Chapter 7
Matchingsand r-Factors

Section 7.0 Introduction

Suppose you have your own company and you have several job openings to fill.
Further, suppose you have several candidates to fill these jobs and you must somehow
decide which candidates are to fill which jobs. Let’s try to model this problem using
graphs. The most natura model takes the form of a bipartite graph. Suppose that
corresponding to each of m open jobs we associate a vertex and say we call these vertices
J1, 02 +--+, Jm - Also, corresponding to each of n job applicants we associate a vertex,
say a; ,..., ap. Now, we join vertex a; to vertex j if, and only if, applicant a; is
qualified for job j. We clearly have created a bipartite graph. A solution to our hiring
dilemma is to find a set of edges that "match" each job to some distinct applicant.
Clearly, our problem would make even more sense if we were to somehow rate the
applicants and their "suitability” to handle each job. That is, we associate a measure of
suitability (or unsuitability) with each edge in our model. An optimal solution, then,
would be to find a set of job assignments that maximizes (or minimizes) the sum of these
measures (generally called weights). We will consider this enhancement later. For now,
we will be satisfied with merely finding suitable pairings.

We shall begin with a detailed investigation of such pairings in bipartite graphs. Our
goal isto find an effective method of determining the best possible pairing, whether it be
in terms of most edges used or in terms of optimizing some weight function. We shall
investigate both theoretic and algorithmic approaches. We shall ultimately see that this
area is a meeting point for many different ideas in discrete mathematics. This will
provide us with a chance to use diverse techniques and apply our results in many
interesting and unusual ways.

Section 7.1 Matchings and Bipartite Graphs

More formally, two distinct edges are independent if they are not adjacent. A set of
pairwise independent edges is called a matching. Thus, to solve our job assignment
problem, we seek a matching with the property that each job j; is incident to an edge of
the matching. In most situations, it is not merely a matching that we want, but the largest
possible matching with respect to some measurable quantity. Here, we wish the
maximum number of jobs to be filled, but in other situations there may be better ways to
measure how successfully we have formed our matching. In G, a matching of maximum
cardinality is called a maximum matching and its cardinality is denoted 3,(G). A
matching that pairs all the verticesin agraph is called a perfect matching.
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Figure7.1.1. The solid edges form a maximum matching.

In a study of matchings, several useful observations will actually take us a long way
toward our goal. Berge [2] made perhaps the most applicable of these observations.
Following his terminology, we define an edge to be weak with respect to a matching M if
it is not in the matching. A vertex is said to be weak with respect to M if it is only
incident to weak edges. An M-alternating path in a graph G is a path whose edges are
aternately in a matching M and not in M (or conversely). An M-augmenting path is an
aternating path whose end vertices are both weak with respect to M. Thus, an M-
augmenting path both begins and ends with a weak edge. If it is clear what matching we
are using, we will simply say alternating path or augmenting path. The graph of Figure
7.1.2 contains a matching M with edges 23, 54 and 78. An augmenting path containing
these edges is shown with nonmatching edges dashed. With this terminology in mind,
we will find the following lemma extremely useful.

Figure7.1.2. Augmenting path 1, 2, 3,5, 4,7, 8,9for M

Lemma7.1.1 LetM; and M, betwo matchingsin agraph G. Then each component
of the spanning subgraph H with edge set

E(H) = (My = M) O (M = Myq)

isone of the following types.
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1. Anisolated vertex.
2. Aneven cycle with edges alternately inM ; and M ,.

3. A path whose edges are aternately in M, and M, and such that each end vertex of
the path is weak with respect to exactly one of M1 and M ,.

Proof. Itiseasly seenthat A(H) < 2, since no vertex can be adjacent to more than one
edge from each matching. Thus, the possible components are paths, cycles or isolated
vertices.

Now, consider acomponent in H that is not an isolated vertex. It iseasily seen that in
any such component, the edges must alternate, or the definition of matching would be
violated. Hence, if the component is a cycle, it must be even and alternating. Finaly,
assume the component is a path. Then, we must only show that each end vertex is weak
with respect to exactly one of the matchings. Clearly, each end vertex is already adjacent
to an edge of one of the matchings. Suppose it was adjacent to an edge e from the other
matching, without loss of generality, say e 0 M, — M». Since we can now extend the
path in question, we violate the fact that our vertex was an end vertex of a path and that
this path was a component of H. Thus, we must have one of the three possibilities listed
above. O

We now present Berge' s [2] characterization of maximum matchings.

Theorem 7.1.1 A matching M in a graph G is a maximum matching if, and only if,
there exists no M-augmenting path in G.

Proof. Let M beamatchingin G and suppose that G contains an M-augmenting path

P:vg, Vv ,..., Vg,
wherek isclearly odd. If M isdefined to be
M1 = (M = {ViVy, VaVs,..., Vk-2Vk-1})
O{ voV1, VoV3 , ..., Vk-1Vk },

then M4 is a matching in G, and it contains one more edge than M; thus, M is not a
maximum matching.

Conversely, suppose that M is not a maximum matching and there does not exist an
M-augmenting path and let M, be a maximum matching in G. Now, consider the
spanning subgraph H, where E(H) is the symmetric difference of M and M4 (that is,
(M -M;) O(M; -—M)). By Lemma 7.1.1, we know the possibilities for the
components of H. By our earlier observations, we know that some alternating path in H
must contain more edges of M, than M, since M, contains more edges than M. But,
then, this path must be an M-augmenting path in G, contradicting our assumptions that
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there were no augmenting pathsin G. O

The situation presented in the job assignment problem is very common. One often
wishes to find a matching that uses every vertex in some set. Given a matching M, we
will say that a set Sis matched under M if every vertex of Sisincident to an edge in M.
For bipartite graphs, Hall [11] first determined necessary and sufficient conditions under
which a set could be matched.

Theorem 7.1.2 LetG = (X O Y, E) be abipartite graph. Then X can be matched to
asubset of Yif, and only if, IN(S) [ US [for al subsets Sof X.

Proof. Suppose that X can be matched to a subset of Y. Then, since each vertex of X is
matched to a distinct vertex of Y, it isclear that CN(S) [ [JS [for every subset Sof X.

Conversely, suppose that G is bipartite and that X cannot be matched to a subset of .
We wish to construct a contradiction to the assumed neighborhood conditions. Thus,
consider a maximum matching M in G. By our assumptions, the edges of M are not
incident with all the vertices of X. Let u be avertex that is weak with respect to M and let
A denote the set of al vertices of G connected to u by an M-aternating path. Since M is
amaximum matching, it follows from Berge' s theorem (Theorem 7.1.1) that u is the only
weak vertex of A. Let S= An XandT =AnY.

Clearly, the vertices of S — { u} are matched with vertices of T, therefore,
(N 0= 0S0O- 1and T O N(S). Infact, T must equal N(S) since every vertex in N(S)
is connected to u by an aternating path. But then [N(S) [= OSO- 1 < [B[]
contradicting our neighborhood assumption. O

An easy and well-known corollary to Hall’ s theorem can now be presented.

Corollary 7.1.1 If G is a k-regular bipartite graph with k > 0, then G has a perfect
matching.

