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_________________________________________________________________
Read Me First: Show all essential work very neatly. Use
correct notation when presenting your computations and arguments.
Write using complete sentences. Be careful. Remember this: "="
denotes "equals" , "⇒ " denotes "implies" , and "⇔" denotes "is
equivalent to". Since the answer really consists of all the
magic transformations, do not "box" your final results.
Communicate. Show me all the magic on the page.
_________________________________________________________________
1. (10 pts.) Using the text’s four step process, show
completely how to obtain the slope-predictor function m(x) for
the function f(x) = 1/x2 for x ≠ 0.

f(x + h) - f(x)
m(x) = lim

h → 0 h

[1/(x+h)2] - [1/x2]
= lim
h → 0 h

x2 -[x2+2xh+h2]
= lim
h → 0 h(x+h)2x2

= lim -(2x + h)/[(x + h)2x2]
h → 0

= -2/x3

_________________________________________________________________
2. (10 pts.) Let f(x) = 2x(x + 3).

(a) Then the slope-predictor function for f is given by

m(x) = 4x + 6 since f(x) = 2x2 + 6x.

(b) It turns out that the graph of f has a horizontal tangent
line at precisely one point on the graph of f, (x1,f(x1)). What
is this ordered pair?

Plainly f has a horizontal tangent line at (x1,f(x1)) precisely
when the slope-predictor function of f at x1 is zero. Now

m(x1) = 0 ⇔ 4x1 + 6 = 0 ⇔ x1 = -3/2.

Thus, computing the value of f(x1), we have

(x1,f(x1)) = (-3/2, -9/2)



TEST1/MAC2311 Page 2 of 5
_________________________________________________________________
3. (5 pts.) It turns out that the slope-predictor function for
the function f(x) = tan(x) is the function m(x) = sec2(x). Use
this to obtain an equation for the line tangent to the graph of
f(x) = tan(x) at x0 = π/4.

Since f(π/4) = tan(π/4) = 1 and m(π/4) = sec2(π/4) = 2, an
equation for the line tangent to the graph of f at x0 = π/4 is

y - 1 = 2(x - π/4).

There are, of course, infinitely many equations equivalent to
this one.
_________________________________________________________________
4. (15 pts.) (a) First write the function

x2 - 1
f(x) =

x - 1
in a piecewise-defined form below. (b) Then sketch its graph.
Label carefully. (c) Evaluate each one-sided limit at x = 1.
(d) Using part (c), what can you say about the existence of the
two-sided limit at x = 1??
(a)

 (x2 - 1)/(x-1) , x > 1  x+1 ,x > 1
f(x) =  = 

 (x2 - 1)/(1-x) , x < 1  -(x+1) ,x < 1.

(b)

(c)
lim f(x) = lim (x+1) = 2
x → 1+ x → 1+

lim f(x) = lim -(x+1) = -2
x → 1- x → 1-

(d) Since the two one-sided limits have different values, the
two-sided limit does not exist.
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5. (20 pts.) For each of the following, find the limit if the
limit exists. If the limit fails to exist, say so. Be as
precise as possible here. [Work on the back of page two if you
run out of room here.]

x + 9 1
(a) lim = lim = -1/18

x → -9 x2 - 81 x → -9 x - 9

x + 9 1
(b) lim = lim fails to exist.

x → +9 x2 - 81 x → +9 x - 9

tan(5πθ) sin(5πθ) × 5π × 2θ
(c) lim = lim = 5π/2

θ → 0 sin(2θ) θ → 0 5πθ cos(5πθ)sin(2θ) 2

x - 4 (x1/2+2)(x1/2-2)
(d) lim = lim = -lim(x1/2+2) = -4

x → 4 2 - x1/2 x → 4 2 - x1/2 x → 4
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6. (10 pts.) Where does the straight line tangent to the graph
of y = x2 at the point (-10,100) intersect the x-axis??

Since the slope-predictor function for y = x2 is m(x) = 2x for
each x, an equation for the tangent line at (-10,100) is given by
y - 100 = m(-10)(x - (-10)) or y - 100 = -20(x + 10). An
equivalent equation in slope-intersect form is y = -20x - 100.
This line intersects the x-axis when y = 0. Solving for the x-
component yields x = -5. Thus, the point of intersection is
(-5,0).
_________________________________________________________________
7. (5 pts.) Using complete sentences and appropriate notation,
provide the precise mathematical definitions for each of the
following items:

lim f(x) = L [Hint: This involves ε and δ.]//
x → a

Suppose that f is a function that is defined everywhere in some
open interval containing x = a, except possibly at x = a. We
write

lim f(x) = L
x → a

if L is a number such that for each ε > 0, we can find a δ > 0,
such that if x is in the domain of f and 0 < x - a < δ, then

f(x) - L < ε.
_________________________________________________________________
8. (5 pts.) Give a complete ε - δ proof that

lim(7x - 9) = -30.
x → -3

Proof: Let ε > 0 be arbitrary. Set δ = ε/7. Observe that
δ > 0. Suppose now that x satisfies 0 < x - (-3) < δ. We
shall now verify that 0 < x - (-3) < δ implies
(7x - 9) - (-30) < ε. Now

0 < x - (-3) < δ ⇒ x + 3 < ε/7
⇒ 7 x + 3 < ε
⇒ 7x + 21 < ε
⇒ (7x - 9) - (-30) < ε.

Since, given an arbitrary ε > 0, we have produced a number δ > 0
such that, if x satisfies 0 < x - (-3) < δ, then
(7x-9) - (-30) < ε, we have proved (7x-9) > -30 as x > -3.
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9. (5 pts.) Show how to use the squeeze law of limits to
provide an evaluation of the following limit that is completely
correct. You will need to show how to build a suitable
inequality to provide a complete solution.

lim x2cos2(1/x) = 0
x → 0

To see this, observe that for x ≠ 0, -1 ≤ cos(1/x) ≤ 1 implies
that 0 ≤ x2cos2(1/x) ≤ x2 because cos2(1/x) ≥ 0. Since x2 > 0 as
x > 0, the squeezing theorem implies x2cos2(1/x) > 0 as x > 0.
[You need all of this, or something equivalent for a complete
answer!!]
_________________________________________________________________
10. (5 pts.) Suppose that

 x2 - 3x , if x < 1


h(x) =  6 , if x = 1

 -2x , if x > 1

Evaluate the following limits:

(a) lim h(x) = lim (-2x) = -2
x → 1+ x → 1+

(b) lim h(x) = lim (x2 - 3x) = -2
x → 1- x → 1-

(c) What can you conclude from parts (a) and (b)? Why??

Since the two one-sided limits at x = 1 are the same, -2, we
actually have

lim h(x) = -2.
x → 1

_________________________________________________________________
11. (5 pts.) Show a complete evaluation of the following
somewhat thorny limit:

1 - cos(θ) sin2(θ)
lim = lim

θ → 0 θ sin(2θ) θ → 0 2θ sin(θ)cos(θ)(1 + cos(θ))

sin(θ)
= lim = 1/4

θ → 0 2θ cos(θ)(1 + cos(θ))

This uses both the obvious Pythagorean identity for sine and
cosine and sin(2x) = 2sin(x)cos(x). There are other, more
devious ways to deal with this using sin2(x/2) = [1 - cos(x)]/2.
_________________________________________________________________
12. (5 pts.) What is the slope of the line normal to the curve
y = 2x2 + 3x - 5 at the point P(2,9) ??

Since the slope-predictor function is m(x) = 4x + 3, the slope of
the line tangent to the graph at (2,9) is m(2) = 11. Thus, the
slope of the normal line is m = -1/11.


