4-15. a. Let f be integrable over E. Then, given ϵ > 0, there is a simple function ϕ such that

$$\int_{E} |f - \phi| < \varepsilon.$$

[Apply Problem 4-4 to the positive and negative parts of f.]

b. Under the same hypothesis there is a step function $\boldsymbol{\psi}$ such that

$$\int_{E} |f - \psi| < \varepsilon.$$

c. Under the same hypothesis there is a continuous function g vanishing outside a finite interval such that

$$\int_{E} |f - g| < \varepsilon.$$

Proof. (a) Let $\epsilon > 0$. Decompose f into its positive and negative parts so that $f = f^+ - f^-$ with both f^+ and f^- nonnegative. From Problem 4-4 there are two increasing sequences of nonnegative simple functions $<\phi_n>$ and $<\psi_n>$ with each function nonzero on a set of finite measure , $\lim \phi_n = f^+$, and $\lim \psi_n = f^-$. By applying the Monotone Convergence Theorem and using the hypothesis that f is integrable, it follows that there is a positive integer so that $\int f^+ - \int \phi_n < \epsilon/2$ and $\int f^- - \int \psi_n < \epsilon/2$. Set $\phi = \phi_n - \psi_n$. Then, since $|f - \phi| \leq |f^+ - \phi_n| + |f^- - \psi_n|$, (a) follows by applying Proposition 4-15 and Exercise 4-10.//

(b) By applying Proposition 4-15, Exercise 4-10, and the triangle inequality for absolute values, we may assume f is an integrable simple function that is nonzero on a set of finite measure E. Unfortunately, E need not be an interval, and thus, we shall have to work a little to apply Proposition 3-22. Let $\mathtt{E}_{\mathtt{n}}$ = \mathtt{E} \cap $[-\mathtt{n},\mathtt{n}]$ for each n ε N, and let f_n be the function defined by $f_n = f \cdot \chi_n$, where χ_n is the characteristic function of E_n . Observe that we have lim $f_n = f$ and $|f_n| \leq |f|$, which is integrable on E since f is. Thus we may apply the Lebesgue Convergence Theorem to the sequence of functions $\langle f - f_n \rangle$ to see that there is a positive integer n with $\int |f - f_n| < \epsilon/2$. Now f_n is a measurable function that we may view as living on the set [-n,n] by abusing notation a little. [If we were to be quite proper about this, we should distinguish between f, and its restriction to the interval. We won't do so, however.] Plainly, since |f| is integrable, the set where f_n assumes the values $\pm \infty$ must be of measure zero. In fact, since f_n is simple, there must be a number K > 0 such that $|f_n| \leq K$ a.e. Applying Proposition 3-22 to f_n , it follows that there is a step function, ψ with $|f_n - \psi| < \delta$ except for a subset B of [-n,n] of measure less than δ , where δ = min($\epsilon/(8K)$, $\epsilon/(8n)$) with the step

function bounded by the same constant K. Since we have $\int_{[-n,n]} |f_n - \psi| \leq \int_{B} |f_n - \psi| + \int_{[-n,n] \sim B} |f_n - \psi| < \delta \cdot 2K + 2n \cdot \delta < \epsilon/2,$ all the pieces are in place to apply Proposition 4-15, Exercise 4-10, and the triangle inequality, and we are finished.

(c) Again applying Proposition 4-15, Exercise 4-10, and the triangle inequality for absolute values, we may assume f is a step function that is nonzero on an interval [a,b]. Now things are much easier than in part (b) since f is assumed to live on an interval. Simply apply Proposition 3-22 with ϵ replaced by δ =min($\epsilon/4$ K, $\epsilon/(2b-2a)$), where f is bounded in magnitude by K. Then there is a continuous function g defined on [a,b] that is bounded by the same constant K as f with $|f - g| < \delta$ except on a subset B of [a,b] of measure less than δ . Consequently, we have $\int_{[a,b]} |f - g| \leq \int_{B} |f - g| + \int_{[a,b] \sim B} |f - g| < \delta \cdot 2K + (b-a) \cdot \delta < \epsilon$ and we are done.