Proof. Lee G=(XOY,E) be a kregular bipartite graph. Then
k (XO= k v¥O= OE[Jand since k > 0, we see that (X(= 0OYL] For any A O V(G), let
E A be the set of edges of G incident with avertex of A. Let S [0 X and consider Eg and
En(s)- By the definition of N(S), weseethat Es [0 Ey(s). Thus,

k IN(S) 0= DEng (2 DEs 0= kB0

and so [N(S) (= 0OS [ Thus, by Hall’ s theorem, X can be matched to a subset of Y. But
since X = 0Y [Jwe see that G must contain a perfect matching. O
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Hall’ s theorem is a very flexible and useful result. It can be seen from many different
points of view, and it can be stated in many ways. We shall now state it in set theoretic
terms. To do this, we need some terminology. Given sets S; ,..., Sy, we say any
element x; [ S; isarepresentative for the set S; which contains it.

Our purpose is to find a collection of distinct representatives for the sets
S;,..., Sk Thiscollection is usually known as a system of distinct representatives or
a transversal of the sets. From a graph point of view, we could use a vertex s; to
represent each set S;. We could also use a distinct vertex u; to represent each of the
elements x; in each of the sets. We then join vertices s; and u; if, and only if, the
element X; isinthe set ;. Inthisway, weseethat N(s;) = { u; 0 x; O S }. Itis
now easy to see that finding a system of distinct representatives is equivalent to finding a
matching of the s;’s into a subset of the u;’s. We now restate Hall's theorem in set
terms.

The SDR Theorem A collection S;, S, , ..., Sk, k = 1 of finite nonempty sets has
a system of distinct representatives if, and only if, the union of any t of these sets
contains at least t elementsfor eacht, (1 < t < k).

Another popular version of Hall’s theorem takes the form of a statement on marriage.
Our goal thistime is to match as many men to women as possible so that the maximum
number of couples can be married. This matching of men to women is the reason Hall’s
theorem is often called the marriage theorem.

The Marriage Theorem  Given a set of n men and a set of n women, let each man
make a list of the women he is willing to marry. Then each man can be married to a
woman on his list if, and only if, for every value of k (1 < k < n), the union of any k of
the lists contain at least k names.

We now consider a related result from Konig [12] and Egervary [6]. A set C of
vertices is said to cover the edges of a graph G (or be an edge cover), if every edgein G
isincident to a vertex in C. The minimum cardinality of an edge cover in G is denoted
a(G). In Figure 7.1.3 we see a bipartite graph with a matching (dashed edges). The
solid vertices form a cover in this graph.

Figure7.1.3. A matching and cover in agraph.

The Konig-Egervéary theorem relates matchings and covers. The proof technique is
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reminiscent of those already seen in this section.

Theorem7.1.3 If G = (X O Y, E) isabipartite graph, then the maximum number of
edges in a matching in G equals the minimum number of vertices in a cover for E(G),
that is, 31(G) = a(G).

Proof. Let a maximum matching in G contain 3;(G) = m edges and let a minimum
cover for E(G) contain a(G) = cvertices. Notethat c = malways holds.

Let M be a maximum matching in G. Also let W be those vertices of X that are weak
with respect to M. Note that (M = 0OX O- W [J Let Sbe those vertices of G that are
connected to some vertex in W by an alternating path. Define Sy = Sn X and
Sy =SnY.

From the definition of S and the fact that no vertex of Sy — W is weak, we see that
Sy — Wismatched under M to Sy and that N(Sx) = Sy. Since Sy — Wis matched to
Sy, we seethat [By - 0OSy 0= OW O

Let C = (X — Sx) O Sy. Then C is a cover for E(G), for if it were not, there
would bean edgevwin Gsuchthatv [0 Sy andw [l Sy = N(Sx). Hence,

[(CO=0OX0O- 0OSx O+ OSy U= X O- W O= M [

Thus, ¢ = m, and the proof iscomplete. O

The form of the Konig-Egervéry theorem should by now be a tipoff that something
deeper is going on here. The min-max form that we saw in Menger’s theorem and in the
max flow-min cut theorem is once again present. Thus, we should expect that these
results are closely related (see the exercises) and that flows could be used to prove results
about matchings. We now investigate this connection.

Figure7.1.4. Thenetwork N.

Given a bipartite graph G = (X O Y, E), we construct a network Ng (see Figure
7.1.4) corresponding to G by first orienting all edges of G from X to Y. Now, insert a
source vertex swith arcsto all vertices of X and asink vertex t with arcs from all vertices
of Y. We assign the capacity of al arcs out of sor intot as1. The capacities of all arcs
from X to Y are set to . With this network in mind, we are now able to show a
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connection between matchings and flows.

Theorem 7.1.4 In a bipartite graph G = (X O Y, E), the number of edges in a
maximum matching equals the maximum flow in the network Ng.

Proof. Let M be a maximum matching in G. For each edge xy in M, we use the directed
path s, x, y, ttoflow 1 unit fromstotin Ng. Itisclear that these paths are all digoint
except for sandt. Thus, F = [M O= B 1(G).

Now let f be an integral flow function on the network Ng corresponding to G. All the
directed paths between s and t have the form s, x, y, t. If such a path is used to carry
flow from sto t, then no other arc can be used to carry flow to y. Also, no other arc can
be used to carry flow out of x. Then the set of edges xy for which f(x - y) =1
determines a matching in G. Thus, B1(G) = [M [= F, and this, combined with our
previous observations, showsthat 3, (G) = IM 0= F. O

It is a simple matter now to deduce from the max-flow min-cut theorem and Theorem
7.1.3 that a (G) must equal the capacity of a minimum cut. But we can do more than just
state this equality; we can use cuts to determine the cover. Suppose that (C, C) is acut
of minimum capacity in Ng. If welet A= X n CandB = Y n C, thenitiseasy to
seethat A [0 Bisacover for G. Further, since

c(s, A) +c(B,t) =[A0BO

(that is, since the capacity of the arcs from sto A and those from B to t total CA [ Bl)} we
see that A O B must be a minimum cover. Thus, we can use flows and cuts to find not
only maximum matchings but also minimum covers as well. Does all this remind you of
the way we selected the cover in the proof of Theorem 7.1.3?

Section 7.2 Matching Algorithmsand Marriage

It turns out that in the setting of bipartite graphs, we can easily apply Berge's ideas
and use augmenting paths to build maximum matchings. We now present a labeling
algorithm to find a maximum matching in a bipartite graph. This agorithm assumes a
given matching M is known and attempts to extend M by finding an augmenting path.
This is done by trying to follow all possible augmenting paths. As we go, we "mark"
vertices using edges not in M while walking from X to Y, and we mark vertices using
edges in M while walking from Y to X. Hence, we essentially trace all possible
alternating paths as we go. Thisalgorithm isa specia case of the network flow algorithm
of Ford and Fulkerson [9].
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Algorithm 7.2.1 A Maximum Matching in a Bipartite Graph.

Input: LetG = (X O, E) beabipartite graph and suppose that
X={X1,..., Xptand¥Y ={vy;,..., yn }. Further,
let M be any matching in G (including the empty matching).

Output: A matching larger than M or the information that
the present matching is maximum.

Method: We now execute the following labeling steps until no step
can be applied.

