
Chapter 7

Matchings and r-Factors

Section 7.0 Introduction

Suppose you have your own company and you have several job openings to fill.
Further, suppose you have several candidates to fill these jobs and you must somehow
decide which candidates are to fill which jobs. Let’s try to model this problem using
graphs. The most natural model takes the form of a bipartite graph. Suppose that
corresponding to each of m open jobs we associate a vertex and say we call these vertices
j 1 , j 2 , . . . , j m . Also, corresponding to each of n job applicants we associate a vertex,
say a 1 , . . . , a n . Now, we join vertex a i to vertex j k if, and only if, applicant a i is
qualified for job j k . We clearly have created a bipartite graph. A solution to our hiring
dilemma is to find a set of edges that "match" each job to some distinct applicant.
Clearly, our problem would make even more sense if we were to somehow rate the
applicants and their "suitability" to handle each job. That is, we associate a measure of
suitability (or unsuitability) with each edge in our model. An optimal solution, then,
would be to find a set of job assignments that maximizes (or minimizes) the sum of these
measures (generally called weights). We will consider this enhancement later. For now,
we will be satisfied with merely finding suitable pairings.

We shall begin with a detailed investigation of such pairings in bipartite graphs. Our
goal is to find an effective method of determining the best possible pairing, whether it be
in terms of most edges used or in terms of optimizing some weight function. We shall
investigate both theoretic and algorithmic approaches. We shall ultimately see that this
area is a meeting point for many different ideas in discrete mathematics. This will
provide us with a chance to use diverse techniques and apply our results in many
interesting and unusual ways.

Section 7.1 Matchings and Bipartite Graphs

More formally, two distinct edges are independent if they are not adjacent. A set of
pairwise independent edges is called a matching. Thus, to solve our job assignment
problem, we seek a matching with the property that each job j i is incident to an edge of
the matching. In most situations, it is not merely a matching that we want, but the largest
possible matching with respect to some measurable quantity. Here, we wish the
maximum number of jobs to be filled, but in other situations there may be better ways to
measure how successfully we have formed our matching. In G, a matching of maximum
cardinality is called a maximum matching and its cardinality is denoted β1 (G). A
matching that pairs all the vertices in a graph is called a perfect matching.

1

2 Chapter 7: Matchings and r-Factors

Figure 7.1.1. The solid edges form a maximum matching.

In a study of matchings, several useful observations will actually take us a long way
toward our goal. Berge [2] made perhaps the most applicable of these observations.
Following his terminology, we define an edge to be weak with respect to a matching M if
it is not in the matching. A vertex is said to be weak with respect to M if it is only
incident to weak edges. An M-alternating path in a graph G is a path whose edges are
alternately in a matching M and not in M (or conversely). An M-augmenting path is an
alternating path whose end vertices are both weak with respect to M. Thus, an M-
augmenting path both begins and ends with a weak edge. If it is clear what matching we
are using, we will simply say alternating path or augmenting path. The graph of Figure
7.1.2 contains a matching M with edges 23, 54 and 78. An augmenting path containing
these edges is shown with nonmatching edges dashed. With this terminology in mind,
we will find the following lemma extremely useful.

1 4 7

3 5 8

2 6 9

Figure 7.1.2. Augmenting path 1, 2, 3, 5, 4, 7, 8, 9 for M

Lemma 7.1.1 Let M 1 and M 2 be two matchings in a graph G. Then each component
of the spanning subgraph H with edge set

E(H) = (M 1 − M 2) ∪ (M 2 − M 1)

is one of the following types:

Chapter 7: Matchings and r-Factors 3

1. An isolated vertex.

2. An even cycle with edges alternately in M 1 and M 2.

3. A path whose edges are alternately in M 1 and M 2 and such that each end vertex of
the path is weak with respect to exactly one of M 1 and M 2.

Proof. It is easily seen that ∆(H) ≤ 2, since no vertex can be adjacent to more than one
edge from each matching. Thus, the possible components are paths, cycles or isolated
vertices.

Now, consider a component in H that is not an isolated vertex. It is easily seen that in
any such component, the edges must alternate, or the definition of matching would be
violated. Hence, if the component is a cycle, it must be even and alternating. Finally,
assume the component is a path. Then, we must only show that each end vertex is weak
with respect to exactly one of the matchings. Clearly, each end vertex is already adjacent
to an edge of one of the matchings. Suppose it was adjacent to an edge e from the other
matching, without loss of generality, say e ∈ M 1 − M 2. Since we can now extend the
path in question, we violate the fact that our vertex was an end vertex of a path and that
this path was a component of H. Thus, we must have one of the three possibilities listed
above.

We now present Berge’s [2] characterization of maximum matchings.

Theorem 7.1.1 A matching M in a graph G is a maximum matching if, and only if,
there exists no M-augmenting path in G.

Proof. Let M be a matching in G and suppose that G contains an M-augmenting path

P: v 0 , v 1 , . . . , v k ,

where k is clearly odd. If M 1 is defined to be

M 1 = (M − { v 1 v 2 , v 3 v 4 , . . . , v k − 2 v k − 1 })
∪ { v 0 v 1 , v 2 v 3 , . . . , v k − 1 v k } ,

then M 1 is a matching in G, and it contains one more edge than M; thus, M is not a
maximum matching.

Conversely, suppose that M is not a maximum matching and there does not exist an
M-augmenting path and let M 1 be a maximum matching in G. Now, consider the
spanning subgraph H, where E(H) is the symmetric difference of M and M 1 (that is,
(M − M 1) ∪ (M 1 − M)). By Lemma 7.1.1, we know the possibilities for the
components of H. By our earlier observations, we know that some alternating path in H
must contain more edges of M 1 than M, since M 1 contains more edges than M. But,
then, this path must be an M-augmenting path in G, contradicting our assumptions that

4 Chapter 7: Matchings and r-Factors

there were no augmenting paths in G.

The situation presented in the job assignment problem is very common. One often
wishes to find a matching that uses every vertex in some set. Given a matching M, we
will say that a set S is matched under M if every vertex of S is incident to an edge in M.
For bipartite graphs, Hall [11] first determined necessary and sufficient conditions under
which a set could be matched.

Theorem 7.1.2 Let G = (X ∪ Y , E) be a bipartite graph. Then X can be matched to
a subset of Y if, and only if,  N(S)  ≥  S  for all subsets S of X.

Proof. Suppose that X can be matched to a subset of Y. Then, since each vertex of X is
matched to a distinct vertex of Y, it is clear that  N(S)  ≥  S  for every subset S of X.

Conversely, suppose that G is bipartite and that X cannot be matched to a subset of Y.
We wish to construct a contradiction to the assumed neighborhood conditions. Thus,
consider a maximum matching M in G. By our assumptions, the edges of M are not
incident with all the vertices of X. Let u be a vertex that is weak with respect to M and let
A denote the set of all vertices of G connected to u by an M-alternating path. Since M is
a maximum matching, it follows from Berge’s theorem (Theorem 7.1.1) that u is the only
weak vertex of A. Let S = A ∩ X and T = A ∩ Y.

Clearly, the vertices of S − { u } are matched with vertices of T; therefore,
 T  =  S  − 1 and T ⊆ N(S). In fact, T must equal N(S) since every vertex in N(S)
is connected to u by an alternating path. But then  N(S)  =  S  − 1 <  S ,
contradicting our neighborhood assumption.

An easy and well-known corollary to Hall’s theorem can now be presented.

Corollary 7.1.1 If G is a k-regular bipartite graph with k > 0, then G has a perfect
matching.

Proof. Let G = (X ∪ Y , E) be a k-regular bipartite graph. Then
k  X = k  Y =  E, and since k > 0, we see that  X =  Y. For any A ⊆ V(G), let
E A be the set of edges of G incident with a vertex of A. Let S ⊆ X and consider E S and
E N(S) . By the definition of N(S), we see that E S ⊆ E N(S) . Thus,

k  N(S)  =  E N(S)  ≥  E S  = k  S  ,

and so  N(S)  ≥  S . Thus, by Hall’s theorem, X can be matched to a subset of Y. But
since  X  =  Y , we see that G must contain a perfect matching.

