4-14. a. Show that under the hypothesis of Theorem 4-17 we have $\int |\,f_n\,-\,f\,|\,\rightarrow 0\,.$

b. Let <f_n> be a sequence of integrable functions such that $f_n\to f$ a.e. with f integrable. Then $\int |\,f_n\,-\,f\,|\to 0$ if, and only if $\int |\,f_n\,|\to \int |\,f\,|$.

Proof. (a) If the hypotheses of Theorem 4-17 are satisfied, then there is a sequence $\langle g_n \rangle$ of integrable functions that converge a.e. to an integrable function g with $|f_n| \leq g_n$ for each n and the sequence of measurable functions $\langle f_n \rangle$ converges a.e. to f. Suppose now that we have $\int g_n \rightarrow \int g$. Observe that $||f_n| - |f|| \leq |f_n - f|$ at least almost everywhere. Thus,

$$|f_n - f| \leq |f_n| + |f|$$

$$\leq g_n + g$$

a.e., since $|f_n| \rightarrow |f|$ a.e. , $|f_n| \leq g_n$, and the sequence $\langle g_n \rangle$ of integrable functions converge a.e. to the integrable function g. By using Proposition 4-15, it follows that the each of the functions of the sequence of functions $\langle h_n \rangle$, where h_n = $|f_n - f|$, is integrable, $h_n \rightarrow 0$ a.e, and $\int g_n + g \rightarrow \int 2g$. Thus, applying Theorem 4-17 with the sequence $\langle h_n \rangle$ in the role of the sequence $\langle f_n \rangle$, the zero function in the role of f, the sequence $\langle g_n + g \rangle$ in the role of $\langle g_n \rangle$, and the function 2g in the place of g, it follows that $\int |f_n - f| \rightarrow 0$.

(b) Suppose now $\langle f_n \rangle$ is a sequence of integrable functions such that $f_n \to f$ a.e. with f integrable. From Problem 4-10 it follows that |f| is integrable and each of the functions $|f_n|$ is integrable. Thus, if $\int |f_n| \to \int |f|$, we may apply part (a), since g = |f| and the sequence $\langle g_n \rangle$ with $g_n = |f_n|$ will allow us to satisfy the hypotheses of Theorem 4-17. Consequently, we have $\int |f_n - f| \to 0$. On the other hand, if $\int |f_n - f| \to 0$, we may use Proposition 4-15, Problem 4-10(a), and the inequality $||f_n| - |f|| \leq |f_n - f|$ to infer that

 $|\int |f_n| - \int |f|| \le \int ||f_n| - |f|| \le \int |f_n - f|.$

Thus, $\int |f_n - f| \to 0$ implies that $\int |f_n| \to \int |f|$.