1. Label withan* all vertices of X that are weak with respect to M. Now, alternately
apply steps 2 and 3 until no further labeling is possible.

2. Select anewly labeled vertex in X, say X;, and label with x; all unlabeled vertices
of Y that are joined to x; by an edge weak with respect to M. Repeat this step on
all vertices of X that were labeled in the previous step.

3. Select anewly labeled vertex of Y, say y;j, and label with y; all unlabeled vertices
of X which are joined to y; by an edge in M. Repeat this process on all vertices of
Y labeled in the previous step.

Notice that the labelings will continue to aternate until one of two possibilities
OCCUrS:
E1l: A weak vertexinY has been labeled.
E2: Itisnot possibleto label any more vertices and E1 has not occurred.

If ending E1 occurs, we have succeeded in finding an M-augmenting path, and we
can construct this path by working backwards through the labels until we find the vertex
of Xwhichislabeled *. The purpose of the labelsisto allow usto actually determine an
M-augmenting path. We can then extend our matching as in Theorem 7.1.1 and repeat
the algorithm on our new matching. Our next theorem shows that if E2 occurs, M is
already a maximum matching. The proof is reminiscent of that of the Konig-Egervary
theorem.

Theorem 7.2.1  Suppose that Algorithm 7.2.1 has halted with ending E2 occurring and
having constructed matching M. Let Uy be the unlabeled vertices in X and Ly the
labeled verticesin Y. ThenC = Uy O Ly coversthe edges of G, [C U= [OM [Jand M
isamaximum matching in G.

Proof. Suppose that C does not cover the edges of G. Then there must exist an edge
fromLy = X — UyxtoUy =Y — Ly. Suppose there was such an edge, call ite = xy,
wherex O Ly andy O Uy. If eisnot in M, then since x is labeled, it follows from step
2 that y is labeled, and this condition contradicts the fact that Ly contains all the labeled
vertices of Y. Thus, e [0 M, and so it follows from step 3 that the label on x isy. It aso
follows from the algorithm that y must be labeled; and that in fact, it must have received
that label prior to x receiving its label. But this condition again contradicts the fact that
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Ly contains al the labeled vertices of Y. Thus, we conclude there are no edges from
X - UxtoY - Ly and soit must be the case that C covers all the edges of G.

Now, consider y [0 Ly. Since y is labeled and E1 has not happened, y must be
incident with an edge of M (exactly one such edge since M is a matching). Suppose that
Xy isthis edge. By step 3, the vertex x must be labeled, so xisnot in Uyx. Consider some
x1 O Ux. Since x4 is not labeled, it must be incident with an edge of M, or it would
have received the label * in step 1. Since M is a matching, x; is incident with exactly
one edge of M. Let this edge be x,1y,. If y; were labeled, by step 3 we would see that
X1 would aso be labeled, but x; 0 Ux. Theny,; must be unlabeled, and thus, none of
the edges of M which are incident to verticesin U x are the same as any of the edges of M
with incidencesin Ly. Since every edge of M has an end vertex in either U or Ly, there
must be as many edges in M as vertices in C; that is, C 0= [OM [J Since C covers the
edges of G, by Theorem 7.1.3, M must be a maximum matching, and so the proof is
complete. O

Example7.2.1.  Wenow apply Algorithm 7.2.1 to the bipartite graph of Figure 7.2.1.

Figure7.2.1. A bipartitegraphG = (X O Y, E).

We select the edge v u; asour initial matching M. We now apply Algorithm 7.2.1.
Step 1: Labe v,, vz, v4 with*.

Step 2: Select v, and label uq, Uz, uy withvs.

Step 3: Select u; and label v4 withu;.

Step 2. Select v, and label u, withv;.

Note that no other labeling is possible.

Since the labeling included weak verticesin Y, condition E1 holds. Note that the path
P : v,, uzisaugmenting; thus our new matchingisnow M = {v,uq, VU3 },andwe
repeat Algorithm 7.2.1 on this M.

To see what this algorithm is really doing, we can trace what happens in each pass of
the algorithm. We began labeling v, and followed by labeling the weak neighbors
ui, Uz and u,. From these vertices we looked instead for edges in the matching M and
labeled v4. Then, we again reversed our thinking and looked for weak neighbors of this
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vertex. In Figure 7.2.2 we picture the situation after the labeling was completed. Note
the layering of vertices and the fact that edges between consecutive layers were
introduced in the same step of the algorithm. The tree that has been "grown" by the
algorithm has the property that each path from the initial vertex to aleaf is an alternating
path. When the tree has been grown to its utmost, the algorithm halts, and any path from
the root (the vertex labeled *) to a weak leaf is augmenting. We retrace any such path by
following the labels assigned to the vertices. It has become customary to call such atree
a hungarian tree. Note that such a tree has been started for every vertex labeled *, but
not all have been successful in finding an augmenting path.

Qg - - -p—@2
Vol —y
g

Figure7.2.2. A hungarian tree grown in pass one.

The second pass of Algorithm 7.2.1 (see Figure 7.2.3) produces:
Step 1: Label vz, vy with *.
Step 2. Select V4 and |abel uq, Ug with Vg.
Select v3; nothing more can be labeled.
Step 3: Select u; and label v, with u;. Select uz and label v, with us.
Step 2 SeleCtV]_ and |abel Uo, Uy with V1.

Figure 7.2.3. The hungarian tree rooted at v, in pass two.

The labeling halts, and we have found an augmenting path, namely
P: ug4, V1, Uq, V4. Using P, we extend the matching to
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M = { vaugz, UgVvy, U1Vy },

and we repeat Algorithm 7.2.1 again on M.

Step 1: Label vz with *.
Step 2: Select v and label uq, uz withvs.
Step 3: Select uq and label v, with uyq;
then select uz and label v, with us.
Step 2: Select v, and label u, with vs,;
then select v, and note that no further labeling can be done.
Step 3: Select uy and label vq with uy.
Step 2: Select v, and label u, withv;.
Step 3: No labeling is possible, and the algorithm halts.

We now interchange edges on the path P: u,, v, U4, Vo, U3, V3 tO obtain the
maximum matchingM = { uqVvy4, VaUsz, VolUy, ViUs } (SeeFigure 7.2.4).

(D
Uy - g - 1)y

Figure7.2.4. The hungarian tree from pass three.

\B)

We are now ready to consider a strengthening of the job assignment problem. We
wish to include information about the relative suitabilities of the job candidates for the
various jobs. The problem to be considered will be restricted to the case in which there
are n candidates for n jobs, and each candidate has a measure of suitability for each job.
That is, we have assigned a weight function to the edges of K, ,. It is clear that it may
not be possible to assign each applicant to the job he or she is best suited for, since two
applicants might be best suited for the same job. Thus, our goal isto find the overall best
solution, that is, the solution with the optimal sum of the weights assigned to the edges of
the matching.

To attack this problem, we will find it more convenient to have our weight function
represent a measure of the applicant’s unsuitability for the job. Then, the larger the
weight, the more unsuitable the applicant is for the job. For any matching M, we define

the weight of the matching to be W(M) = > w(e). Thus, an optimal solution will be
edM
a perfect matching with W(M) a minimum. We now present an algorithm for finding

such a solution.

