
5.8 (a) Let G be a nontrivial connected graph. Prove that if v is
an end-vertex of a spanning tree of G, then v is not a cut vertex
of G.

Proof: [Contrapositive] Suppose that v is a cut vertex of
G. Then Corollary 5.4 implies that there are vertices u and w in
V(G) distinct from v and each other such that each u - w path in G
contains v. Let T be any spanning tree in G. We shall show that
v is not an end-vertex of T. To see this, observe that Theorem 4.2
implies that there is a unique u - w path in T. This is also a
u - w path in G, and thus must contain v. Thus, it follows that we
must have degT(v) ≥ 2. Thus v is not an end-vertex of T. Since T
was an arbitrary spanning tree of G, v will not be an end-vertex of
any spanning tree of G.//

(b) Use (a) to give an alternative proof of the fact that
every nontrivial connected graph contains at least two vertices
that are not cut-vertices.

Proof: [Direct] By Theorem 4.10, G must have at least one
spanning tree T. Theorem 4.3 implies that T must have at least two
end-vertices. From Part (a), each of these must fail to be a cut-
vertex of G.//

(c) Let v be a vertex in a nontrivial connected graph G.
Show that there exists a spanning tree of G that contains all edges
of G that are incident with v.

Proof: Observe that the tree T0 consisting of v, together
with all of the neighbors of v and the edges incident with v, is a
subgraph of G. There is a maximal tree T in G containing T0 as a
subgraph.

We claim that T must be a spanning tree. Suppose not. Then
there is at least one vertex w in G but not in T such that

d(w,T) = min{ d(w,u): u ε V(T) }

is smallest amongst vertices w not T.
We claim that d(w,T) = 1. Suppose not. Then there is some u in

T with d(u,w) = d(w,T) = k > 1. Let P: u = v0, v1, ...,vk = w be a
u - w geodesic in G. If v1 is in V(T), then u is not closest to w.
On the other hand, if v1 is not in V(T), then w doesn’t give the
smallest value of d(w.T) amongst vertices of G not in V(T). Thus,
it must follow that d(w,T) = 1.

Now this allows us to contradict the presumed maximality of T,
for the tree T1 = ( V(T) ∪ {w}, E(T) ∪ { uw } ), where u ε V(T)
satisfies d(u,w) = d(w,T) = 1, is a tree containing T0 and properly
containing T. Thus, T must in fact span G.//



(d) Prove that if a connected graph G has exactly two
vertices that are not cut-vertices, then G is a path. [Recall that
if a tree contains a vertex of degree exceeding 2, then T has more
than 2 end-vertices.]

Proof: Suppose G is a connected graph with exactly two
vertices, u and w, that are not cut-vertices.

First, if V(G) = 2, G must be isomorphic to K2 = P2. Thus,
we may assume that G is of order at least 3 in the following.

Next, we claim ∆(G) = 2. Since V(G) ≥ 3 and G is connected,
∆(G) ≥ 2 may be easily seen to be true by considering any spanning
tree of G. To see that ∆(G) ≥ 3 is untenable, observe that if
∆(G) ≥ 3, then from Part (c), there is a spanning tree T of G with
∆(T) ≥ ∆(G). Exercise 4.19 implies that T has at least 3 end-
vertices, which cannot be cut-vertices of G from Part (a), above.

Since G is connected, deg(u) ≥ 1 and deg(w) ≥ 1. If either
the degree of u or of w is greater than 1, then from Part (c), G
would have a spanning tree without one of u or w being an end-
vertex. This, however, would imply that G had a vertex different
from u or w that is not a cut-vertex, which is impossible. Thus,
we must have deg(u) = deg(w) = 1. Moreover, that u and w are the
only vertices of G that are not cut-vertices implies that no other
vertices of G may be of degree 1.

At this point, we know that G is connected, has order at least
3, has two vertices u and w of degree 1 that are the only vertices
that are not cut-vertices of G, and that the remainder of the
vertices are of degree 2. To see that G is a path, it suffices to
show that a u - w geodesic

P: u = v1, ... , vk = w

from u to w, where k ≥ 2 contains all the vertices of G. If P does
not contain all the vertices of G, though, there are two problems
we encounter. Either G is not connected, or there is some vertex
not on P that is adjacent to at least one of the vertices of P, an
impossibility in light of the known values for the degrees of the
vertices of P. Thus P must contain all the vertices of G.
Finally, G can have no edges except those appearing in P due to the
degree values of the vertices of G. and thus G is isomorphic to Pk
where k = V(G) . //


