3-24. Let f be measurable and B a Borel set. Then $f^{-1}[B]$ is a measurable set. [Hint: The class of sets for which $f^{-1}[E]$ is measurable is a σ -algebra.]

Proof. Let $\mathscr{E} = \{ E \subset \mathbf{R} : f^{-1}[E] \text{ is Lebesgue measurable} \}$. Since inverse images are well behaved with respect to all the usual set operations and the family of Lebesgue measurable sets is a σ -algebra, it is easy to see that \mathscr{E} is a σ -algebra. Here are the details of that. Suppose $E \in \mathscr{E}$. Then $f^{-1}[E]$ is Lebesgue measurable. Consequently, $\sim f^{-1}[E] = f^{-1}[\sim E]$ is Lebesgue measurable. Hence, $\sim E \in \mathscr{E}$. Similarly, if $\{E_j\}$ is a countable family of elements of E, then $\{f^{-1}[E_j]\}$ is a countable family of Lebesgue measurable sets. Consequently, $\cup f^{-1}[E_j] = f^{-1}[\cup E_j]$ is Lebesgue measurable. Hence $\cup E_j \in \mathscr{E}$. Since, $f^{-1}[\emptyset] = \emptyset$, we now know that \mathscr{E} is a σ -algebra. Since the definition of measurability implies that \mathscr{E} contains each open ray, (a, ∞) , \mathscr{E} must contain the open intervals, and hence, all open subsets of the real line. Thus, \mathscr{E} must contain the σ -algebra generated by the open sets, the Borel sets.//

3-25. Show that if f is a measurable real-valued function and g is a continuous function defined on $(-\infty,\infty)$, then gof is measurable.

Proof. If a is a real number, then

$${x: g \circ f(x) > a}$$
 = $(g \circ f)^{-1}[(a, \infty)]$
= $f^{-1}[g^{-1}[(a, \infty)]]$.

If g is continuous, then $g^{-1}[(a,\infty)]$ is an open subset of $(-\infty,\infty)$. Open subsets are Borel sets. Now just apply Problem 3-24 with $B = g^{-1}[(a,\infty)].//$