We begin by representing our graph in matrix form, U = [ w; ] where w; y is the
weight of the edge joining j; and a, (that is, the unsuitability of applicant kto jobi). An



12 Chapter 7: Matchings and r-Factors

example of such amatrix is now given.

U [Hay a- as as
i1 54 6 14 11
i2 g7 2 8 9
i3 3 13 1 4

Ja. O 5 2 0 13

It is important to note that our solution is unchanged if we subtract the same number
from all members of some row or some column. This follows since only one entry will
be selected from any row or column; hence, the value of W(M) for any matching M will
be reduced by the same amount. Thus, we can make the entries in our unsuitability
matrix easier to deal with by first subtracting from each row the minimum entry in that
row. The resulting matrix still has al nonnegative entries, which we hope are smaller
than before. Our example matrix thus becomes:

U [a; ao as ag

jp. 20 2 10 7
i o5 0 6 7
js O 2 12 0 3
ja 05 2 0 13

Now, subtract from each column the smallest entry in that column to obtain a further
reduced unsuitability matrix. Our example s then:

U [a; o as adg
L]

i g0 2 10 4

j> g5 0 6 4

iz 02 12 0 0

jo B 5 2 0 10

Our problem now is to select numbers from the table, no two in the same row or
column, with as small a sum as possible. Since our entries are all nonnegative, the
smallest sum we could hope for is zero. Thus, if n zeros can be found, no two in the
same row or column, an optimal solution will be obtained. In our example, a solution is
easily found. We select the entries starred above.

The suspicious reader is now asking what happens if at this stage we cannot find a
suitable set of n "independent zeros,” or must this always be the case. The answer is that
we are not aways sure of having enough zeros at this stage to represent a perfect
matching in our graph. Sometimes, further adjustments must be made. Consider the
following unsuitability matrix.
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U [a; ao asj ag
jp. 26 8 2 7
i o5 8 13 9
js g2 8 10 9

i, 04 12 8 1.1

Then, after reducing the rows followed by the columns, we are left with the following
matrix.

U [Oag ao asj ag
ji1 2 4 3 0 1
i g0 0 8 0
js 0o 3 8 3

i, 00 5 4 3

This matrix does not contain four independent zeros since all the zeroes are contained
in the first column and the first two rows. This can be seen by crossing with a line the
rows and columns containing zeros. In the graph, then, the independent zeros represent
the edges of the matching, while the lines drawn show the vertices "covered" by the
vertex corresponding to the row or column in which the line was drawn. Our adjustment
procedureis as follows:

1. Let m be the smallest number that is not included in any of our crossed rows or
columns.

2. Subtract mfrom all uncrossed numbers.
L eave numbers which are crossed once unchanged.
4. Add mto all numbers which are crossed twice.

This procedure produces at |east one more zero in the uncrossed portion of our matrix
and leaves al the zeros unchanged, unless they happen to be crossed twice. Can you
explain why this adjustment procedure works? Our example becomes:

UDal ao asj dy
j1 27 3 0 1
i g3 0 8 0
js g O 0 5 0
js OO 2 1 0

The procedure described here will always yield a set of n independent zeros after a
finite number of repetitions. The algorithm presented above to solve our optimal
matching problem is usualy known as the hungarian algorithm, in honor of Kénig and
Egervary. An aternate form of the Konig-Egervéry theorem can now be stated. We
deriveits proof from the first form.

Theorem 7.2.2 Let Sbe any m x n matrix. The maximum number of independent
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zeros which can be found in Sis equa to the minimum number of lines (either rows or
columns) which together cover al the zeros of S

Proof. Construct a bipartite graph G = (X O Y, E) modeling our matrix as follows.
Let the vertices of X correspond to the rows of our matrix and the vertices of Y to the
columns. We join x; and y; if, and only if, entry i, j of our matrix is zero. Then, a
maximum independent set of zeros corresponds to a maximum matching of G, and a
minimum set of lines covering all the zeros corresponds to a minimum covering of G.
Thus, by Theorem 7.1.3 the result follows. O

Suppose we how consider the job assignment problem from the greedy point of view.
Can we simply begin with the edge of minimum cost and somehow extend to a matching
of minimum cost? The answer is that we can if we are careful about our point of view.
Rather than build a matching by greedily taking edges, we shall set our view on the
vertices involved. Given a bipartite graph G = (V, O V5, E), we say asubset | of V;
is matching-independent for matchings of V, into V, if there is a matching which
matches all the elements of | to elements of V,. We wish to build a maximum sized
matching-independent set in a greedy fashion. Thus, if we have a set | that is matching-
independent, we would add to | the vertex x of V1 having cheapest incident edge that till
allows usto match | 0 { x } into V,. When we can no longer do this, we stop. The
guestion of interest now is. How do we know that we have formed a maximum sized
matching-independent set when this process halts? That this is indeed the case can be
concluded from the next result.

Theorem 7.2.3  Matching-independent sets for matchings of V, into V, satisfy the
following rule:

If | and J are matching-independent subsets of V; and [0 O< [J [Jthen there is an
element x of Jsuchthat | O { x } is matching-independent.

Proof. Suppose that M4 is a matching of | into V, and M, is a matching of Jinto V.
Then, by Lemma 7.1.1, the Spanning subgraph H with
E(H) = (M1 — My) O (M, — M;) has connected components of only three possible
types. Since [M,0> [OM[Jat least one of these components must be of type 3 in
Lemma 7.1.1. Thus, there is a path P whose edges are alternately in M, and M; and
whose first and last edges are in M,. Each vertex of P incident to an edge from M, is
also incident to an edge from M. Further, thereisavertex xin 'V, (and J) incident to an
edge from M, and x is not incident to any edge from M ;. Now the set of edges

M= (M, - E(P)) O (E(P) - My)

forms a matching with one more edge than M ;. Also, Misamatchingof | OO { x } into
V,. Thus, | O { x } is matching-independent, and since x [ J, the proof is complete.
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To actually use the greedy approach to construct a maximum sized matching of
minimum weight, we must determine a method that allows us to select the vertex x we
wish to add to our matching-independent set. To do this, we must also keep track of the
edges that are presently matching | into V,. Otherwise, we would face the possibility of
having to check all possible subsets of V, in a search for the matching. Since this is
clearly an exponentia process, the bookkeeping of the intermediate matchings is
necessary. Applying our methods of finding alternating paths allows us to construct the
maximum sized matching-independent set, and it is an exercise to show that the
corresponding matching is of minimum cost.

Can we vary the assignment problem somewhat? For a suitability weight function w,
we can change the function we are optimizing from

w(e) to min { w(e) }.
I w(e)to min {w(e))
That is, suppose we try to maximize the minimum weight of an edge in the matching.

This is the mathematical version of the old proverb that the strength of a chain equals the
strength of its weakest link. This is known as the bottleneck assignment problem. It
turns out that we can solve the bottleneck assignment problem by repeated applications
of any agorithm for finding matchings in bipartite graphs. Suppose we begin with any
matching M in the bipartite graph G. We can easily find the minimum weight of an edge
in M, say b. Weform anew graph G, from G by removing all edges from G with weight
b or less. If we now find a maximum matching in Gy, and if it is a perfect matching, then
each of its edges must have weight greater than b, so we have improved the matching. If
no such matching can be found, then the previous matching was the best. We continue
this process until the matching which maximizes the minimum weight of an edge is
found. Can you formally write an algorithm that solves the bottleneck assignment
problem?

