20. Let C be a collection of sets and E an element in the σ -algebra generated by C. Then there is a countable subcollection $C_0 \subset C$ such that E is an element of the σ -algebra A_0 generated by C_0 .

Proof: Let's denote the σ -algebra generated by a collection B of subsets of X by $\sigma(B)$. This means, for example, that E $\varepsilon \sigma(C)$. Now let A' = $\cup \{\sigma(B): B \subset C \text{ and } B \text{ is countable}\}$. A little thought reveals that A' $\supset C$. To finish things, it suffices to show that A' is a σ -algebra, for then it follows that E $\varepsilon \sigma(C) \subset A'$, and thus, that there is a countable subset C₀ of C with E $\varepsilon A_0 = \sigma(C_0)$ from the definition of a union of a family of sets.

To show A' is a σ -algebra, it suffices to show that A' is closed with respect to complementation and countable unions. That A' is closed under complements is simple because if F ε A', there is a countable subset B of C such that F $\varepsilon \sigma(B)$. Since $\sigma(B)$ is an algebra, \sim F $\varepsilon \sigma(B) \subset A'$. That A' is closed under countable intersections requires a little more work. Let {E_i: i ε I} be a countable collection of subsets of A'. For each i, there is a countable subset B_i of C such that E_i $\varepsilon \sigma(B_i)$, the σ -algebra generated by B_i. Let B' = \cup {B_i: i ε I}. Since B' is a countable union of countable subsets of C, B' is a countable subset of C. Hence, $\sigma(B') \subset A'$. Because B_i \subset B' for each i, E_i $\varepsilon \sigma(B_i) \subset \sigma(B')$ for each i. Consequently, \cup {E_i: i ε I} $\varepsilon \sigma(B') \subset A'$, and we are finished.