
3-29. Give an example to show that we must require m(E) < ∞
in Proposition 23.

23. Proposition: Let E be a measurable set of finite measure, and
<fn> a sequence of measurable functions defined on E. Let f be a
real-valued function such that for each x in E we have
fn(x) → f(x). Then given ε > 0 and δ > 0, there is a measurable
set A ⊂ E with m(A) < δ and an integer N such that for all x ∉ A
and all n ≥ N, fn(x) - f(x) < ε.

Example. For each n in define fn: → to be the
characteristic function of the interval [n,n+1). Then each
function in the sequence plainly is measurable, and the sequence
<fn> converges point-wise to the zero function, a measurable
function. Let ε0 = 1/2 and let δ0 = 1/2. If A is any measurable
subset of the real line with m(A) < δ0 and N is any positive
integer, since m( A ∩ [N,N+1) ) < δ0, there is a real number x0
in [N,N+1) ~ A with fN(x0) - 0 ≥ ε0. Thus there is a positive
integer n ≥ N and number x0 ∉ A such that the inequality in the
conclusion of Proposition 23 is false.

Note: Take a careful look at the proof of Proposition 3-23 given
by Royden. The intuition is this: Since has infinite measure,
we can build a sequence that converges and yet have the measure
of the "bad sets", the EN’s, not eventually vanish. We could, in
fact, arrange it so that the bad sets get arbitrarily large in
measure and the badness arbitrarily bad, while still converging
point-wise to zero. Replace the sequence of functions, <fn>,
above with the sequence of functions <gn>, where each function,
gn, is n! times the characteristic function of the interval
[n, n + (n!)). Then given any ε > 0 , any δ > 0, any measurable
subset A with m(A) < δ, and any positive integer N, there is a
positive integer n ≥ N and x not is A with gn(x) - 0 ≥ ε. Yet
the sequence, <gn>, does converge to zero point-wise.