We conclude this section with a study of some interesting mathematical properties of
marriage. For the remainder of this section we shall use some notions about matrices to
study marriages. We take the marriage point of view because of the interesting and
unusual manner the statements of our results will take. We begin with some ideas on
matrices.

A matrix D = (d; ;) is doubly stochastic if each d; ; = 0 and the sum of the entries
in any row or column equals 1. A permutation matrix is any matrix obtained from the
identity matrix | by performing a permutation on the rows of I. A well-known result on
doubly stochastic matrices from Birkhoff [4] and Von Neumann [15] states that any
doubly stochastic n x n matrix D can be written as a combination of suitable
permutation matrices. That is, there e>§]ist constants ¢q, C» ,..., Cn and permutation

matricesP, ,..., PysuchthatD = ¥ c;P;.
i=1
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We can use matchings to indicate an algorithm for finding the constants and the
decomposition of D into permutation matrices.

Suppose we model our doubly stochastic matrix D with a bipartite graph. Let
verticesrq, ro ,..., I, represent the rows of D and let verticesk, , ..., k, represent
the columns. We draw an edge from r; to k; if, and only if, entry d; ; of D is nonzero.
Then the permutation matrix P 1 represents the edges of a matching in this bipartite graph
and the constant ¢4 is the minimum weight of an edge in this matching. We can now
write D asD = ¢;P; + R, where the matrix R represents the remaining edges of our
bipartite graph. The old edges were adjusted by subtracting ¢, from the weight of each
edge of the matching and removing any edge with weight zero. We now repeat this
processon R.

Suppose that at some stage we are unable to find a matching. Then by Hall’ s theorem
there must exist some set A of vertices representing rows of D such that CA (0> [ON(A) [
That is, there are more rows than "neighboring” columns. Now, consider what this
means in our matrix D. If each of these rows sums to 1 (counting the entries that were
possibly removed prior to this), then the total value of the weights in these rows is [A [
But then this amount must also be distributed over CN(A) Ctolumns, which means some
column must sum to more than 1, contradicting that D was doubly stochastic. Thus, we
will be able to find a matching at each stage.

We now formally state the algorithm for finding this convex sum of permutation
matrices.

Algorithm 7.2.2 Decomposing Doubly Stochastic M atrices.
Input: A doubly stochastic matrix D.
Output: A convex sum of permutation matricesc, P, + --- + ¢, P,.

1. Sett1<—1,X<—Dandk<—1

2. Having a doubly stochastic matrix X and nonnegative numbers tq, to ,..., ty
and permutation matricesP, ..., Pyx-1 such It(hat
D = tlpl + -+ tk—lpk—l + tk X and Z ti = 1.
i=1

If Xisapermutation matrix,
thenset P, — Xand hal;
else use bipartite graphs to find a permutation matrix X™ such that x;;” = 0
whenever x;; = 0.

3. The n entries x; ; of X for which xij* = 1 are al positive entries. Let ¢ be the
least of these entries (notec < 1).
Sett « t, tgx « ct, tys1 « (L —c)t and Py — X . Now, replace X by

ﬁ (X = cPg),setk « k + 1andgotostep 2.



Chapter 7: Matchings and r-Factors 17

Using doubly stochastic matrices, we find that another unusual theorem about
marriage is now possible. Suppose we consider a suitability matrix describing the
marriage problem. That is, given a set of n men and another set of n women, let the
matrix S = (s; ;) be defined so that s; ; isameasure of the suitability or "happiness’ of a
marriage between man i and woman j. Our goal is to study the type of marriage that
brings this collection of men and women the most "happiness.” In particular, we will
compare monogamy and polygamy. These relationships can be shown in a matrix
M = (m;;). Each row of the matrix M represents a man in our set of men and each
column a woman. The entry m; j in our marriage matrix M represents the fraction of
time man i spends with woman j. Thus, monogamy would be a permutation matrix and
polygamy a genera doubly stochastic matrix. Our measure of the happiness of the
present marriage relationship M will be h(M) = ¥ s; ;m; ;. Our solution is then to

find m'\?x h(M), where the maximum is taken over allllJ doubly stochastic matrices M. But
we note that
ml\(;lax h(M) = maxC h(ciPy + -+ + cyPp)
= max  cih(Py) + .-+ + cyh(Pp)

Ciiyeve, (o
h(P;) forsomei.

(The above follows easily for the maximum h(P;)). That is, the maximum corresponds
to the matching represented by some permutation matrix. In other words, monogamy is
the preferred mathematical state of marriage. We have just proven the following
interesting marriage theorem.

Theorem 7.2.4  Among all forms of marriage, monogamy is optimal.

We conclude our study of marriage by considering its stability. Suppose we have a
sstof nmenmy; ,..., myand nwomenw; ,..., W,. SUppose, too, that man mq is
married to woman w; and man m, to woman w,. Further suppose that in reality m,
prefers w4 to his own wife and w, prefers m, to her own husband. It is easy to believe
thisis not a"stable" situation, in fact, we call such a pair of marriages unstable.

Let’s construct two preference tables. In each table, the rows represent the men and
the columns the women. The entries in any row of the first preference table are the
integers 1 to n. This represents the order of preference of the women by the man
corresponding to this row (with 1 being first choice). A similar description applies to the
columns of the women’s preference table.

Our problem, then, is given the two preference tables, can we find a stable set of
marriages. That is, can we find a matching in which no pair of independent edges is
unstable. We now describe an algorithm to produce our stable matching.
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Algorithm 7.2.3 Stable Matching Algorithm.
I nput: Given preference tables for the men and the women.

Ou

1
2.

tput: A set of stable marriages

Each man proposes to hisfirst choice.

The women with two or more proposals respond by reecting all but the most
favorable offer. However, no woman accepts a proposal.

The men that were rejected propose to their next choice. Those that were not
rejected continue their offers.

We repeat step 3 until we reach a stage where no proposal is rejected.

Clearly, each woman can only regject a finite number (namely n — 1) of proposals,

and so this process must eventually stop. We illustrate our algorithm on the following
preference tables.

men [1w;y Wo W3 Wy
m; E 1 2 3 4
m2 1 4 3 2
m3 o 2 1 3 4
women [ w;, W W3 Wy
m; E 3 3 2 3
m, 0 4 1 3 2
ms 0 2 4 4 1
my 01 2 1 4

The set of proposals P; appears below; starred proposals were rejected.

proposals [ P4 P, P3 Pa Pg Peg
m, SIE1 1 1 1 2 3
m, 51 4 4 4 4 4
ms 0 2 2 2 1 1 1
my 0 4 4 2 2 2 2

From this table we see that the final set of marriagesis:
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man m; with woman wj
man m, with woman w,
man ms with woman w,
man my with woman wo.

It is easy to verify that this set of marriagesis stable.

We now wish to prove we actually reach a stable matching. Suppose this were not
the case; that is, suppose there was an unstable pair of marriages. Without loss of
generality, let thispair be (my, wq) and (m,, w»).

