3.14 Prove or disprove: Let G and H be two connected graphs of order n, where V(G) = { v_1 , v_2 , ..., v_n }. If there exists a one-to-one correspondence ϕ : V(G) \rightarrow V(H) such that

$$d_{G}(v_{i}, v_{i+1}) = d_{H}(\phi(v_{i}), \phi(v_{i+1}))$$

for all i $(1 \le i \le n - 1)$, then $G \cong H$.

Solution: This is easily seen to be false. Let G = $P_n,$ and let H = C_n for n \geq 3. We may realize these two graphs as follows:

Set

$$V(G) = V(H) = \{v_1, v_2, \ldots, v_n\},\$$

and then let

$$E(G) = \{ v_i v_{i+1} : 1 \le i \le n - 1 \},$$

and

$$E(H) = \{ v_i v_{i+1} : 1 \le i \le n - 1 \} \cup \{ v_n v_1 \}.$$

We define $\phi\colon$ V(G) \rightarrow V(H) by $\phi(v_{i})$ = v_{i} for i = 1, ... , n. Plainly, we have

$$d_{G}(v_{i}, v_{i+1}) = 1 = d_{H}(\phi(v_{i}), \phi(v_{i+1}))$$

for all i (1 \leq i \leq n - 1), but the two graphs are not isomorphic, since all of the vertices of H are of degree 2, but not all those of G are.//