7.6 Does there exist a nontrivial digraph D in which no two vertices of D have the same outdegree, but every two vertices have the same indegree?? Explain.

Solution: The first question we need to answer is this:

If there is such a digraph D, what follows necessarily from the degree restrictions??

Suppose that D is such a digraph of order n with vertex set given by V(D) = $\{v_1, \ldots, v_n\}$. From the 1st Theorem of Digraph Theory, it follows that

$$n id(v_1) = \sum_{v \in V(D)} id(v)$$
$$= \sum_{v \in V(D)} od(v)$$
$$= \sum_{i=0}^{n-1} i$$
$$= \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}.$$

We can read a couple of things from this equation. The first is that if there is such a digraph D, then the common indegree must be $id(v_1) = (n-1)/2$, and the second is that such a digraph must be of odd order.

It is not terribly difficult to create an example of a digraph D_1 of order 3 with vertex set $V(D) = \{v_0, v_1, v_2\}$, id(v)= 1 for every vertex, and $od(v_0) = 0$, $od(v_1) = 1$, and $od(v_2) = 2$. [Consider the digraph, D_1 , to the left.] A little thought reveals that there is, in fact, an infinite sequence of such examples. We shall show how to build them recursively, via the proof of the following theorem:

Theorem. For each positive integer $k\geq 1$, there is a digraph D_k of order 2k+1 with $V(D_k)$ = $\{v_0,v_1,\hdots,v_{2k}\}$ such that id(v) = k for every vertex v, and $od(v_j)$ = j for j = $0,\ldots,2k$.

Proof: First, we have the basis for a recursive construction in D_1 above. Thus, for our induction hypothesis suppose that k is an arbitrary positive integer and that we already have a digraph D_k of order 2k+1 with vertex set $V(D_k) = \{v_0, v_1, \ldots, v_{2k}\}$ such that id(v) = k for every vertex v, and $od(v_j) = j$ for $j = 0, \ldots, 2k$.

We shall now show how to build D_{k+1} by using $D_k.$ Create two new vertices y and $z\,,$ and let D_{k+1} have vertex set

$$V(D_{k+1}) = V(D_k) \cup \{y, z\}.$$

We now have the necessary 2(k+1) + 1 vertices.

Connecting the vertices is slightly stickier. We shall begin with the arcs of D_k fixed. Then, by connecting the vertex z to each vertex in $V(D_k)$ and to y, we up the indegree of these vertices from k to k+1 and have the indegree of y at 1. Ignoring the vertex v_0 , we use a partition of the 2k other vertices of D_k into two sets of k elements to raise the indegrees of y and z by k. In the case of y, we reach k+1, but the indegree of z is only at k. This also raises the outdegrees of v_1 through v_{2k} by 1. So we no longer have a vertex of outdegree 1. We thus send an arc from y to z. This raises the indegree for z to k+1 and gives us a vertex with outdegree 1. In short, we set

$$E(D_{k+1}) = E(D_k) \cup E_1 \cup E_2 \cup E_3$$

where

$$E_{1} = \{ (z, v_{j}) : 0 \le j \le 2k \} \cup \{ (z, y) \},$$
$$E_{2} = \{ (v_{j}, y), (v_{k+j}, z): 1 \le j \le k \}, \text{ and}$$
$$E_{3} = \{ (y, z) \}.$$

It then follows from the induction hypothesis and the construction above that we have

$$\begin{split} &\mathrm{id}(\mathbf{v}) = k+1 \text{ for every vertex } \mathbf{v} \ \epsilon \ V(D_{k+1}), \\ &\mathrm{od}(\mathbf{v}_0) = 0, \\ &\mathrm{od}(\mathbf{y}) = 1, \\ &\mathrm{od}(\mathbf{v}_j) = j+1 \text{ for each } j \text{ with } 1 \leq j \leq 2k, \\ &\mathrm{od}(\mathbf{z}) = 2(k+1). \end{split}$$

and

All that is left to do is to re-label the vertices.[The result of going from k = 1 to k = 2 without re-labelling is below.]//

Question: What happens when you replace "nontrivial digraph" in the original question with "orientation of a nontrivial graph"?? Proof???