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18. (6 pts.) Consider the sequence

(a) Find a recursion formula for an+1.

(**)

(b) Assuming the sequence converges, find the limit, L.

implies that L2 - L - 6 = 0, so that L = 3 or L = -2. Since the sequence
is nonnegative, the limit, if it exists must also be nonnegative. Thus it
is impossible for L to be -2. As a consequence, L = 3.
______________________________________________________________________
Silly 10 Point Bonus: Prove that the sequence {an} of Problem 18 actually
converges.

To prove that the sequence converges, we’ll utilize the theorem that
tells us that sequences that are bounded above and eventually increasing
are convergent. To do this, using the recursive definition of the sequence
via formula (**) above together with the needed basis, namely, that

(*)

we shall show that the following three assertions are true by means of
induction arguemnts:

(a) ;

(b) ; and

(c) .

You should note that (*) and (**) together constitute a recursive
definition for the sequence. Assertions (b) and (c) provide us with the
satisfaction of the essential hypotheses of the above mumbled about
theorem.

Proof of (a): [Induction]
Basis Step: Since a1 = 61/2 > 11/2 = 1, the basis step for the

induction is satisfied.
Induction Step: Suppose n is an arbitrary positive integer and

that an > 1. Using this, (**) and the observation that square roots
preserve order, we have

Thus, for every positive integer n, an > 1 implies an+1 > 1.
Having now satisfied the hypotheses of the induction axiom, we may now

conclude that (a) is true.
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Proof of (b): [Induction]
Basis Step: Since a1 = 61/2 < 91/2 = 3, the basis step for the

induction is satisfied.
Induction Step: Suppose n is an arbitrary positive integer and

that an < 3. Using this, (**) and the observation that square roots
preserve order, we have

Thus, for every positive integer n, an < 3 implies an+1 < 3.
Having now satisfied the hypotheses of the induction axiom, we may now

conclude that (b) is true.

As you can see, the induction arguments for (a) and (b) are quite
similar. One might, in fact, say they are the same mutatis mutandis. [If
you don’t know the meaning of that phrase, you might want to break out your
pet dictionary or Google --- whichever is the most convenient.]

Proof of (c): [Induction]
Basis Step: Using (a) with n = 1, (**), and the observation

that square roots preserve order, we see easily that

a1 = 61/2 < (6 + 1)1/2 < (6 + a1)
1/2 = a1+1.

Consequently, the basis step for the induction is satisfied.

[Note that 1 < a1 is not really needed, for 0 < a1 suffices here.]

Induction Step: Suppose n is an arbitrary positive integer and
that an < an+1. Using this, (**) and the observation that square roots
preserve order, we have

Thus, for every positive integer n, an < an+1 implies an+1 < a(n+1)+1 .
Having now satisfied the hypotheses of the induction axiom, we may now

conclude that (c) is true.

And just what is that induction axiom?? It is a codification of one of the
most important properties of the set of positive integers. When formulated
in terms of sets, it looks like this:

Let denote the set of positive integers. Suppose{ 1, 2, 3, }

IfA ⊆ .

(basis step)1 ∈ A,

and

(induction step),for every positive integer n, n ∈ A ⇒ n 1 ∈ A,

then A .

The arguments proving (a) - (c) above are informal, but may be cast
formally in set theoretic language, if desired. e.t.