But if m, prefers wq, he would have proposed to w4 before he proposed to his
present wife. Then w4, would not have rejected m, if she actually preferred him over
m;. Hence, we could not have reached this unstable situation. Thus, the marriages
cannot be unstable. We have now shown the following result, due originally to Gale and
Shapely [10].

Theorem 7.2.5 Given n men and n women, there always exists a set of stable
marriages.

Section 7.3 Factoring

We now wish to study matchings in a generalized setting. In addition, we want to
consider relaxations of the concept of matchings. A perfect matching is often called a 1-
factor, since the matching is a 1-regular spanning subgraph of the original graph. It isnot
a difficult leap to the idea of an r-factor, that is, an r-regular spanning subgraph of the
original graph. We begin with a natural result.

Theorem 7.3.1 If Gisagraph of order 2n and 8(G) = n, then G contains a 1-factor.

Proof. Thisresult follows as a consequence of Dirac’s theorem (Corollary 5.2.1). O

We see that an algorithm for finding such a matching is apparent. Having obtained an
r-matching, scan the remaining (2n — 2r) vertices to see if any pair is joined by an
edge. If thisfailsto be the case, choose any two of these vertices, say a and b, and scan
the edges xy of the matching until one is found such that a is adjacent to x and b is
adjacent toy. Then, replace xy by the edges ax and by and repeat this process.

The fundamental result on 1-factors is from Tutte [14]. The proof presented here is
that of Anderson [1]. We denote the number of components of odd order in a graph G by
Ko (G).

Theorem 7.3.2 (Tutte [14]) A nontrivial graph G has a 1-factor if, and only if,
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ko(G — S) < [B [Hor every proper subset Sof V(G).

Proof. Let F bea l1-factor of G and suppose there exists a proper subset Sof V(G) such
that ko (G — S) > B[] For each of the odd components C of G — S there must exist
an edge in F that goes from C to S. But this implies that there is a vertex in Sincident
with at least two edges in F, which contradicts the definition of matching.

Conversdly, note that ko (G — @) <M= 0. Thus, G has only even components,
and the order n of G must, then, be even. Also, observe that for every proper subset S of
V(G), the numbers (K and k, (G — S) areof the same parity.

Now, we proceed by induction on the order of G. If n = 2, then G must be K ,, and
clearly G has a 1-factor. Next, assume that for all graphs H of even order less than n, the
condition ko (H — S) < [5[for every proper nonempty subset S of vertices implies H
has a 1-factor. Let G be a graph of even order n and assume that ko (G — S) < [B Hor
every proper subset Sof V(G). We now consider two cases.

Case 1. Suppose that ko(G — S) < [BOfor al subsets S of V(G) with
2 < [HI< n. Since ko (G - S) and (B have the same parity, ko (G — S) < [B[0- 2.
Let uv be an edge of G and consider G — u — v. Let S; be a proper subset of
V(G - u — v). Thus,

kO(G—U—V—Sl)SES]_D
or else
ko(G-u-v-5) >05E,0=08 O{u, v} O 2
and, hence,
ko(G=(Sp O{uwv}) =5 0{uvid

which contradicts our assumptions. Then the matching obtained by applying the
induction hypothesis, along with the edge uv, provides a 1-factor of G.

Case 2. Suppose that there exists some set S, such that ko (G - S,) =[5, I
Among al such sets, let S be one of maximum cardinality. Further, let
ko(G-9S) =[8B0=tandletCy ,..., C; betheodd componentsof G — S If Eis
an even component of G — S and x O V(E), then k(G — S — x) would equal
[5 0O { x }[Jcontradicting the fact that Swas a set of maximum cardinality having this
property. Thus, G — Shas no even components.

LetS; (i =1,..., t)denote those vertices of Swith adjacenciesin Cj. Each S
is nonempty, or else some C; would be an odd component of G. The union of any k of
thesetsS; ,..., S; contains at least k vertices, or there exists an integer k such that the

union U of some k of these sets contains less than k vertices. Thus, ko (G — U) > [U [J
which is a contradiction. Hence, by Hall’s theorem (SDR), there exists a system of
distinct representatives for the sets S, , ..., S;. Thisimplies that in Sthere are distinct
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verticesvy , ..., V¢ andthat in each C; there is a vertex u; such that v; u; is an edge of
G.

Let W be a proper subset of C; — uj. Since Cij — u; has even order,
ko(Ci — uj — W) and W [have the same parity. If

Ko(Ci —uj —W) >[W[]
then it must be that
Ko(Ci —uj = W) 2WO+ 2

Thus,

Ko(G - (SOWDO{uj})) =ko(Cj —uj =W) +ko(G-95) -1

B0+ OW O+ 1
BOWDO {u }0

But this contradicts the maximality of S Hence,
ko(Ci —uj — W) <WQO

and so by induction, each C; — u; has a 1-factor. These 1-factors, together with the
edges u; v, then form the desired 1-factor in G. O

v

Berge [3] noticed a useful related fact stemming from the proof of Tutte's theorem.
This observation is often called the Berge defect form of Tutte's theorem. From Tutte's
theorem, we see that a graph G of even order p contains a perfect matching unless there
exists some set of r vertices whose removal leaves a graph with more than r odd
components. However, because G has even order, this forces the existence of at least
r + 2 odd components (see the proof). Further, the defect form also states that if Gisa

graph of odd order p, then G contains a maximum matching of size % (p — 1) unless

there is some set of r vertices whose removal leaves a graph with at least r + 3 odd
components. This observation can be useful in dealing with graphs of odd order.

It is clear that every 1-regular graph contains (in fact, is) a 1-factor and that every 2-
regular graph contains a 1-factor (in fact, is 1-factorable, that is, its edge set can be
decomposed into 1-factors) if, and only if, every component is an even cycle. The
situation is not as simple for 3-regular graphs, however. Petersen [13] investigated 1-
factors in 3-regular graphs and showed that they need not contain a 1-factor (see Figure
7.3.1). However, he was aso able to show a situation in which such a graph would
contain a 1-factor.

Theorem 7.3.3 (Petersen [13]). Every bridgeless 3-regular graph G can be expressed as
the edge sum of a 1-factor and a 2-factor.

Proof. It suffices to show that such a graph contains a 1-factor since the remaining
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edges form a 2-factor. Suppose the graph G fails to contain a 1-factor. Then by Tutte's
theorem, there exists in G some proper nonempty set S of k vertices such that
n==ky(G-9S) >[EI= k Suppose that C; ,..., C, are the odd components of
G - S There must exist an edge fromeach C; to S(1 < i < n), or else some C; would
be a 3-regular graph of odd order, which is impossible. Further, since G is bridgeless,
there cannot be a single edge joining Sto any C;. If there were exactly two edgesjoining
Sto some C;, then again C; would contain an odd number of vertices of odd degree.
Thus, at least three edgesjoin any C; to S Thus, there are at least 3n edges joining Sand
the C; (1 < i < n). However, since each vertex of S has degree 3, there can be at most
3k edges into S. But since 3n > 3k, a contradiction arises. Thus, no such set S can
exist, and by Tutte’' s theorem, we see that G must contain a 1-factor. O

Figure7.3.1. A 3-regular graph with no 1-factor.

