NAME: OgreOgre [BOnus]

READ ME FIRST: Show all essential work very neatly. Use correct notation when presenting your computations and arguments. Write using complete sentences. Be careful. Remember this: "=" denotes "equals", "⇒" denotes "implies", and "⇔" denotes "is equivalent to". Since the answer really consists of all the magic transformations, do not "box" your final results. Communicate. Show me all the magic on the page.

Silly 10 Point Bonus: Obtain the closed form sum of the power series function in Problem 4 on Page 2 of 5. Say where your work is, for it won't fit here.

First, here is Problem 4 and its solution.

4. (10 pts.) Find the radius of convergence and the interval of convergence of the power series function

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k} (x - 2)^{k}}{k \, 10^{k}}$$

First observe that the series is centered at x = 2. Then we apply the ratio test for absolute convergence in order to determine the radius of convergence of the power series.

$$\rho(x) = \lim_{k \to \infty} \frac{|u_{k+1}|}{|u_k|} = \dots = \lim_{k \to \infty} \frac{1}{10} \frac{k}{k+1} |x - 2| = \frac{1}{10} |x - 2|$$

Now, $\rho(\mathbf{x}) < 1$ if, and only if $|\mathbf{x} - 2| < 10$. Thus, R = 10 is the radius of convergence. The endpoints are $\mathbf{x}_{\mathrm{L}} = -10 + 2$ and $\mathbf{x}_{\mathrm{R}} = 2 + 10$. When you substitute \mathbf{x}_{L} into the power series and simplify the algebra, you obtain $\sum_{k=0}^{\infty} \frac{1}{k+1}$ which diverges. When you substitute \mathbf{x}_{R} into the power series and simplify the algebra, you obtain $\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$ which converges. I = (-8, 12].

Here is a "hard" solution to the bonus problem:

.

Observe that

$$f'(x) = \sum_{k=1}^{\infty} \frac{(-1)^k (x-2)^{k-1}}{10^k} = \sum_{j=0}^{\infty} \frac{-1}{10} \cdot \left(-\left(\frac{x-2}{10}\right)\right)^j = \frac{-1}{x+8}$$

provided |x - 2| < 10 or equivalently, -8 < x < 12. Clearly f(2) = 0. Thus, the function f satisfies the wee initial value problem, f'(x) = -1/(x + 8) for $x \in (-8, 12)$ with f(2) = 0. Using the Fundamental Theorem of Calculus, we have

$$f(x) = \int_{2}^{x} \frac{-1}{t+8} dt = \int_{x}^{2} \frac{1}{t+8} dt = \ln(10) - \ln(x+8) = \ln\left(\frac{10}{x+8}\right)$$

for x ε (-8,12).// (End of "hard" solution).

Here is an "easy" solution to the bonus problem:

Plainly,

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k} (x-2)^{k}}{k \, 10^{k}}$$
$$= \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \left(\frac{x-2}{10}\right)^{k}$$
$$= -\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \left(\frac{x-2}{10}\right)^{k}$$
$$= -\ln\left(1 + \left(\frac{x-2}{10}\right)\right)$$
$$= -\ln\left(\frac{x+8}{10}\right) = \ln\left(\frac{10}{x+8}\right)$$

if $-1 < (x - 2)/10 \le 1$ or $-8 < x \le 12$. You need only have data for the Maclaurin series for ln(x + 1) stored in an accessible place in your bio-computer.//