Chapter 7: Matchings and r-Factors 5

Hall’s theorem is a very flexible and useful result. It can be seen from many different
points of view, and it can be stated in many ways. We shall now state it in set theoretic
terms. To do this, we need some terminology. Given sets S 1 , . . . , S k , we say any
element x i ∈ S i is a representative for the set S i which contains it.

Our purpose is to find a collection of distinct representatives for the sets
S 1 , . . . , S k . This collection is usually known as a system of distinct representatives or
a transversal of the sets. From a graph point of view, we could use a vertex s i to
represent each set S i . We could also use a distinct vertex u j to represent each of the
elements x j in each of the sets. We then join vertices s i and u j if, and only if, the
element x j is in the set S i . In this way, we see that N(s i) = { u j  x j ∈ S i } . It is
now easy to see that finding a system of distinct representatives is equivalent to finding a
matching of the s i’s into a subset of the u j’s. We now restate Hall’s theorem in set
terms.

The SDR Theorem A collection S 1 , S 2 , . . . , S k , k ≥ 1 of finite nonempty sets has
a system of distinct representatives if, and only if, the union of any t of these sets
contains at least t elements for each t, (1 ≤ t ≤ k).

Another popular version of Hall’s theorem takes the form of a statement on marriage.
Our goal this time is to match as many men to women as possible so that the maximum
number of couples can be married. This matching of men to women is the reason Hall’s
theorem is often called the marriage theorem.

The Marriage Theorem Given a set of n men and a set of n women, let each man
make a list of the women he is willing to marry. Then each man can be married to a
woman on his list if, and only if, for every value of k (1 ≤ k ≤ n), the union of any k of
the lists contain at least k names.

We now consider a related result from Ko
. .
nig [12] and Egerva ́ ry [6]. A set C of

vertices is said to cover the edges of a graph G (or be an edge cover), if every edge in G
is incident to a vertex in C. The minimum cardinality of an edge cover in G is denoted
α (G). In Figure 7.1.3 we see a bipartite graph with a matching (dashed edges). The
solid vertices form a cover in this graph.

Figure 7.1.3. A matching and cover in a graph.

The Ko
. .
nig-Egerva ́ ry theorem relates matchings and covers. The proof technique is

6 Chapter 7: Matchings and r-Factors

reminiscent of those already seen in this section.

Theorem 7.1.3 If G = (X ∪ Y , E) is a bipartite graph, then the maximum number of
edges in a matching in G equals the minimum number of vertices in a cover for E(G),
that is, β1 (G) = α(G).

Proof. Let a maximum matching in G contain β1 (G) = m edges and let a minimum
cover for E(G) contain α (G) = c vertices. Note that c ≥ m always holds.

Let M be a maximum matching in G. Also let W be those vertices of X that are weak
with respect to M. Note that  M  =  X  −  W . Let S be those vertices of G that are
connected to some vertex in W by an alternating path. Define S X = S ∩ X and
S Y = S ∩ Y.

From the definition of S and the fact that no vertex of S X − W is weak, we see that
S X − W is matched under M to S Y and that N(S X) = S Y . Since S X − W is matched to
S Y , we see that  S X  −  S Y  =  W .

Let C = (X − S X) ∪ S Y . Then C is a cover for E(G), for if it were not, there
would be an edge vw in G such that v ∈ S X and w ∈/ S Y = N(S X). Hence,

 C  =  X  −  S X  +  S Y  =  X  −  W  =  M .

Thus, c = m, and the proof is complete.

The form of the Ko
. .
nig-Egerva ́ ry theorem should by now be a tipoff that something

deeper is going on here. The min-max form that we saw in Menger’s theorem and in the
max flow-min cut theorem is once again present. Thus, we should expect that these
results are closely related (see the exercises) and that flows could be used to prove results
about matchings. We now investigate this connection.

1

1

∞

∞

1

1

s t
.
.
. .

.

.

Figure 7.1.4. The network N G .

Given a bipartite graph G = (X ∪ Y , E), we construct a network N G (see Figure
7.1.4) corresponding to G by first orienting all edges of G from X to Y. Now, insert a
source vertex s with arcs to all vertices of X and a sink vertex t with arcs from all vertices
of Y. We assign the capacity of all arcs out of s or into t as 1. The capacities of all arcs
from X to Y are set to ∞. With this network in mind, we are now able to show a

Chapter 7: Matchings and r-Factors 7

connection between matchings and flows.

Theorem 7.1.4 In a bipartite graph G = (X ∪ Y , E), the number of edges in a
maximum matching equals the maximum flow in the network N G .

Proof. Let M be a maximum matching in G. For each edge xy in M, we use the directed
path s , x , y , t to flow 1 unit from s to t in N G . It is clear that these paths are all disjoint
except for s and t. Thus, F ≥  M  = β 1 (G).

Now let f be an integral flow function on the network N G corresponding to G. All the
directed paths between s and t have the form s , x , y , t. If such a path is used to carry
flow from s to t, then no other arc can be used to carry flow to y. Also, no other arc can
be used to carry flow out of x. Then the set of edges xy for which f (x → y) = 1
determines a matching in G. Thus, β1 (G) =  M  ≥ F, and this, combined with our
previous observations, shows that β1 (G) =  M  = F.

It is a simple matter now to deduce from the max-flow min-cut theorem and Theorem
7.1.3 that α (G) must equal the capacity of a minimum cut. But we can do more than just
state this equality; we can use cuts to determine the cover. Suppose that (C , C

_ _
) is a cut

of minimum capacity in N G . If we let A = X ∩ C
_ _

and B = Y ∩ C, then it is easy to
see that A ∪ B is a cover for G. Further, since

c(s , A) + c(B , t) =  A ∪ B 

(that is, since the capacity of the arcs from s to A and those from B to t total  A ∪ B), we
see that A ∪ B must be a minimum cover. Thus, we can use flows and cuts to find not
only maximum matchings but also minimum covers as well. Does all this remind you of
the way we selected the cover in the proof of Theorem 7.1.3?

Section 7.2 Matching Algorithms and Marriage

It turns out that in the setting of bipartite graphs, we can easily apply Berge’s ideas
and use augmenting paths to build maximum matchings. We now present a labeling
algorithm to find a maximum matching in a bipartite graph. This algorithm assumes a
given matching M is known and attempts to extend M by finding an augmenting path.
This is done by trying to follow all possible augmenting paths. As we go, we "mark"
vertices using edges not in M while walking from X to Y, and we mark vertices using
edges in M while walking from Y to X. Hence, we essentially trace all possible
alternating paths as we go. This algorithm is a special case of the network flow algorithm
of Ford and Fulkerson [9].

8 Chapter 7: Matchings and r-Factors

Algorithm 7.2.1 A Maximum Matching in a Bipartite Graph.
Input: Let G = (X ∪ Y , E) be a bipartite graph and suppose that

X = { x 1 , . . . , x m } and Y = { y 1 , . . . , y n }. Further,
let M be any matching in G (including the empty matching).

Output: A matching larger than M or the information that
the present matching is maximum.

Method: We now execute the following labeling steps until no step
can be applied.

1. Label with an * all vertices of X that are weak with respect to M. Now, alternately
apply steps 2 and 3 until no further labeling is possible.

2. Select a newly labeled vertex in X, say x i , and label with x i all unlabeled vertices
of Y that are joined to x i by an edge weak with respect to M. Repeat this step on
all vertices of X that were labeled in the previous step.

3. Select a newly labeled vertex of Y, say y j , and label with y j all unlabeled vertices
of X which are joined to y j by an edge in M. Repeat this process on all vertices of
Y labeled in the previous step.

Notice that the labelings will continue to alternate until one of two possibilities
occurs:

E1 : A weak vertex in Y has been labeled.
E2 : It is not possible to label any more vertices and E1 has not occurred.

If ending E1 occurs, we have succeeded in finding an M-augmenting path, and we
can construct this path by working backwards through the labels until we find the vertex
of X which is labeled *. The purpose of the labels is to allow us to actually determine an
M-augmenting path. We can then extend our matching as in Theorem 7.1.1 and repeat
the algorithm on our new matching. Our next theorem shows that if E2 occurs, M is
already a maximum matching. The proof is reminiscent of that of the Ko

. .
nig-Egerva ́ ry

theorem.