Now that we know that every bridgeless 3-regular graph can be factored into a 1-
factor and a 2-factor, it is natural to wonder if it can actually be 1-factored. Petersen also
showed that this is not the case. His example, which has become perhaps the most
famous of all graphs, is shown in Figure 7.3.2.

Petersen also characterized those graphs which are 2-factorable. It turns out that the
obvious necessary condition that the graph be 2r-regular for some r > 1 also suffices.
The proof makes use of the fact that such graphs are eulerian.

Theorem 7.3.4 A nonempty graph G is 2-factorable if, and only if, G is 2r-regular
(r =2 1) for someintegerr.

Proof. Clearly, if G is 2-factorable, then G is 2r-regular for somer > 1.



Chapter 7: Matchings and r-Factors 23

Figure 7.3.2. The Petersen Graph.

Conversely, let G be a 2r-regular graph (r = 1). Without loss of generality we may
assume G is connected, for otherwise we would simply consider each component
separately. Thus, we see that G is eulerian with circuit C. Let
V(G) ={ vy, V2,..., Vp } and define abipartite graph

B = (V]_ O V2, E)
from G asfollows: Let
Vi={uguy,...;,up}, Vo ={wg,wy,..., wyp} and
E(B) = { ujw; O v; immediately follows v; on C }.

The graph B is r-regular, and so by Corollary 7.1.1, B contains a perfect matching M ;.
Then thegraphB — M4 isr — 1-regular and again by Corollary 7.1.1, B — M contains
a perfect matching M,. Continuing in this manner, we see that E(B) can be partitioned
into matchingsM, M, , ..., M,.

Corresponding to each matching M of B is a permutation 11, on the set of vertices
defined by m(vi) = v; if ujw; O E(My). We know that we can express T as the
product of digoint permutation cycles. Note that in this product, no permutation cycle is
of length 1, for this would imply that Tt (vi) = vi. But thisimpliesthat u;w; O E(B),
and, hence, that v;v; is an edge of C, contradicting the fact G is a graph. Further note
that there is no permutation cycle of length 2 in the product since this would imply that
m(vi) = vj and T (vj) = vj. Butthis means that u;w; and u;w; are edges of B and
that v; both precedes and follows v; on C. But this contradicts the fact that C is a circuit
and, hence, has no repeated edges. Thus, we are able to conclude that each permutation
cyclein the product of digoint permutation cycles representing 11, has length at least 3.

Each permutation cycle in 11, then givesrise to acycle in G, and since the product of
the permutation cycles is digoint, the corresponding cycles span V(G). But, these
spanning cycles form a 2-factor of G. Further, since the matchingsM, M5, ,..., M,
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partition the edges of G, the 2-factors that correspond to 1ty , ..., T, are mutually edge
digoint. Thus, Gis2-factorable. O

We conclude this section by considering some special classes of graphs. The obvious
starting point is the complete graphs. It turns out that we can produce very special 2-
factorsin Koy +1. A 2-factorization of K7 is shownin Figure 7.3.3.

Theorem 7.3.5 For every positive integer p, the graph K, + 1 can be 2-factored into p
hamiltonian cycles.

Proof. Theresult istrivial when p = 1, so we can assume that p = 2. Let the vertices
of Kop+1 be Vg, ..., Vop. We arrange the vertices vy, --- , vy, cyclicdly in a
regular 2p-gon and place v in the center of the arrangement. We define the edges of the
2-factor F; to consist of the edges voVi, VoVp+i dong with viv;,; and al edges
parallel to this edge, and v; -1 V; +1 and all edges parallel to thisedge. (All subscripts are
expressed modulo 2p). Then each F; is ahamiltonian cycle, and K5, + 1 isthe edge sum
of these 2-factors. O

Figure7.3.3. A 2-factorization of K.

Corollary 7.3.1  For every positive integer p, the graph K, can be factored into p
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hamiltonian paths.

We conclude this section with another result on complete graphs. Its proof is left to
the exercises.

Theorem 7.3.6  For every positive integer p, the graph K, is 1-factorable.

Section 7.4 Degreesand 2-Factors

In this section we wish to consider several results that appear similar to some of the
theorems we saw earlier dealing with hamiltonian graphs. Since a hamiltonian cycleisa
2-factor, it is not surprising that there is a relationship between these hamiltonian results
and theorems dealing with 2-factors. We begin with a very nice result due to El-Zahar

[7].

Theorem7.4.1 Let Gbeagraphof order nand let n; = 3and n, = 3 be two integers

[h, O Lh,U0 . o
such that n = ny + n,. If 8(G) =2 O~ O+ -0 then G contains two digoint
D20 020

cyclesC4 and C, of length n4 and n,, respectively.

El-Zahar's Theorem can be viewed as a generdization of Dirac’s Theorem on
hamiltonian graphs. Dirac’s Theorem provides for a 2-factor that is one cycle while El-
Zahar’'s Theorem uses a slightly stronger degree condition to provide for a 2-factor that is
two cycles. A stronger look at Dirac’s condition alows us to actualy say much more.
We begin with alemma.

Lemma 7.4.1 Let G be a graph of order n with minimum degree 6(G) = n/2. If G
containsk > 1 vertex digoint cyclesCq, C», ..., Cy such that

V(G) - iEle(Ci) [k 2,

then G has a 2-factor with exactly k vertex digoint cycles.

k
Proof. If V(G) - _D1V(Ci) = { w}, then G contains the desired 2-factor since
| =

deg w = n/2 and hence w is adjacent to two consecutive vertices of a least one of the
cycles.
k
Thus we may assume V(G) - _D1V(Ci) ={u,v}. Ifoneof uandyv, say u, is
| =

adjacent to two consecutive vertices of one of the cycles, then, as before, we obtain the
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desired 2-factor. Thus we may assumethat deg u = deg v = n/2 and that each of u and
v is adjacent to alternate vertices of each of the cycles and necessarily to each other. Let

CiiUg, U, ..., U, Ug
be one such cycle. If u and v are adjacent to the same set of vertices of C4, say
{ ug,usz,..., Uut—1}. ThenC; can bereplaced by
ug, U, v, uz, ug ,..., Ug, Ug

to obtain k vertex digoint cycles containing all but one vertex of G. In this case, as we
have seen, G has the desired 2-factor. On the other hand, if u is adjacent to
ug, Uz, ,..., Ui—q and v is adjacent to u,, U4, ,..., U;. Then we may replace C;
with the cycle

ui, U, Uz, Uz, VvV, Uy, Us ,..., U, Ug

to complete the proof. O

Now, with the aid of the lemma, we can take the stronger look at Dirac’s condition
promised earlier. Theresultisfrom [5].

Theorem 7.4.2 Let k be a positive integer and let G be a graph of order n = 4k with
minimum degree 6(G) = n/2. Then G has a 2-factor with exactly k vertex digoint
cycles.

Proof. The cases k = 1, 2 follow from Dirac’'s Theorem and El-Zahar’s Theorem,
respectively. Thus we may assume that k > 2. Since 8(G) = n/2 2 2kand n = 4k, G
contains k vegex digoint cycles C,, C,,,..., Cx by Theorem 584. Let

X =V(G) - .DlV(Ci)andassumeX #z [.
|1 =
If 8((X)) < X U2, letw O Xwith degxy(w) < X 2. Then, since 3(G) = n/2,

it follows that w is adjacent to more than half of the vertices of someC;, 1 < i < kand
therefore adjacent to consecutive vertices of C;. Therefore w can be added to C;.

