Read Me First: Show all essential work very neatly. Use correct notation when presenting your computations and arguments. Write using complete sentences. Communicate. Show me all the magic on the page. Eschew obfuscation.

7. (10 pts.) Find the x-coordinates of all points on the graph of $y = 3 - x^2$ at which the tangent line passes through the point (2,0).

Here is a second solution to this problem. This is based on a partially correct solution provided by a student.

Instead of first obtaining an equation for the tangent line to the curve at an arbitrary point x_0 on the real line, we will obtain an equation for the line throught the point (2,0) with slope provided by that of the tangent line at any point $(x_0, f(x_0))$ on the curve Plainly, this is given by

$$y - (0) = -2x_0(x-2)$$
,

or in slope-intercept form,

$$y = -2x_0x + 4x_0$$
,

after routine algebra. Since the line defined by this equation also contains the point $(x_0, f(x_0))$, we must have

$$3 - x_0^2 = -2x_0x_0 + 4x_0$$
.

Consequently, as in the first solution,

$$0 = x_0^2 - 4x_0 + 3$$
$$= (x_0 - 1)(x_0 - 3).$$

Thus, $x_0 = 1$ or $x_0 = 3$.