Theorem 7.2.1 Suppose that Algorithm 7.2.1 has halted with ending E2 occurring and
having constructed matching M. Let U X be the unlabeled vertices in X and L Y the
labeled vertices in Y. Then C = U X ∪ L Y covers the edges of G,  C  =  M , and M
is a maximum matching in G.

Proof. Suppose that C does not cover the edges of G. Then there must exist an edge
from L X = X − U X to U Y = Y − L Y . Suppose there was such an edge, call it e = xy,
where x ∈ L X and y ∈ U Y . If e is not in M, then since x is labeled, it follows from step
2 that y is labeled, and this condition contradicts the fact that L Y contains all the labeled
vertices of Y. Thus, e ∈ M , and so it follows from step 3 that the label on x is y. It also
follows from the algorithm that y must be labeled; and that in fact, it must have received
that label prior to x receiving its label. But this condition again contradicts the fact that

Chapter 7: Matchings and r-Factors 9

L Y contains all the labeled vertices of Y. Thus, we conclude there are no edges from
X − U X to Y − L Y , and so it must be the case that C covers all the edges of G.

Now, consider y ∈ L Y . Since y is labeled and E1 has not happened, y must be
incident with an edge of M (exactly one such edge since M is a matching). Suppose that
xy is this edge. By step 3, the vertex x must be labeled, so x is not in U X . Consider some
x 1 ∈ U X . Since x 1 is not labeled, it must be incident with an edge of M, or it would
have received the label * in step 1. Since M is a matching, x 1 is incident with exactly
one edge of M. Let this edge be x 1 y 1. If y 1 were labeled, by step 3 we would see that
x 1 would also be labeled, but x 1 ∈ U X . Then y 1 must be unlabeled, and thus, none of
the edges of M which are incident to vertices in U X are the same as any of the edges of M
with incidences in L Y . Since every edge of M has an end vertex in either U X or L Y , there
must be as many edges in M as vertices in C; that is,  C  =  M . Since C covers the
edges of G, by Theorem 7.1.3, M must be a maximum matching, and so the proof is
complete.

Example 7.2.1. We now apply Algorithm 7.2.1 to the bipartite graph of Figure 7.2.1.

v 1 u 1

v 2 u 2

v 3 u 3

v 4 u 4

X Y

Figure 7.2.1. A bipartite graph G = (X ∪ Y , E).

We select the edge v 1 u 1 as our initial matching M. We now apply Algorithm 7.2.1.
Step 1: Label v 2 , v 3 , v 4 with *.
Step 2: Select v 2 and label u 1 , u 3 , u 4 with v 2.
Step 3: Select u 1 and label v 1 with u 1.
Step 2: Select v 1 and label u 2 with v 1.
Note that no other labeling is possible.

Since the labeling included weak vertices in Y, condition E1 holds. Note that the path
P : v 2 , u 3 is augmenting; thus our new matching is now M = {v 1 u 1 , v 2 u 3 }, and we
repeat Algorithm 7.2.1 on this M.

To see what this algorithm is really doing, we can trace what happens in each pass of
the algorithm. We began labeling v 2 and followed by labeling the weak neighbors
u 1 , u 3 and u 4. From these vertices we looked instead for edges in the matching M and
labeled v 1. Then, we again reversed our thinking and looked for weak neighbors of this

10 Chapter 7: Matchings and r-Factors

vertex. In Figure 7.2.2 we picture the situation after the labeling was completed. Note
the layering of vertices and the fact that edges between consecutive layers were
introduced in the same step of the algorithm. The tree that has been "grown" by the
algorithm has the property that each path from the initial vertex to a leaf is an alternating
path. When the tree has been grown to its utmost, the algorithm halts, and any path from
the root (the vertex labeled *) to a weak leaf is augmenting. We retrace any such path by
following the labels assigned to the vertices. It has become customary to call such a tree
a hungarian tree. Note that such a tree has been started for every vertex labeled *, but
not all have been successful in finding an augmenting path.

v 2

u 1

u 3

u 4

v 1 u 2

Figure 7.2.2. A hungarian tree grown in pass one.

The second pass of Algorithm 7.2.1 (see Figure 7.2.3) produces:
Step 1: Label v 3 , v 4 with *.
Step 2: Select v 4 and label u 1 , u 3 with v 4.
Select v 3; nothing more can be labeled.
Step 3: Select u 1 and label v 1 with u 1. Select u 3 and label v 2 with u 3.
Step 2: Select v 1 and label u 2 , u 4 with v 1.

v 4

u 1

u 3 v 2

v 1

u 2

u 4

Figure 7.2.3. The hungarian tree rooted at v 4 in pass two.

The labeling halts, and we have found an augmenting path, namely
P: u 4 , v 1 , u 1 , v 4. Using P , we extend the matching to

Chapter 7: Matchings and r-Factors 11

M = { v 2 u 3 , u 4 v 1 , u 1 v 4 } ,

and we repeat Algorithm 7.2.1 again on M.

Step 1: Label v 3 with *.
Step 2: Select v 3 and label u 1 , u 3 with v 3.
Step 3: Select u 1 and label v 4 with u 1;

then select u 3 and label v 2 with u 3.
Step 2: Select v 2 and label u 4 with v 2;

then select v 4 and note that no further labeling can be done.
Step 3: Select u 4 and label v 1 with u 4.
Step 2: Select v 1 and label u 2 with v 1.
Step 3: No labeling is possible, and the algorithm halts.

We now interchange edges on the path P: u 2 , v 1 , u 4 , v 2 , u 3 , v 3 to obtain the
maximum matching M = { u 1 v 4 , v 3 u 3 , v 2 u 4 , v 1 u 2 } (see Figure 7.2.4).

v 3

u 1

u 3

v 4

v 2 u 4 v 1 u 2

Figure 7.2.4. The hungarian tree from pass three.

We are now ready to consider a strengthening of the job assignment problem. We
wish to include information about the relative suitabilities of the job candidates for the
various jobs. The problem to be considered will be restricted to the case in which there
are n candidates for n jobs, and each candidate has a measure of suitability for each job.
That is, we have assigned a weight function to the edges of K n ,n . It is clear that it may
not be possible to assign each applicant to the job he or she is best suited for, since two
applicants might be best suited for the same job. Thus, our goal is to find the overall best
solution, that is, the solution with the optimal sum of the weights assigned to the edges of
the matching.

To attack this problem, we will find it more convenient to have our weight function
represent a measure of the applicant’s unsuitability for the job. Then, the larger the
weight, the more unsuitable the applicant is for the job. For any matching M, we define
the weight of the matching to be W(M) =

e ∈ M
Σ w(e). Thus, an optimal solution will be

a perfect matching with W(M) a minimum. We now present an algorithm for finding
such a solution.

We begin by representing our graph in matrix form, U = [w i ,k] where w i ,k is the
weight of the edge joining j i and a k (that is, the unsuitability of applicant k to job i). An

12 Chapter 7: Matchings and r-Factors

example of such a matrix is now given.

U a 1 a 2 a 3 a 4_ ___________________________ __________________________
j 1 4 6 14 11
j 2 7 2 8 9
j 3 3 13 1 4
j 4 5 2 0 13







It is important to note that our solution is unchanged if we subtract the same number
from all members of some row or some column. This follows since only one entry will
be selected from any row or column; hence, the value of W(M) for any matching M will
be reduced by the same amount. Thus, we can make the entries in our unsuitability
matrix easier to deal with by first subtracting from each row the minimum entry in that
row. The resulting matrix still has all nonnegative entries, which we hope are smaller
than before. Our example matrix thus becomes:

U a 1 a 2 a 3 a 4_ ___________________________ __________________________
j 1 0 2 10 7
j 2 5 0 6 7
j 3 2 12 0 3
j 4 5 2 0 13







Now, subtract from each column the smallest entry in that column to obtain a further
reduced unsuitability matrix. Our example is then:

U a 1 a 2 a 3 a 4_ ______________________________ _____________________________

j 1 0* 2 10 4
j 2 5 0* 6 4
j 3 2 12 0 0*

j 4 5 2 0* 10







Our problem now is to select numbers from the table, no two in the same row or
column, with as small a sum as possible. Since our entries are all nonnegative, the
smallest sum we could hope for is zero. Thus, if n zeros can be found, no two in the
same row or column, an optimal solution will be obtained. In our example, a solution is
easily found. We select the entries starred above.