Continue this process to obtain k vertex digoint cyclesC'q, C'5 ,..., C'| such that
either
V(G) = V(C',) DkV(C'z) O --- OV(C'y) or
X' = V(G) - i91V(C’i) #0 and
d({X')) = X' 02

In the first case we have the desired 2-factor. In the second case, either (X') = K, or
(X'} is hamiltonian. If {X'}) = K, then by applying Lemma 7.4.1 we obtain the desired
2-factor. Thus we may assume that C' ;1 IS a hamiltonian cycle of X'. Without loss of
generaity, assume that [W(C';) [k OV(C';) Ofor i=2,3,,..., k+1, so that
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, n
V(C'y) B o < /4,

Since 8(G) = n/2, the number of edges between V(C';) and V(G)-V(C',) is a
least

D/(C']_) D(n/2 - B/(C’l) O+ 1)

If between every three consecutive verticesof C'; andof C'; 2<i<k + 1)
there are at most three edges, then the number of edges between V(C';) and
V(G) - V(C';)isat most

(3) (0 = V(€' 1)) DV(C'1)D
This, however, implies that
(%) (n - /(C'1)D DV(C'y)= OV(C'1)0(n/2 - IV(C' 1)U+ 1),

so that
OV(C'1)(= n/4 + 3/2,

contradicting the fact OV(C' 1)k n/4. Thus, for some i with 2 <i < k + 1, three
consecutive vertices of C'; have at least four adjacencies to three consecutive vertices of
C'i. Inthiscaseit is straightforward to verify that C'; and C'; can be combined to form
acycle containing all but at most two of the vertices of C' 1 and C';. Then an application
of Lemma 7.4.1 completes the proof. O

With dlightly more effort it is possible to extend our generalizations to an Ore-like
result concerning degree sums of nonadjacent vertices. The following isaso from [5].

Theorem 7.4.3 Let G be a graph of order n > 4k such that deg x + deg y = n for
each pair of nonadjacent vertices x, y in V(G), then G has a 2-factor with exactly k
vertex digoint cycles.

Exercises
1. Show that the n-cube Q, (n = 2) has a perfect matching.
2. Show that Q, isr-factorableif, and only if, r OIn.
3. Characterizewhenthegraph K, o, ..., p, has aperfect matching.
4. Determine the number of perfect matchingsin the graphs K, , and K pp,.
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10.

11.

12.
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How many perfect matchings can exist in atree?

Find a maximum matching and a minimum cover in the graph below using each of
the indicated methods.

a.  Algorithm 7.2.1 and Theorem 7.2.1.
b. A network model.

FEE

Use Dirac’s theorem (Corollary 5.2.1) to show that if G has even order p and
35(G) 2 % + 1, then G has a 3-factor.

Show that every doubly stochastic matrix is a square matrix.
Show that if G = (X O Y, E) isabipartite graph, then
B1(G) = IXO- ggﬂ);{[ﬁ]— ON(S)O }.
Use the previous exercise to show that if the (p, q) graph G = (X O VY, E) is

bipartite and OXOO= OYO= n and q > (k = 1) n, then G has a matching of
cardinality k.

[9] Suppose that G is a graph of order p with the property that for every pair of
nonadjacent verticesxand y, LIN(x) O N(y) (= s.

O
a. Use Berge's defect form of Tutte's theorem to show that if s > 2 D% -2
O

oo

andpisoddand p = 6, then
1
B1(G) = >(p - 1).
b. Find a graph of order 5 for which the conditions of part (a) fail to ensure
1
B1(G) = > (P~ 1).
c. Use Tutte's theorem to show that if s > %(p - 1) - landpisevenand Gis

connected, then 3, (G) = %

Use Tutte' s theorem to prove Hall’ s theorem.

13. UseKonig'stheorem to prove Hall’ s theorem.
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14. Prove Corollary 7.3.1.
15. Prove Theorem 7.3.6.

16. CanK,, can befactored inton — 1 hamiltonian paths and one 1-factor?
17. LetGbea(p, q) graph of even order p with 8(G) < % Show that if

o> (P )+ (P27 ) + sone - o).

then G has a perfect matching.

18. Four men and four women apply to a computer dating service. The computer
evaluates the unsuitability of each man for each woman as a percentage (see the
table below). Find the best possible dates for each woman for this Friday night.

OM;, M, Ms M,
w; Y 60 35 30 65
E 30 10 55 30
W; 040 60 15 35

W, 025 15 40 40

19. Consider the table used for the last exercise as representing the weights assigned to
a bipartite graph and solve the bottleneck assignment problem for this graph.

20. The math department at your college has six professors that must be assigned to
teach each of five different classes. The department did an examination of the
suitability of each professor for each class and the unsuitability table is shown
below. What is the optimal teaching assignment that can be made if no professor
is assigned more than one class?

opP, P, Ps; P, Ps P
c, 07 25 5 25 50 35
C, 60 30 45 35 45 20
o855 25 5 15 50 30
C, 040 35 40 45 3B 25

Cs 50 20 45 30 40 45

(Hint: Add adummy class that each professor is equally suited to teach.)

21. Doesthe previous problem make sense as a bottleneck assignment problem? If so,
solveit.
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22.

23.

24,

25.

26.
27.
28.

29.

30.

31.
32.
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Consider the doubly stochastic matrix below. Use Algorithm 7.2.2 to decompose
this matrix into permutation matrices.

Mm3 03 00 03 01
[D.1 05 0.2 0.1 0.1
(b2 00 03 05 00
Bo.o 02 05 00 03
04 00 00 01 05

Consider the table of the previous problem as the weights assigned to the edges of
a bipartite graph. Interpret your solution in relation to the last problem on this

graph.
Explain why the adjustment process allows us to complete the hungarian algorithm
applied to an unsuitability matrix.

OoOooodd

A decomposition of G is a collection { H; } of subgraphs of G such that
H; = < E; > for some subset E; of E(G) and where the sets { E; } partition
E(G). Prove that the complete graph K, can be decomposed as a collection of 3-

n
cyclesif, and only if, p = 3, pisodd and 3 divides ( 5 )

Find a decomposition of K 5 as 5-cycles.
Find a decomposition of K 1 as paths of length 5.

Prove that for each integer n = 1, the graph K,,+1 can be decomposed as a
collection of stars K, and that the graph K, can be decomposed as a collection
of starsK .

By an ascending subgraph decomposition of a graph G of size ( > ) we mean
an edge decomposition into subgraphs Gq,..., G, with the properties that
[(E(Gj)0=1and G; £ G, £ -+ £ Gy, that is, each G; is isomorphic to a
subgraph of G; ;. Show that K,, has an ascending subgraph decomposition as
stars and also an ascending subgraph decomposition as paths.

Find an example that shows that the n = 4k condition in Theorem 7.4.2 cannot be
reduced.

Find an example to show that the degree condition in El-Zahar’ s Theorem is sharp.
Prove Theorem 7.4.1.
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