1.16 Let P : u = v_0 , ..., v_k = v be a u - v geodesic in a connected graph G. Prove that $d(u, v_i)$ = i for each integer i with $1 \le i \le k$.

Proof. It suffices to show that if P, as above, is a u - v path, and if $d(u,v_j) = j$ fails for some integer j with $1 \leq j \leq k$, then P is not a u - v geodesic. Thus, suppose there is an integer j with $1 \leq j \leq k$ and $d(u,v_j) \neq j$. Plainly, v_0 is adjacent to v_1 . Consequently, $d(v_0$, $v_1) = 1$. Thus, $1 < j \leq k$. Since

$$u = v_0, \ldots, v_j$$

is a u - v_j path of length j, d(u,v_j) < j. If j = k, we are done, for it follows that the path P above is not a geodesic. Thus, suppose j < k. Then there is a u - v_j path with length d(u,v_j) which, when followed by the v_j - v path of length k - j,

$$v_{j}$$
, ..., $v_{k} = v$,

yields a u - v walk of length l with

$$l = d(u, v_i) + (k - j) < j + (k - j) = k.$$

From Theorem 1.6, the is a u - v path P' with length at most l. Thus P is not a u - v geodesic.//