The suspicious reader is now asking what happens if at this stage we cannot find a
suitable set of n "independent zeros," or must this always be the case. The answer is that
we are not always sure of having enough zeros at this stage to represent a perfect
matching in our graph. Sometimes, further adjustments must be made. Consider the
following unsuitability matrix.

Chapter 7: Matchings and r-Factors 13

U a 1 a 2 a 3 a 4_ ___________________________ __________________________
j 1 6 8 2 7
j 2 5 8 13 9
j 3 2 8 10 9
j 4 4 12 8 11







Then, after reducing the rows followed by the columns, we are left with the following
matrix.

U a 1 a 2 a 3 a 4_ ___________________________ __________________________
j 1 4 3 0 1
j 2 0 0 8 0
j 3 0 3 8 3
j 4 0 5 4 3







This matrix does not contain four independent zeros since all the zeroes are contained
in the first column and the first two rows. This can be seen by crossing with a line the
rows and columns containing zeros. In the graph, then, the independent zeros represent
the edges of the matching, while the lines drawn show the vertices "covered" by the
vertex corresponding to the row or column in which the line was drawn. Our adjustment
procedure is as follows:

1. Let m be the smallest number that is not included in any of our crossed rows or
columns.

2. Subtract m from all uncrossed numbers.

3. Leave numbers which are crossed once unchanged.

4. Add m to all numbers which are crossed twice.

This procedure produces at least one more zero in the uncrossed portion of our matrix
and leaves all the zeros unchanged, unless they happen to be crossed twice. Can you
explain why this adjustment procedure works? Our example becomes:

U a 1 a 2 a 3 a 4_ ___________________________ __________________________
j 1 7 3 0 1
j 2 3 0 8 0
j 3 0 0 5 0
j 4 0 2 1 0







The procedure described here will always yield a set of n independent zeros after a
finite number of repetitions. The algorithm presented above to solve our optimal
matching problem is usually known as the hungarian algorithm, in honor of Ko

. .
nig and

Egerva ́ ry. An alternate form of the Ko
. .
nig-Egerva ́ ry theorem can now be stated. We

derive its proof from the first form.

Theorem 7.2.2 Let S be any m × n matrix. The maximum number of independent

14 Chapter 7: Matchings and r-Factors

zeros which can be found in S is equal to the minimum number of lines (either rows or
columns) which together cover all the zeros of S.

Proof. Construct a bipartite graph G = (X ∪ Y , E) modeling our matrix as follows.
Let the vertices of X correspond to the rows of our matrix and the vertices of Y to the
columns. We join x i and y j if, and only if, entry i , j of our matrix is zero. Then, a
maximum independent set of zeros corresponds to a maximum matching of G , and a
minimum set of lines covering all the zeros corresponds to a minimum covering of G.
Thus, by Theorem 7.1.3 the result follows.

Suppose we now consider the job assignment problem from the greedy point of view.
Can we simply begin with the edge of minimum cost and somehow extend to a matching
of minimum cost? The answer is that we can if we are careful about our point of view.
Rather than build a matching by greedily taking edges, we shall set our view on the
vertices involved. Given a bipartite graph G = (V 1 ∪ V 2 , E), we say a subset I of V 1
is matching-independent for matchings of V 1 into V 2 if there is a matching which
matches all the elements of I to elements of V 2. We wish to build a maximum sized
matching-independent set in a greedy fashion. Thus, if we have a set I that is matching-
independent, we would add to I the vertex x of V 1 having cheapest incident edge that still
allows us to match I ∪ { x } into V 2. When we can no longer do this, we stop. The
question of interest now is: How do we know that we have formed a maximum sized
matching-independent set when this process halts? That this is indeed the case can be
concluded from the next result.

Theorem 7.2.3 Matching-independent sets for matchings of V 1 into V 2 satisfy the
following rule:

If I and J are matching-independent subsets of V 1 and  I  <  J , then there is an
element x of J such that I ∪ { x } is matching-independent.

Proof. Suppose that M 1 is a matching of I into V 2 and M 2 is a matching of J into V 2.
Then, by Lemma 7.1.1, the spanning subgraph H with
E(H) = (M 1 − M 2) ∪ (M 2 − M 1) has connected components of only three possible
types. Since  M 2  >  M 1 , at least one of these components must be of type 3 in
Lemma 7.1.1. Thus, there is a path P whose edges are alternately in M 2 and M 1 and
whose first and last edges are in M 2. Each vertex of P incident to an edge from M 1 is
also incident to an edge from M 2. Further, there is a vertex x in V 1 (and J) incident to an
edge from M 2, and x is not incident to any edge from M 1. Now the set of edges

M = (M 1 − E(P)) ∪ (E(P) − M 1)

forms a matching with one more edge than M 1. Also, M is a matching of I ∪ { x } into
V 2. Thus, I ∪ { x } is matching-independent, and since x ∈ J, the proof is complete.

Chapter 7: Matchings and r-Factors 15

To actually use the greedy approach to construct a maximum sized matching of
minimum weight, we must determine a method that allows us to select the vertex x we
wish to add to our matching-independent set. To do this, we must also keep track of the
edges that are presently matching I into V 2. Otherwise, we would face the possibility of
having to check all possible subsets of V 2 in a search for the matching. Since this is
clearly an exponential process, the bookkeeping of the intermediate matchings is
necessary. Applying our methods of finding alternating paths allows us to construct the
maximum sized matching-independent set, and it is an exercise to show that the
corresponding matching is of minimum cost.

Can we vary the assignment problem somewhat? For a suitability weight function w,
we can change the function we are optimizing from

e ∈ M
Σ w(e) to

e ∈ M
min { w(e) }.

That is, suppose we try to maximize the minimum weight of an edge in the matching.
This is the mathematical version of the old proverb that the strength of a chain equals the
strength of its weakest link. This is known as the bottleneck assignment problem. It
turns out that we can solve the bottleneck assignment problem by repeated applications
of any algorithm for finding matchings in bipartite graphs. Suppose we begin with any
matching M in the bipartite graph G. We can easily find the minimum weight of an edge
in M, say b. We form a new graph G b from G by removing all edges from G with weight
b or less. If we now find a maximum matching in G b , and if it is a perfect matching, then
each of its edges must have weight greater than b, so we have improved the matching. If
no such matching can be found, then the previous matching was the best. We continue
this process until the matching which maximizes the minimum weight of an edge is
found. Can you formally write an algorithm that solves the bottleneck assignment
problem?

We conclude this section with a study of some interesting mathematical properties of
marriage. For the remainder of this section we shall use some notions about matrices to
study marriages. We take the marriage point of view because of the interesting and
unusual manner the statements of our results will take. We begin with some ideas on
matrices.

A matrix D = (d i , j) is doubly stochastic if each d i , j ≥ 0 and the sum of the entries
in any row or column equals 1. A permutation matrix is any matrix obtained from the
identity matrix I by performing a permutation on the rows of I. A well-known result on
doubly stochastic matrices from Birkhoff [4] and Von Neumann [15] states that any
doubly stochastic n × n matrix D can be written as a combination of suitable
permutation matrices. That is, there exist constants c 1 , c 2 , . . . , c n and permutation

matrices P 1 , . . . , P n such that D =
i = 1
Σ
n

c i P i .

16 Chapter 7: Matchings and r-Factors

We can use matchings to indicate an algorithm for finding the constants and the
decomposition of D into permutation matrices.

