47. A continuous function ϕ on [a,b] is called polygonal (or piecewise linear) if there is a subdivision a = $x_0 < x_1 < \ldots < x_n$ such that ϕ is linear on each interval $[\,x_{_{n-1}},x_{_n}\,]\,.$ Let f be an arbitrary continuous function on $[\,a\,,b\,]$ and ϵ a positive number. Show that there is a polygonal function ϕ on [a,b] with $|f(x) - \phi(x)| < \epsilon$ for all x ϵ [a,b].

Proof.

Suppose f is continuous on [a,b] and $\varepsilon > 0$. Proposition 20 implies that f is uniformly continuous on [a,b]. Thus there is a δ > 0 such that if x and y are in [a,b] with $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon/2$. From the Axiom of Archimedes, there is a positive integer n such that $(b-a)/n < \delta$. Define a regular subdivision of [a,b] by setting $x_j = a + j \cdot (b-a)/n$ for j an integer with $0\leq j\leq n$. Evidently x_j - x_{j-1} = (b-a)/n < δ for each j with $1\leq j\leq n.$

Now we shall build $\phi.$ If x $\epsilon~[x_{j\text{--}1},x_{j}],$ set

 $\phi(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_{j-1}) \cdot [(f(\mathbf{x}_j) - f(\mathbf{x}_{j-1})) / (\mathbf{x}_j - \mathbf{x}_{j-1})] + f(\mathbf{x}_{j-1}).$

Observe that there is no problem at the endpoints of the subintervals where we have overlap. Clearly ϕ is a polygonal function defined on [a,b].

Finally, we verify that ϕ satisfies the desired inequality. Let x ε [a,b]. Then there is some integer j with $1 \le j \le n$ such that x ε [x_{i-1},x_i]. Using the triangle inequality, we have

$$\begin{split} |f(x) - \phi(x)| &\leq |f(x) - f(x_{j-1})| + |f(x_{j-1}) - \phi(x)| \\ &< (\epsilon/2) + |f(x_j) - f(x_{j-1})| \\ &< (\epsilon/2) + (\epsilon/2) \\ &< \epsilon \end{split}$$

since

$$|\mathbf{x} - \mathbf{x}_{j-1}| \le |\mathbf{x}_j - \mathbf{x}_{j-1}| = (b-a)/n < \delta$$

 $(\mathbf{x} - \mathbf{x}_{j-1})/(\mathbf{x}_j - \mathbf{x}_{j-1}) \le 1$

and

$$(x - x_{j-1})/(x_j - x_{j-1}) \le 1.$$