6^{2n+1} + 31.6^{2n+1} = (5k+6^{2n+1})(31)$ $= 5(5^{n+2} + 6^{2n+1}) + 31.6^{2n+1} = (5k+6^{2n+1})(31)$ So $(4n \in \mathbb{N}) [P(n) \to P(n+1)]$. Hence P(n) is true for all net \mathbb{N} . # 5 (a) (an)new is convergent if (ILER) (VE>0) (INEN) (VN=N) 5(b) Suppose (an) converges to A. Let =>o begiven [kan-L]<E]. Then $\frac{2}{3} > 0$. So we can find an NEN such That $(\forall n \ge N)$ $|q_n - A| \le \frac{2}{3}$. So $(\forall n \ge N)$, $|3q_n - 3A| = 3|q_n - A| < 3$. $\frac{2}{3} = \varepsilon$.

Hence (VE>0)(INEN)(VN>N)(139n-3A/KE). Thus (2) (39n) converges to 3A Fic) Suppose (and conv. to A & (h) conv. to B. Let E>0 be given. Then E/270. So we can find NI, N2 EIN such that $(\forall n \ge N_i)$ $(|a_n - A| \le \varepsilon/2) \in (\forall n \ge N_i) (|b_n - B| \le \varepsilon/2)$. Let N= max {N, N2}. Then for all n=N, $\left| (b_n - q_n) - (B - A) \right| = \left| (b_n - B) + (A - q_n) \right| \le \left| b_n - B \right| + \left| A - q_n \right|$ $= |b_n - B| + |a_n - A| < \epsilon/2 + \epsilon/2 = \epsilon$ $(\forall \varepsilon > 0)(\exists N)(\forall n \ge N)[(b_n - a_n) - (B - A)] < \varepsilon$ Hence (bn-an) converges to B-A. # 4(a) The set A is denumerable if there exists a bijection $f: A \rightarrow N$. The set B is countable if there exists an injection $g: A \rightarrow N$. (We can also say B is countable if B is denumerable or B is finite) 4(b) Let $f: N \times \mathbb{Z}^{+} \to \mathbb{N}$ be defined by $f(k, l) = \mathbb{Z}(2l-1) - 1$. Now suppose f(k, li) = f(k2, l2). Then 2^{k1}(2l,-1)-1=2^{k2}(2l_2-1)-1 $S_0 2^{k_1}(2l_{1-1}) = 2^{k_2}(2l_{2-1}) \Rightarrow 2^{k_1} = 2^{k_2} because 2l_{1-1} & 2l_{2-1}$ So $k_1 = k_2$. And thus $2l_1 - 1 = 2l_2 - 1 \Rightarrow l_1 = l_2$ if is injective. Now take any new. Then not can be expressed in the form $m+1 = 2^{k}(2k-1)$. For example $71+1 = 72 = 2^{3}[2(5)-1]$ So $f(k,l) = 2^{k} (2l-1) - 1 = (n+1) - 1 = n$. Hence f is surjective. Thus f is a bijection and so INXZ+ is a denumerable set. # 6(a) An infinite sequence (ban) is bounded if (IU, LER) (UNEN) Letasu. Konnew is a Cauchy sequence if (VE>0)(INEN) $(\forall m, n \ge N) (|c_m - \zeta_n| < \varepsilon).$ 6(b) Suppose (Entrem is a Cauchy sequence of real numbers. Let E=1. Then we can find an NEN such that for all minzel 1cm-cnter. So (Vn=N) (=N-Entst in particular. $(\forall n \ge N) [I \le \le n - \le N < I], I.e., (\le N) - I < \le n < (\le N) + I$ Let $L = \min \{C_1, \dots, C_{N-1}, (C_N)-1\} \& U = \max \{C_1, C_2, \dots, C_N\} H\}$ Then $(\forall n \in \mathbb{N}) [L \leq C_N \leq U] = So (C_N) is bounded.$