Suppose we model our doubly stochastic matrix D with a bipartite graph. Let
vertices r 1 , r 2 , . . . , r n represent the rows of D and let vertices k 1 , . . . , k n represent
the columns. We draw an edge from r i to k j if, and only if, entry d i , j of D is nonzero.
Then the permutation matrix P 1 represents the edges of a matching in this bipartite graph
and the constant c 1 is the minimum weight of an edge in this matching. We can now
write D as D = c 1 P 1 + R, where the matrix R represents the remaining edges of our
bipartite graph. The old edges were adjusted by subtracting c 1 from the weight of each
edge of the matching and removing any edge with weight zero. We now repeat this
process on R.

Suppose that at some stage we are unable to find a matching. Then by Hall’s theorem
there must exist some set A of vertices representing rows of D such that  A  >  N(A) .
That is, there are more rows than "neighboring" columns. Now, consider what this
means in our matrix D. If each of these rows sums to 1 (counting the entries that were
possibly removed prior to this), then the total value of the weights in these rows is  A .
But then this amount must also be distributed over  N(A)  columns, which means some
column must sum to more than 1, contradicting that D was doubly stochastic. Thus, we
will be able to find a matching at each stage.

We now formally state the algorithm for finding this convex sum of permutation
matrices.

Algorithm 7.2.2 Decomposing Doubly Stochastic Matrices.
Input: A doubly stochastic matrix D.
Output: A convex sum of permutation matrices c 1 P 1 + . . . + c n P n .

1. Set t 1 ← 1, X ← D and k ← 1.

2. Having a doubly stochastic matrix X and nonnegative numbers t 1 , t 2 , . . . , t k
and permutation matrices P 1 , . . . , P k − 1 such that

D = t 1 P 1 + . . . + t k − 1 P k − 1 + t k X and
i = 1
Σ
k

t i = 1.

If X is a permutation matrix,
then set P k ← X and halt;
else use bipartite graphs to find a permutation matrix X * such that x i j

* = 0
whenever x i j = 0.

3. The n entries x i , j of X for which x i j
* = 1 are all positive entries. Let c be the

least of these entries (note c < 1).
Set t ← t k , t k ← ct, t k + 1 ← (1 − c) t and P k ← X * . Now, replace X by

1 − c
1_ _____ (X − cP k), set k ← k + 1 and go to step 2.

Chapter 7: Matchings and r-Factors 17

Using doubly stochastic matrices, we find that another unusual theorem about
marriage is now possible. Suppose we consider a suitability matrix describing the
marriage problem. That is, given a set of n men and another set of n women, let the
matrix S = (s i , j) be defined so that s i , j is a measure of the suitability or "happiness" of a
marriage between man i and woman j. Our goal is to study the type of marriage that
brings this collection of men and women the most "happiness." In particular, we will
compare monogamy and polygamy. These relationships can be shown in a matrix
M = (m i j). Each row of the matrix M represents a man in our set of men and each
column a woman. The entry m i , j in our marriage matrix M represents the fraction of
time man i spends with woman j. Thus, monogamy would be a permutation matrix and
polygamy a general doubly stochastic matrix. Our measure of the happiness of the
present marriage relationship M will be h(M) =

i , j
Σ s i , j m i , j . Our solution is then to

find
M

max h(M), where the maximum is taken over all doubly stochastic matrices M. But

we note that

M
max h(M) =

c 1 , . . . , c n

max h(c 1 P 1 + . . . + c n P n)

=
c 1 , . . . , c n

max c 1 h(P 1) + . . . + c n h(P n)

= h(P i) for some i.

(The above follows easily for the maximum h(P i)). That is, the maximum corresponds
to the matching represented by some permutation matrix. In other words, monogamy is
the preferred mathematical state of marriage. We have just proven the following
interesting marriage theorem.

Theorem 7.2.4 Among all forms of marriage, monogamy is optimal.

We conclude our study of marriage by considering its stability. Suppose we have a
set of n men m 1 , . . . , m n and n women w 1 , . . . , w n . Suppose, too, that man m 1 is
married to woman w 1 and man m 2 to woman w 2. Further suppose that in reality m 2
prefers w 1 to his own wife and w 1 prefers m 2 to her own husband. It is easy to believe
this is not a "stable" situation, in fact, we call such a pair of marriages unstable.

Let’s construct two preference tables. In each table, the rows represent the men and
the columns the women. The entries in any row of the first preference table are the
integers 1 to n. This represents the order of preference of the women by the man
corresponding to this row (with 1 being first choice). A similar description applies to the
columns of the women’s preference table.

Our problem, then, is given the two preference tables, can we find a stable set of
marriages. That is, can we find a matching in which no pair of independent edges is
unstable. We now describe an algorithm to produce our stable matching.

18 Chapter 7: Matchings and r-Factors

Algorithm 7.2.3 Stable Matching Algorithm.
Input: Given preference tables for the men and the women.
Output: A set of stable marriages

1. Each man proposes to his first choice.

2. The women with two or more proposals respond by rejecting all but the most
favorable offer. However, no woman accepts a proposal.

3. The men that were rejected propose to their next choice. Those that were not
rejected continue their offers.

4. We repeat step 3 until we reach a stage where no proposal is rejected.

Clearly, each woman can only reject a finite number (namely n − 1) of proposals,
and so this process must eventually stop. We illustrate our algorithm on the following
preference tables.

men w 1 w 2 w 3 w 4_ ______________________________ _____________________________
m 1 1 2 3 4
m 2 1 4 3 2
m 3 2 1 3 4
m 4 4 2 3 1







women w 1 w 2 w 3 w 4_ ________________________________ _______________________________
m 1 3 3 2 3
m 2 4 1 3 2
m 3 2 4 4 1
m 4 1 2 1 4







The set of proposals P i appears below; starred proposals were rejected.

proposals P 1 P 2 P 3 P 4 P 5 P 6_ __ ___
m 1 1 1 1 1* 2* 3
m 2 1* 4 4 4 4 4
m 3 2 2 2* 1 1 1
m 4 4 4* 2 2 2 2







From this table we see that the final set of marriages is:

Chapter 7: Matchings and r-Factors 19

man m 1 with woman w 3
man m 2 with woman w 4
man m 3 with woman w 1
man m 4 with woman w 2 .

It is easy to verify that this set of marriages is stable.

We now wish to prove we actually reach a stable matching. Suppose this were not
the case; that is, suppose there was an unstable pair of marriages. Without loss of
generality, let this pair be (m 1 , w 1) and (m 2 , w 2).

But if m 2 prefers w 1, he would have proposed to w 1 before he proposed to his
present wife. Then w 1 would not have rejected m 2 if she actually preferred him over
m 1. Hence, we could not have reached this unstable situation. Thus, the marriages
cannot be unstable. We have now shown the following result, due originally to Gale and
Shapely [10].

Theorem 7.2.5 Given n men and n women, there always exists a set of stable
marriages.

Section 7.3 Factoring

We now wish to study matchings in a generalized setting. In addition, we want to
consider relaxations of the concept of matchings. A perfect matching is often called a 1-
factor, since the matching is a 1-regular spanning subgraph of the original graph. It is not
a difficult leap to the idea of an r-factor, that is, an r-regular spanning subgraph of the
original graph. We begin with a natural result.

Theorem 7.3.1 If G is a graph of order 2n and δ(G) ≥ n, then G contains a 1-factor.

Proof. This result follows as a consequence of Dirac’s theorem (Corollary 5.2.1).

We see that an algorithm for finding such a matching is apparent. Having obtained an
r-matching, scan the remaining (2n − 2r) vertices to see if any pair is joined by an
edge. If this fails to be the case, choose any two of these vertices, say a and b, and scan
the edges xy of the matching until one is found such that a is adjacent to x and b is
adjacent to y. Then, replace xy by the edges ax and by and repeat this process.

The fundamental result on 1-factors is from Tutte [14]. The proof presented here is
that of Anderson [1]. We denote the number of components of odd order in a graph G by
k o (G).

Theorem 7.3.2 (Tutte [14]) A nontrivial graph G has a 1-factor if, and only if,

20 Chapter 7: Matchings and r-Factors

k o (G − S) ≤  S  for every proper subset S of V(G).

Proof. Let F be a 1-factor of G and suppose there exists a proper subset S of V(G) such
that k o (G − S) >  S . For each of the odd components C of G − S, there must exist
an edge in F that goes from C to S. But this implies that there is a vertex in S incident
with at least two edges in F, which contradicts the definition of matching.

Conversely, note that k o (G − φ) ≤ ∅ = 0. Thus, G has only even components,
and the order n of G must, then, be even. Also, observe that for every proper subset S of
V(G), the numbers  S and k o (G − S) are of the same parity.

Now, we proceed by induction on the order of G. If n = 2, then G must be K 2, and
clearly G has a 1-factor. Next, assume that for all graphs H of even order less than n, the
condition k o (H − S) ≤  S  for every proper nonempty subset S of vertices implies H
has a 1-factor. Let G be a graph of even order n and assume that k o (G − S) ≤  S  for
every proper subset S of V(G). We now consider two cases.

Case 1. Suppose that k o (G − S) <  S  for all subsets S of V(G) with
2 ≤  S < n. Since k o (G − S) and  S have the same parity, k o (G − S) ≤  S  − 2.
Let uv be an edge of G and consider G − u − v. Let S 1 be a proper subset of
V(G − u − v). Thus,

k o (G − u − v − S 1) ≤  S 1  ,

or else

k o (G − u − v − S 1) >  S 1  =  S 1 ∪ { u , v }  − 2 ,

and, hence,

k o (G − (S 1 ∪ { u , v })) ≥  S 1 ∪ { u , v } ,

which contradicts our assumptions. Then the matching obtained by applying the
induction hypothesis, along with the edge uv, provides a 1-factor of G.

Case 2. Suppose that there exists some set S 2 such that k o (G − S 2) =  S 2 .
Among all such sets, let S be one of maximum cardinality. Further, let
k o (G − S) =  S  = t and let C 1 , . . . , C t be the odd components of G − S. If E is
an even component of G − S and x ∈ V(E), then k 0 (G − S − x) would equal
 S ∪ { x }, contradicting the fact that S was a set of maximum cardinality having this
property. Thus, G − S has no even components.

Let S i (i = 1 , . . . , t) denote those vertices of S with adjacencies in C i . Each S i
is nonempty, or else some C i would be an odd component of G. The union of any k of
the sets S 1 , . . . , S t contains at least k vertices, or there exists an integer k such that the
union U of some k of these sets contains less than k vertices. Thus, k o (G − U) >  U ,
which is a contradiction. Hence, by Hall’s theorem (SDR), there exists a system of
distinct representatives for the sets S 1 , . . . , S t . This implies that in S there are distinct

Chapter 7: Matchings and r-Factors 21

vertices v 1 , . . . , v t and that in each C i there is a vertex u i such that v i u i is an edge of
G.

Let W be a proper subset of C i − u i . Since C i − u i has even order,
k o (C i − u i − W) and  W  have the same parity. If

k o (C i − u i − W) >  W  ,

then it must be that

k o (C i − u i − W) ≥  W  + 2.

Thus,

k o (G − (S ∪ W ∪ { u i })) = k o (C i − u i − W) + k o (G − S) − 1
≥  S  +  W  + 1
=  S ∪ W ∪ { u i }.

But this contradicts the maximality of S. Hence,

k o (C i − u i − W) ≤  W  ,

and so by induction, each C i − u i has a 1-factor. These 1-factors, together with the
edges u i v i , then form the desired 1-factor in G.

Berge [3] noticed a useful related fact stemming from the proof of Tutte’s theorem.
This observation is often called the Berge defect form of Tutte’s theorem. From Tutte’s
theorem, we see that a graph G of even order p contains a perfect matching unless there
exists some set of r vertices whose removal leaves a graph with more than r odd
components. However, because G has even order, this forces the existence of at least
r + 2 odd components (see the proof). Further, the defect form also states that if G is a

graph of odd order p, then G contains a maximum matching of size
2
1_ _ (p − 1) unless

there is some set of r vertices whose removal leaves a graph with at least r + 3 odd
components. This observation can be useful in dealing with graphs of odd order.

It is clear that every 1-regular graph contains (in fact, is) a 1-factor and that every 2-
regular graph contains a 1-factor (in fact, is 1-factorable, that is, its edge set can be
decomposed into 1-factors) if, and only if, every component is an even cycle. The
situation is not as simple for 3-regular graphs, however. Petersen [13] investigated 1-
factors in 3-regular graphs and showed that they need not contain a 1-factor (see Figure
7.3.1). However, he was also able to show a situation in which such a graph would
contain a 1-factor.

Theorem 7.3.3 (Petersen [13]). Every bridgeless 3-regular graph G can be expressed as
the edge sum of a 1-factor and a 2-factor.

Proof. It suffices to show that such a graph contains a 1-factor since the remaining

22 Chapter 7: Matchings and r-Factors

edges form a 2-factor. Suppose the graph G fails to contain a 1-factor. Then by Tutte’s
theorem, there exists in G some proper nonempty set S of k vertices such that
n = k o (G − S) >  S = k. Suppose that C 1 , . . . , C n are the odd components of
G − S. There must exist an edge from each C i to S (1 ≤ i ≤ n), or else some C i would
be a 3-regular graph of odd order, which is impossible. Further, since G is bridgeless,
there cannot be a single edge joining S to any C i . If there were exactly two edges joining
S to some C i , then again C i would contain an odd number of vertices of odd degree.
Thus, at least three edges join any C i to S. Thus, there are at least 3n edges joining S and
the C i (1 ≤ i ≤ n). However, since each vertex of S has degree 3, there can be at most
3k edges into S. But since 3n > 3k, a contradiction arises. Thus, no such set S can
exist, and by Tutte’s theorem, we see that G must contain a 1-factor.

Figure 7.3.1. A 3-regular graph with no 1-factor.

Now that we know that every bridgeless 3-regular graph can be factored into a 1-
factor and a 2-factor, it is natural to wonder if it can actually be 1-factored. Petersen also
showed that this is not the case. His example, which has become perhaps the most
famous of all graphs, is shown in Figure 7.3.2.

Petersen also characterized those graphs which are 2-factorable. It turns out that the
obvious necessary condition that the graph be 2r-regular for some r ≥ 1 also suffices.
The proof makes use of the fact that such graphs are eulerian.

Theorem 7.3.4 A nonempty graph G is 2-factorable if, and only if, G is 2r-regular
(r ≥ 1) for some integer r.

Proof. Clearly, if G is 2-factorable, then G is 2r-regular for some r ≥ 1.

Chapter 7: Matchings and r-Factors 23

Figure 7.3.2. The Petersen Graph.

Conversely, let G be a 2r-regular graph (r ≥ 1). Without loss of generality we may
assume G is connected, for otherwise we would simply consider each component
separately. Thus, we see that G is eulerian with circuit C. Let
V(G) = { v 1 , v 2 , . . . , v p } and define a bipartite graph

B = (V 1 ∪ V 2 , E)

from G as follows: Let

V 1 = { u 1 , u 2 , . . . , u p } , V 2 = { w 1 , w 2 , . . . , w p } and

E(B) = { u i w j  v j immediately follows v i on C } .

The graph B is r-regular, and so by Corollary 7.1.1, B contains a perfect matching M 1.
Then the graph B − M 1 is r − 1-regular and again by Corollary 7.1.1, B − M contains
a perfect matching M 2. Continuing in this manner, we see that E(B) can be partitioned
into matchings M 1 , M 2 , . . . , M r .

Corresponding to each matching M k of B is a permutation πk on the set of vertices
defined by πk (v i) = v j if u i w j ∈ E(M k). We know that we can express πk as the
product of disjoint permutation cycles. Note that in this product, no permutation cycle is
of length 1, for this would imply that πk (v i) = v i . But this implies that u i w i ∈ E(B),
and, hence, that v i v i is an edge of C, contradicting the fact G is a graph. Further note
that there is no permutation cycle of length 2 in the product since this would imply that
πk (v i) = v j and πk (v j) = v i . But this means that u i w j and u j w i are edges of B and
that v j both precedes and follows v i on C. But this contradicts the fact that C is a circuit
and, hence, has no repeated edges. Thus, we are able to conclude that each permutation
cycle in the product of disjoint permutation cycles representing πk has length at least 3.

Each permutation cycle in πk then gives rise to a cycle in G, and since the product of
the permutation cycles is disjoint, the corresponding cycles span V(G). But, these
spanning cycles form a 2-factor of G. Further, since the matchings M 1 , M 2 , . . . , M r

24 Chapter 7: Matchings and r-Factors

partition the edges of G, the 2-factors that correspond to π1 , . . . , πr are mutually edge
disjoint. Thus, G is 2-factorable.

We conclude this section by considering some special classes of graphs. The obvious
starting point is the complete graphs. It turns out that we can produce very special 2-
factors in K 2p + 1. A 2-factorization of K 7 is shown in Figure 7.3.3.

Theorem 7.3.5 For every positive integer p, the graph K 2p + 1 can be 2-factored into p
hamiltonian cycles.

Proof. The result is trivial when p = 1, so we can assume that p ≥ 2. Let the vertices
of K 2p + 1 be v 0 , . . . , v 2p . We arrange the vertices v 1 , . . . , v 2p cyclically in a
regular 2p-gon and place v 0 in the center of the arrangement. We define the edges of the
2-factor F i to consist of the edges v 0 v i , v 0 v p + i along with v i v i + 1 and all edges
parallel to this edge, and v i − 1 v i + 1 and all edges parallel to this edge. (All subscripts are
expressed modulo 2p). Then each F i is a hamiltonian cycle, and K 2p + 1 is the edge sum
of these 2-factors.

1

6 2

5 3

0

4

1

6 2

5 3

0

4

1

6 2

5 3

0

4

Figure 7.3.3. A 2-factorization of K 7.

Corollary 7.3.1 For every positive integer p, the graph K 2p can be factored into p

Chapter 7: Matchings and r-Factors 25

hamiltonian paths.

We conclude this section with another result on complete graphs. Its proof is left to
the exercises.

Theorem 7.3.6 For every positive integer p, the graph K 2p is 1-factorable.

Section 7.4 Degrees and 2-Factors

In this section we wish to consider several results that appear similar to some of the
theorems we saw earlier dealing with hamiltonian graphs. Since a hamiltonian cycle is a
2-factor, it is not surprising that there is a relationship between these hamiltonian results
and theorems dealing with 2-factors. We begin with a very nice result due to El-Zahar
[7].

Theorem 7.4.1 Let G be a graph of order n and let n 1 ≥ 3 and n 2 ≥ 3 be two integers

such that n = n 1 + n 2. If δ(G) ≥


 2

n 1_ __




+


 2

n 2_ __



, then G contains two disjoint

cycles C 1 and C 2 of length n 1 and n 2, respectively.

El-Zahar’s Theorem can be viewed as a generalization of Dirac’s Theorem on
hamiltonian graphs. Dirac’s Theorem provides for a 2-factor that is one cycle while El-
Zahar’s Theorem uses a slightly stronger degree condition to provide for a 2-factor that is
two cycles. A stronger look at Dirac’s condition allows us to actually say much more.
We begin with a lemma.

Lemma 7.4.1 Let G be a graph of order n with minimum degree δ(G) ≥ n /2. If G
contains k ≥ 1 vertex disjoint cycles C 1 , C 2 , . . . , C k such that

 V(G) −
i = 1
∪
k

V(C i)  ≤ 2 ,

then G has a 2-factor with exactly k vertex disjoint cycles.

Proof. If V(G) −
i = 1
∪
k

V(C i) = { w }, then G contains the desired 2-factor since

deg w ≥ n /2 and hence w is adjacent to two consecutive vertices of a least one of the
cycles.

Thus we may assume V(G) −
i = 1
∪
k

V(C i) = { u , v }. If one of u and v, say u, is

adjacent to two consecutive vertices of one of the cycles, then, as before, we obtain the

26 Chapter 7: Matchings and r-Factors

desired 2-factor. Thus we may assume that deg u = deg v = n /2 and that each of u and
v is adjacent to alternate vertices of each of the cycles and necessarily to each other. Let

C 1 : u 1 , u 2 , . . . , u t , u 1

be one such cycle. If u and v are adjacent to the same set of vertices of C 1, say
{ u 1 , u 3 , . . . , u t − 1 }. Then C 1 can be replaced by

u 1 , u , v , u 3 , u 4 , . . . , u t , u 1

to obtain k vertex disjoint cycles containing all but one vertex of G. In this case, as we
have seen, G has the desired 2-factor. On the other hand, if u is adjacent to
u 1 , u 3 , , . . . , u t − 1 and v is adjacent to u 2 , u 4 , , . . . , u t . Then we may replace C 1
with the cycle

u 1 , u , u 3 , u 2 , v , u 4 , u 5 , . . . , u t , u 1

to complete the proof.

Now, with the aid of the lemma, we can take the stronger look at Dirac’s condition
promised earlier. The result is from [5].

Theorem 7.4.2 Let k be a positive integer and let G be a graph of order n ≥ 4k with
minimum degree δ(G) ≥ n /2. Then G has a 2-factor with exactly k vertex disjoint
cycles.

Proof. The cases k = 1 , 2 follow from Dirac’s Theorem and El-Zahar’s Theorem,
respectively. Thus we may assume that k > 2. Since δ(G) ≥ n /2 ≥ 2k and n ≥ 4k, G
contains k vertex disjoint cycles C 1 , C 2 , , . . . , C k by Theorem 5.8.4. Let

X = V(G) −
i = 1
∪
k

V(C i) and assume X ≠ ∅ .

If δ(/\X\/) <  X  /2, let w ∈ X with deg /\X\/ (w) <  X  /2. Then, since δ(G) ≥ n /2,
it follows that w is adjacent to more than half of the vertices of some C i , 1 ≤ i ≤ k and
therefore adjacent to consecutive vertices of C i . Therefore w can be added to C i .
Continue this process to obtain k vertex disjoint cycles C ′ 1 , C ′ 2 , . . . , C ′ k such that
either

V(G) = V(C ′ 1) ∪ V(C ′ 2) ∪ . . . ∪ V(C ′ k) or

X ′ = V(G) −
i = 1
∪
k

V(C ′ i) ≠ ∅ and

δ(/\X ′ \/) ≥  X ′  /2.

In the first case we have the desired 2-factor. In the second case, either /\X ′ \/ = K 2 or
/\X ′ \/ is hamiltonian. If /\X ′ \/ = K 2, then by applying Lemma 7.4.1 we obtain the desired
2-factor. Thus we may assume that C ′ k + 1 is a hamiltonian cycle of X ′. Without loss of
generality, assume that  V(C ′ 1)  ≤  V(C ′ i)  for i = 2 , 3 , , . . . , k + 1, so that

Chapter 7: Matchings and r-Factors 27

 V(C ′ 1)  ≤
k + 1

n_ ____ ≤ n /4.

Since δ(G) ≥ n /2, the number of edges between V(C ′ 1) and V(G) − V(C ′ 1) is at
least

 V(C ′ 1)  (n /2 −  V(C ′ 1)  + 1).

If between every three consecutive vertices of C ′ 1 and of C ′ i (2 ≤ i ≤ k + 1)
there are at most three edges, then the number of edges between V(C ′ 1) and
V(G) − V(C ′ 1) is at most

(
3
1_ _) (n −  V(C ′ 1))  V(C ′ 1).

This, however, implies that

(
3
1_ _) (n −  V(C ′ 1))  V(C ′ 1) ≥  V(C ′ 1) (n /2 −  V(C ′ 1) + 1) ,

so that

 V(C ′ 1) ≥ n /4 + 3/2 ,

contradicting the fact  V(C ′ 1) ≤ n /4. Thus, for some i with 2 ≤ i ≤ k + 1, three
consecutive vertices of C ′ 1 have at least four adjacencies to three consecutive vertices of
C ′ i . In this case it is straightforward to verify that C ′ 1 and C ′ i can be combined to form
a cycle containing all but at most two of the vertices of C ′ 1 and C ′ i . Then an application
of Lemma 7.4.1 completes the proof.

With slightly more effort it is possible to extend our generalizations to an Ore-like
result concerning degree sums of nonadjacent vertices. The following is also from [5].

Theorem 7.4.3 Let G be a graph of order n ≥ 4k such that deg x + deg y ≥ n for
each pair of nonadjacent vertices x , y in V(G), then G has a 2-factor with exactly k
vertex disjoint cycles.

Exercises

1. Show that the n-cube Q n (n ≥ 2) has a perfect matching.

2. Show that Q n is r-factorable if, and only if, r  n.

3. Characterize when the graph K p 1 , p 2 , . . . , p n
has a perfect matching.

4. Determine the number of perfect matchings in the graphs K p , p and K 2p .

28 Chapter 7: Matchings and r-Factors

5. How many perfect matchings can exist in a tree?

6. Find a maximum matching and a minimum cover in the graph below using each of
the indicated methods.

a. Algorithm 7.2.1 and Theorem 7.2.1.

b. A network model.

7. Use Dirac’s theorem (Corollary 5.2.1) to show that if G has even order p and

δ(G) ≥
2
p_ _ + 1, then G has a 3-factor.

8. Show that every doubly stochastic matrix is a square matrix.

9. Show that if G = (X ∪ Y , E) is a bipartite graph, then

β1 (G) =  X −
S ⊆ X
max { S −  N(S) } .

10. Use the previous exercise to show that if the (p , q) graph G = (X ∪ Y , E) is
bipartite and  X =  Y = n and q > (k − 1) n , then G has a matching of
cardinality k.

11. [9] Suppose that G is a graph of order p with the property that for every pair of
nonadjacent vertices x and y,  N(x) ∪ N(y)  ≥ s.

a. Use Berge’s defect form of Tutte’s theorem to show that if s > 2


 3

p_ _




− 2

and p is odd and p ≥ 6, then

β1 (G) =
2
1_ _ (p − 1) .

b. Find a graph of order 5 for which the conditions of part (a) fail to ensure

β1 (G) =
2
1_ _ (p − 1).

c. Use Tutte’s theorem to show that if s >
3
2_ _ (p − 1) − 1 and p is even and G is

connected, then β1 (G) =
2
p_ _.

12. Use Tutte’s theorem to prove Hall’s theorem.

13. Use Ko
. .
nig’s theorem to prove Hall’s theorem.

Chapter 7: Matchings and r-Factors 29

14. Prove Corollary 7.3.1.

15. Prove Theorem 7.3.6.

16. Can K 2n can be factored into n − 1 hamiltonian paths and one 1-factor?

17. Let G be a (p , q) graph of even order p with δ(G) <
2
p_ _. Show that if

q > (2

δ(G)) + (2

p − 2δ(G) − 1) + δ(G) (p − δ(G)) ,

then G has a perfect matching.

18. Four men and four women apply to a computer dating service. The computer
evaluates the unsuitability of each man for each woman as a percentage (see the
table below). Find the best possible dates for each woman for this Friday night.

M 1 M 2 M 3 M 4_ _______________________________ ______________________________
W 1 60 35 30 65
W 2 30 10 55 30
W 3 40 60 15 35
W 4 25 15 40 40







19. Consider the table used for the last exercise as representing the weights assigned to
a bipartite graph and solve the bottleneck assignment problem for this graph.

20. The math department at your college has six professors that must be assigned to
teach each of five different classes. The department did an examination of the
suitability of each professor for each class and the unsuitability table is shown
below. What is the optimal teaching assignment that can be made if no professor
is assigned more than one class?

P 1 P 2 P 3 P 4 P 5 P 6
C 1 75 25 55 25 50 35
C 2 60 30 45 35 45 20
C 3 55 25 50 15 50 30
C 4 40 35 40 45 35 25
C 5 50 20 45 30 40 45








(Hint: Add a dummy class that each professor is equally suited to teach.)

21. Does the previous problem make sense as a bottleneck assignment problem? If so,
solve it.

30 Chapter 7: Matchings and r-Factors

22. Consider the doubly stochastic matrix below. Use Algorithm 7.2.2 to decompose
this matrix into permutation matrices.

0.3 0.3 0.0 0.3 0.1
0.1 0.5 0.2 0.1 0.1
0.2 0.0 0.3 0.5 0.0
0.0 0.2 0.5 0.0 0.3
0.4 0.0 0.0 0.1 0.5














23. Consider the table of the previous problem as the weights assigned to the edges of
a bipartite graph. Interpret your solution in relation to the last problem on this
graph.

24. Explain why the adjustment process allows us to complete the hungarian algorithm
applied to an unsuitability matrix.

25. A decomposition of G is a collection { H i } of subgraphs of G such that
H i = < E i > for some subset E i of E(G) and where the sets { E i } partition
E(G). Prove that the complete graph K p can be decomposed as a collection of 3-

cycles if, and only if, p ≥ 3, p is odd and 3 divides (2

n).

26. Find a decomposition of K 5 as 5-cycles.

27. Find a decomposition of K 10 as paths of length 5.

28. Prove that for each integer n ≥ 1, the graph K 2n + 1 can be decomposed as a
collection of stars K 1 , n and that the graph K 2n can be decomposed as a collection
of stars K 1 , n .

29. By an ascending subgraph decomposition of a graph G of size (2

n + 1) we mean

an edge decomposition into subgraphs G 1 , . . . , G n with the properties that
 E(G i) = i and G 1 ≤ G 2 ≤ . . . ≤ G n , that is, each G i is isomorphic to a
subgraph of G i + 1. Show that K m has an ascending subgraph decomposition as
stars and also an ascending subgraph decomposition as paths.

30. Find an example that shows that the n ≥ 4k condition in Theorem 7.4.2 cannot be
reduced.

31. Find an example to show that the degree condition in El-Zahar’s Theorem is sharp.

32. Prove Theorem 7.4.1.

Chapter 7: Matchings and r-Factors 31

References

1. Anderson, I., Perfect Matchings of a Graph. J. Combinatorial Theory, 10B(1971),
183 − 186.

2. Berge, C., Two Theorems in Graph Theory. Proc. Nat. Acad. Sci. USA, 43(1957),
842 − 844.

3. Berge, C., Sur le Couplage Maximum d’un Graphe. C. R. Acad. Sci. Paris,
247(1958), 258 − 259.

4. Birkhoff, G., Tres Observaciones Sobre el Algebra Lineal. Universidad Nacionale
Tucuma ́ n Revista, 5(1946), 147 − 151.

5. Brandt, S., Chen, G., Faudree, R.J., Gould, R.J., and Lesniak, L., On the Number of
Cycles in a 2-Factor, (preprint).

6. Egerva ́ ry, J., Matrixok Kombinatorikus Tulajdonsa ́ gairo ´l. Mathematika e ́ s Fizikai
La ́ pok, 38(1931), 16 − 28.

7. El-Zahar, M.H., On Circuits in Graphs, Discrete Math. 50(1984d), 227-230.

8. Faudree, R. J., Gould, R. J., Jacobson, M. S., and Schelp R. H., Extremal Problems
Involving Neighborhood Unions, J. Graph Theory, (in press).

9. Ford, L. R., Jr. and Fulkerson, D. R., Flows in Networks. Princeton University
Press, Princeton, NJ, 1962.

10. Gale, D. and Shapley, L.S., College Admissions and the Stability of Marriage, The
American Mathematical Monthly, 69(1962), 9-14.

11. Hall, P., On Representatives of Subsets, J. London Math. Soc., 10(1935), 26 − 30.

12. Ko
. .
nig, D., Graphs and Matrices (Hungarian). Mat. Fig. Lapok, 38(1931),

116 − 119.

13. Petersen, J., Die Theorie der Regula
. .
ren Graphs. Acta Math., 15(1891), 193 − 220.

14. Tutte, W. T., The Factorization of Linear Graphs. J. London Math. Soc.,
22(1947), 107 − 111.

15. Von Neumann, J., A Certain Zero-Sum Game Equivalent to the Optimal
Assignment Problem. Contributions to the Theory of Games, Kuhn and Tucker,
eds., Annals of Mathematics Studies, 28(1953), 206 − 212.

